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Simple Summary: Glioblastoma (GB) is the most aggressive brain cancer in humans. Patient survival
outcomes have remained dismal despite intensive research over the past 50 years, with a median
overall survival of only 14.6 months. We highlight the critical role of the renin–angiotensin system
(RAS) on GB cancer stem cells and the tumor microenvironment which, in turn, influences cancer
stem cells in driving tumorigenesis and treatment resistance. We present recent developments and
underscore the need for further research into the GB tumor microenvironment. We discuss the novel
therapeutic targeting of the RAS using existing commonly available medications and utilizing model
systems to further this critical investigation.

Abstract: Glioblastoma (GB) is an aggressive primary brain tumor. Despite intensive research over
the past 50 years, little advance has been made to improve the poor outcome, with an overall median
survival of 14.6 months following standard treatment. Local recurrence is inevitable due to the quies-
cent cancer stem cells (CSCs) in GB that co-express stemness-associated markers and components
of the renin–angiotensin system (RAS). The dynamic and heterogeneous tumor microenvironment
(TME) plays a fundamental role in tumor development, progression, invasiveness, and therapy
resistance. There is increasing evidence showing the critical role of the RAS in the TME influencing
CSCs via its upstream and downstream pathways. Drugs that alter the hallmarks of cancer by modu-
lating the RAS present a potential new therapeutic alternative or adjunct to conventional treatment
of GB. Cerebral and GB organoids may offer a cost-effective method for evaluating the efficacy of
RAS-modulating drugs on GB. We review the nexus between the GB TME, CSC niche, and the RAS,
and propose re-purposed RAS-modulating drugs as a potential therapeutic alternative or adjunct to
current standard therapy for GB.

Keywords: glioblastoma; renin–angiotensin system; pluripotent stem cells; organoids; cancer stem
cells; cancer stem cell niche; tumor microenvironment

1. Introduction

Glioblastoma (GB), the most common and most aggressive primary brain cancer in hu-
mans, is classified as a WHO grade IV astrocytoma, and is characterized by microvascular
proliferation and central necrosis [1]. Primary GB arises de novo and accounts for 90% of
cases with a predilection for older individuals, while secondary GB arises from low-grade
astrocytoma and affects younger patients [2]. GB has been categorized into four distinct
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molecular subtypes: classical, mesenchymal, neural, and proneural [3], although other
studies have only identified classical, mesenchymal, and proneural subtypes [4]. The classi-
cal subtype includes amplification or mutation of epidermal growth factor receptor (EGFR),
the mesenchymal subtype includes deletions of the 17q11.2 region containing the gene NF1,
and the proneural subtype is characterized by high levels of platelet-derived growth factor
receptor α (PDGFRα) expression and point mutations in isocitrate dehydrogenase 1 (IDH1)
and p53 [3].

Various genetic or epigenetic changes may affect the prognosis of GB patients includ-
ing IDH mutations and O6-methylguanine-DNA methyltransferase (MGMT) methylation
status. GB may be divided into IDH-wild-type and IDH-mutant tumors. IDH is an enzyme
that catalyzes oxidative decarboxylation of isocitrate to 2-oxoglutarate. The most common
mutation in GB affects IDH1 with a single amino acid missense mutation at arginine 132
which is replaced by histidine [5]. IDH-wild-type GB is more common, tends to arise de
novo, and is generally more aggressive with a worse prognosis than IDH-mutant GB. By
contrast, IDH-mutant GB is predominantly observed in secondary GB and is associated
with a better prognosis [6]. The current standard treatment for GB involves maximal safe
surgical resection with adjuvant chemotherapy and radiotherapy, known as the Stupp
protocol [7]. Temozolomide, an alkylating agent, is used as first-line chemotherapy for
GB with its efficacy related to the methylation status of the MGMT promoter [8]. MGMT
methylation is associated with an improved overall survival in GB patients [9]. Despite this
intensive treatment, tumor recurrence in GB patients is inevitable with an overall median
survival time of 14.6 months with a range of 12–14 months which has not changed since
the introduction of the Stupp protocol in 2005 [10,11].

We reviewed the dynamic relationship between the tumor microenvironment (TME),
the RAS, and cancer stem cells (CSCs) in GB. We speculate that RAS-modulating drugs may
offer a potential therapeutic alternative or adjunct to current standard therapy. Further
functional and epidemiological studies are required to investigate the efficacy of RAS-
targeting drugs in the treatment of GB.

2. GB Tumor Microenvironment

The GB tumor microenvironment (TME) is highly heterogeneous and consists of
cancer cells and non-cancer cells. Non-cancer cell types include immune cells, such as
tumor-associated macrophages (TAMs), resident glial cells, peripheral macrophages, en-
dothelial cells, pericytes, astrocytes, CSCs, fibroblasts, and other components such as the
extracellular matrix (ECM) [12]. Given the rarity of extracranial metastasis from GB [13], it
appears that GB development requires the unique intracerebral microenvironment inclu-
sive of the blood–brain barrier (BBB) [14]. The TME, with emphasis on glioma-associated
microglia/macrophages, pericytes, and reactive astrocytes, is increasingly recognized to
play a critical role in GB development and progression [15]. The idea that cytokines, growth
factors, chemokines, inflammatory mediators, and remodeling enzymes are involved in
intra- and inter-cellular communications within the TME is not novel [16]. Additionally,
constant communication between GB cells and the surrounding TME [14] is facilitated by
extracellular vesicles that expedite bi-directional cross-talk within the TME [12,17].

Anatomically distinct regions of the TME, known as tumor niches, are thought to
contain CSCs and play a fundamental role in the regulation of metabolism, immune surveil-
lance, survival, invasion, and self-maintenance with the renin–angiotensin system (RAS)
playing a critical role [15,18,19]. The GB TME may consist of several distinct tumor niches
including the hypoxic tumor niche, the perivascular or angiogenic tumor niche, and the
vascular-invasive tumor niche. The perivascular niche contains CSCs in close juxtaposition
with the abnormal angiogenic vasculature and provides a supportive environment for CSC
growth, maintenance, and survival. The vasculature in the hypoxic tumor niche is either
non-functional or has regressed, leading to areas of necrosis that are surrounded by rows
of hypoxic palisading tumor cells [20]. The vascular-invasive tumor niche contains tumor
cells co-opted with normal blood vessels that migrate deep into the brain parenchyma [20].
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GB is highly vascular and is characterized by extensive neovascularization and patho-
logical angiogenesis predominantly induced by vascular endothelial growth factor (VEGF),
which is produced by tumor cells, CSCs, and immune cells [21,22]. Other angiogenic
factors, such as transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB,
and fibroblast growth factor-2, may also play a role in the pathological angiogenesis [23,24].
In addition to endothelial proliferation, bone marrow-derived endothelial and pericyte
progenitor cells may be recruited and incorporated into the growing vessels [25]. There
is also evidence that CSCs may be involved in neovascularization by differentiating into
endothelial cells or pericytes in GB [26–28]. Increased VEGF expression also fosters an
immunosuppressive microenvironment that enables tumors, including GB, to evade host
immune surveillance [29]. The abnormal vasculature in GB includes dilated and leaky ves-
sels and glomeruloid microvascular proliferation in which endothelial cells and pericytes
form poorly organized vascular structures, which effectively disrupt the BBB, leading to
cerebral edema. In addition, the blood–brain tumor barrier (BBTB) hinders drug delivery
to the tumor [30].

The BBB is a highly specialized, selectively permeable barrier between the brain and
the systemic blood supply that helps to maintain homeostasis of the cerebral microenviron-
ment. The structure of the BBB includes endothelial cells with tight junctions, adherens
junctions, astrocytes, pericytes, and the basement membrane [31]. The BBB plays several
fundamental roles, including supplying the brain with essential nutrients, such as oxygen
and glucose, mediating the efflux of waste products, facilitating the movement of nutrients
and plasma proteins, and restricting toxins into the central nervous system (CNS) [32].
Disruption of the BBB and its tight regulation of the cerebral microenvironment leads to
increased blood vessel permeability with plasma and fluid leakage into the tumor tissue
causing cerebral edema and raised interstitial and intracranial pressure [33]. The combina-
tion of abnormal vasculature in GB and the disruption of the BBB leads to impaired blood
flow and reduced oxygen delivery within the tumor [34]. Microvascular thrombosis may
also occur causing occlusion of the blood vessels, further promoting intra-tumoral hypoxia,
leading to pseudo-palisading necrosis [35]. Hypoxia is also a consequence of increased
oxygen diffusion distance due to the fact of tumor growth and expansion [34], which may,
in and of itself, be a key regulator of tumor cell survival, stemness, and immune surveil-
lance in the TME [36–38]. Hypoxia also sustains tumor cell proliferation, invasiveness, and
contributes to chemotherapy and radiotherapy resistance. This occurs via inhibition of
free radicals, which reduces the efficacy of radiotherapy [39], and through upregulation of
the multi-drug resistance gene, MDR1/ABCB1, which reduces chemotherapy effectiveness.
Hypoxia-inducible factor-1 (HIF-1) and HIF-2 mediate the response to hypoxia on a molec-
ular level in GB [40] and may potentially modify CSCs [41]. The GB microenvironmental
niche also consists of pseudo-palisading glioma cells that upregulate HIF proteins, inducing
expression of factors, such as VEGF and interleukin 8 (IL-8), which are implicated in tumor
cell survival, metabolism, invasion, and angiogenesis. The resultant cross-talk releases
pro-inflammatory signals from the areas of necrosis in the hypoxic tumor niche into the
surrounding TME, promoting immunosuppression, and angiogenesis [42].

Immune cells, including circulating monocytes, neutrophils, and myeloid-derived
suppressor cells (MDSCs), are another source of angiogenic factors. In ovarian cancer,
MDSCs increase CSC characteristics by increasing microRNA-101 expression, which in-
duces the expression of stemness genes [43]. It is interesting to speculate that MDSCs also
regulate the stemness of CSCs within the GB TME via this mechanism (Figure 1). These
cells may enter the brain as a result of breakdown of the BBB in GB and the production
of tumor-derived chemokines and cytokines, contributing to the immunosuppressive GB
TME [44–46]. TAMs are the dominant immune cell population in GB and may include
resident microglial cells and peripheral macrophages [47,48]. Traditionally, TAMs have
been defined as either anti-tumoral M1/Th1 (classical-activated macrophages) or pro-
tumoral M2/Th2 (alternative-activated macrophages) phenotypes. M1 macrophages foster
the inflammatory response by secreting pro-inflammatory cytokines such as IL-12, tumor
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necrosis factor-α (TNF-α), CXCL-10, and interferon-γ (IFN-γ) and produce high levels
of nitric oxide synthase to exert anti-tumor cell activity (Figure 1). M2 macrophages, on
the other hand, play a key immunosuppressive function by secreting anti-inflammatory
cytokines, such as IL-10, IL-13, and IL-4, and express abundant arginase-1, mannose recep-
tor CD206, and scavenger receptors to promote tumor progression [49–51]. The release
of TGF-β by TAMs has been shown to induce matrix metalloproteinase 9 (MMP9) and,
thus, increase CSC invasiveness [52]. A more recent study has demonstrated that the TAM
population is in a constant state of transition or plasticity between the two phenotypes
and that M1 phenotype expression may be enhanced by TME changes or therapeutic
interventions [51]. Resident microglia are present within the brain, but it is the recruit-
ment of peripheral macrophages to the GB TAM pool, in particular, that may mediate
tumor phagocytosis with disruption of the signal regulatory protein α receptor (SIRP-α)–
CD47 axis. This facilitates immune evasion because the antiphagocytic “don’t eat me”
surface protein CD47 is upregulated, which binds to SIRP-α on phagocytic cells to inhibit
phagocytosis [53]. However, even in the absence of macrophages, resident microglia may
be transformed into effector cells of tumor cell phagocytosis, in response to anti-CD47
blockade [54]. In models of pancreatic ductal adenocarcinoma, for example, RP-182 may
selectively induce conformational switching of the mannose receptor CD206, which is
expressed on the M2 TAM phenotype, ultimately reprogramming M2-like TAMs into an
anti-tumor M1-like phenotype [55]. The immunosuppressive phenotype of TAMs may
be controlled by long-chain fatty acid metabolism, and chemical inhibitors targeting this
metabolic pathway may block TAM polarization in vitro and tumor growth in vivo [56].
GB-derived exosomes may reprogram M1 macrophages to M2 macrophages and condition
M2 macrophages to become strongly immunosuppressive TAMs [57].
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Figure 1. A schema demonstrating the role of the renin–angiotensin system (RAS) and its convergent signaling pathways in the
glioblastoma tumor microenvironment (TME) and cancer stem cells (CSCs). A cancer stem cell (with the cytoplasm depicted in
light blue and the nucleus in purple) residing within the glioblastoma TME. Angiotensin II (ATII), the physiologically active
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end-product of the paracrine RAS, activates ATII receptor 1 (AT1R) leading to increased tumor cell proliferation, oxidative
stress, hypoxia and angiogenesis, and inflammation—the hallmarks of cancer. This contributes to an inflammatory TME by
increasing the number of inflammatory cells, partly by increasing the number of NADPH complexes, leading to tumor cell
proliferation, DNA damage from oxidative stress, and release of growth factors. AT1R also activates phosphatidylinositol
signaling, which increases cytosolic Ca2+ to promote mitogenesis. Hypoxia increases paracrine RAS activity by upregulating
angiotensin-converting enzyme (ACE) and the expression of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α, which
increase tumor progression and treatment resistance. HIF-1α, HIF-2α, and hypoxia increase the expression of vascular
endothelial growth factor (VEGF) which increases angiogenesis. AT1R, via MAPK-STAT3 signaling, contributes to a cytokine
release that leads to CSC renewal. C-X-C chemokine receptor type 4 (CXCR4) promotes tumor cell migration and invasion.
AT1R signaling and the prorenin receptor, which act in a feedback loop with Wnt/β-catenin, increase Wnt signaling which
promotes CSC stemness by upregulating stemness-associated markers. Myeloid-derived suppressor cells (MDSCs) promote
CSC characteristics by increasing microRNA-101 expression that induces expression of stemness-related genes in CSCs. The
Ang(1–7)/MasR axis opposes the ACE/ATII/AT1R axis. Cathepsins B, D, and G act as bypass loops for the RAS. Under the
influence of the TME, polarization of tumor-associated macrophages (TAMs)—immune cells that are located within the
TME—changes from the M1 to M2 phenotype. M2 TAMs induce the proliferation of CSCs via interleukin 6 (IL-6)-induced
activation of STAT3, leading to cytokine release and positive feedback contributing to CSC renewal. Glioblastoma CSCs
secrete Wnt-induced signaling protein 1 (WISP1), which facilitates a pro-tumor TME by promoting the survival of CSCs
and M2 TAMs, and also promotes CSC maintenance. Abbreviations: ATI, angiotensin I; AT2R, ATII receptor 2; Ang(1–7),
angiotensin 1–7; ATIII, angiotensin III; MAPK, mitogen-activated protein kinase. Figure modified and reproduced with
permission from the J Histochem Cytochem [19].

3. Glioblastoma Cancer Stem Cells

The CSC concept proposes that a small distinct population of cells within a tumor with
self-renewal capability are responsible for driving tumorigenesis [58,59]. These CSCs may
be defined as stem cell-like cells within a tumor that also have the capacity for proliferation
and multi-potency. This may be regarded as a functional definition insofar as CSCs may
be characterized through the generation of serially transplantable tumors that faithfully
recapitulate the parent tumor [60]. There is marked intra- and inter-tumoral heterogeneity
including, differing numbers of highly tumorigenic CSCs [61]. Such heterogeneity may
be best explained by a combination of different models of cancer, including the stochastic
model (also known as the clonal evolution model), the CSC concept of cancer (also known
as the hierarchical model of cancer), and the concept of plasticity [62,63].

The traditional model of cancer is predicated on the stochastic model of carcinogenesis
which proposes that cancer cells are derived from normal cells that acquire genetic and/or
epigenetic mutations resulting in typically unidirectional transitions from benign to ma-
lignant cells. These malignant tumor cells have unrestricted division capacities and their
high mutation rates increase the likelihood of successive generations of cloned cells being
adapted to the selection pressures of the tumor site. However, the stochastic model does
not fully account for all aspects of cancer biology including tumor recurrence following
treatment [64].

In contrast, the CSC concept of cancer proposes that CSCs contribute to carcinogenesis,
invasion, metastasis, therapy resistance, and recurrence [65,66]. CSCs divide asymmetri-
cally into non-tumorigenic cancer cells, which form the bulk of a tumor, and identical highly
tumorigenic but less abundant CSCs, which sit at the apex of the cellular hierarchy [67].
CSCs have been postulated to originate from non-malignant stem cells or progenitor
cells [66] or dedifferentiated cancer cells [68]. The overlap between the stochastic model
and the CSC concept may be explained by the concept of cellular plasticity whereby cancer
cells may reversibly transition between stem-like and non-stem-like cell states [69]. This
process of transition may be driven by embryonic stem cell (ESC)-associated regulatory
networks and may be affected by the dynamic TME including the CSC niche [70]. Moreover,
certain cancer cells may de-differentiate and re-enter the CSC pool, thus regaining the
capacity for tumorigenesis and clonal expansion [71].

CSCs have been found in many different cancer types, including myeloid leukemia [72],
pancreatic cancer [73], breast cancer [74], oral cavity squamous cell carcinoma (SCC) [75–77],
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primary [78] and metastatic [79] cutaneous SCC, primary [80] and metastatic [81] colon
adenocarcinoma, metastatic malignant melanoma [82,83], and GB [84]. The aggressive
nature of GB and its resistance to conventional therapy has been attributed to the pres-
ence of CSCs [85] that were first postulated in human brain tumors, identified by their
expression of the neural stem cell surface marker CD133 [86]. Stem-like neural precursor
cells responsible for the growth and recurrence in serial transplantations were identified
in GB [87]. The presence of such quiescent CSCs is well-supported in the literature and
the interaction of such cells with the ECM and TME factors, including TGF-β and hypoxia,
may contribute to their resistance to conventional therapy [88] (Figure 1). There is evidence
that CSCs may be stimulated to differentiate into endothelial cells by activating Notch1
signaling [89] and may be associated with induction of cytokines, MMPs, and adhesion
proteins in the TME [90].

A crucial function of stem cells is self-renewal, for which the Notch, Sonic hedgehog,
and Wnt signaling pathways may be essential [91] (Figure 1). GB expresses a number of
stemness-associated markers including cell surface markers (CD133, CD15, A2B5, and
L1CAM), cytoskeletal proteins (nestin), transcription factors (SOX2, NANOG, and OCT4),
post-transcriptional factors (Musashi1), and polycomb transcriptional suppressors (Bmi1
and Ezh2) [85]. There is also evidence of plasticity and bi-directional interconversion
between CSCs and cancer cells [92]. In a landmark study, pluripotent stem cells were
formed from reprogrammed mouse embryonic and adult fibroblasts by the addition of
transcription factors OCT4, SOX2, c-MYC, and KLF4 [93]. These factors, in addition to
NANOG, which are expressed by ESCs, have been identified in GB [84]. The capacity of
GB cells for perpetual self-renewal may rely on the contribution from transcription factors
such as OCT4 and SOX2 [85]. SOX2 is highly expressed in GB [84] and may play a key
role in maintaining plasticity for bi-directional cellular conversion in GB [94]. Moreover,
silencing of SOX2 inhibits tumor proliferation in GB [95] and, thus, it may be a potential
therapeutic target in the treatment of GB [96]. Another potential therapeutic target involves
the JAK–STAT3 signaling pathway which is also associated with the self-renewal capacity
of GB. Inhibition of this pathway may impede the migratory and invasive potential of GB
by decreasing activation of the transcription factor STAT3 and, thus, reducing the levels of
MMPs and associated invadopodia activity [97]. In addition, STAT3 binding to the Notch1
promoter inhibits this signaling pathway and may impede the maintenance of glioma
stem-like cells while reducing the expression of glioma stem cell markers CD133, SOX2,
and nestin [98] (Figure 1).

4. The Renin–Angiotensin System and Convergent Signaling Pathways in Glioblastoma

The RAS has been proposed to play an important role in the TME [19] in various cancer
types, including lung cancer, through its effect on tumor cells, non-malignant cells, hypoxia,
angiogenesis, and the inflammatory response [99]. The RAS is a complex physiological
system and has a multitude of interactions with many different convergent signaling
pathways that operate in carcinogenesis, some of which lie outside the scope of this article.

Classically, the RAS regulates blood pressure and electrolyte and fluid homeostasis
involving primarily the renal, cardiovascular, and endocrine systems [100]. The RAS
pathway is composed of multiple steps culminating in the formation of the main effector
hormone, angiotensin II (ATII) [101]. Activity of this key homeostatic system in the CNS is
well documented [102]. In this review article, RAS inhibition broadly refers to inhibition of
any of the components of the RAS, reducing its downstream effects.

Angiotensinogen, primarily synthesized in the liver by hepatocytes, is cleaved by
renin, to form angiotensin I (AT1) [103]. Angiotensinogen is synthesized and secreted by
astrocytes and is converted to several neuroactive peptides [104,105]. Angiotensinogen is
also produced within neurons, which can secrete or retain it intracellularly. These neuroac-
tive peptides bind their respective receptors within the local microenvironment to induce
receptor signaling by different cell types [104,105]. Renin is physiologically derived from
the juxtaglomerular apparatus in the kidneys and its release is tightly regulated by macula
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densa and local baroreceptors [106]. Renin is formed by the binding of prorenin to the
prorenin receptor (PRR) [107] and is also catalyzed by enzymes such as cathepsins B, D,
and G [108–111]. ATI is converted to ATII by angiotensin-converting enzyme (ACE), also
known as ACE1, which is primarily found in the lungs [112]. ATII binds to ATII receptor 1
(AT1R) and ATII receptor 2 (AT2R) [113]. ATII binding to AT1R causes MAPK–STAT3 acti-
vation [114] and phosphatidylinositol signaling, which increases cytosolic Ca2+ and effects
mitogenesis [115]. AT1R signaling increases RAS activity in the TME, and the formation of
NF-κB and TGF-β1 which promotes cellular proliferation, inflammation, and angiogene-
sis [116]. AT2R activation by ATII inhibits cellular growth and enhances apoptosis [116].
ATII can be further converted into angiotensin III (ATIII), and then angiotensin IV (ATIV)
by aminopeptidase-A (AP-A) and aminopeptidase-N (AP-N), respectively. ATIV binds
to ATII receptor 4 (AT4R), and in high concentrations, may bind to AT1R. Angiotensin
(1–7) (Ang(1–7)) is produced by the cleavage of either ATI by neutral endopeptidase (NEP)
or ATII by ACE2, an isoform of ACE. Ang(1–7) binds to Mas receptors (MasRs) [117,118].
ATI may also be cleaved by ACE2 to form Ang(1–9), which can be cleaved by ACE1 and
is converted to Ang(1–7), which in addition to binding to MasRs, can also bind to AT2R
with low affinity, and Mas-related-G protein coupled receptors (MrgDs) [119]. MrgDs are a
recently discovered component of the RAS [102], and their role in the GB TME is yet to be
defined. Lastly, the primary ligand for MrgDs is almandine, an Ang(1–7) analog formed by
decarboxylation of Ang(1–7) [102] (Figure 2).

Key components of the RAS are also activated in CNS diseases [101]. Renin, and its
precursor prorenin, are expressed variably in neurons, astrocytes, oligodendrocytes, and
microglia in different regions of the brain [120,121]. PRR is widely distributed in different
organs throughout the body including the brain, eyes, and immune system [122]. ACE1
is expressed in areas of the brain involved in blood pressure control and homeostasis
including the choroid plexus, organum vasculosum of the lamina terminalis, subfornical
organ, and area postrema [104]. ACE2 is found in the endothelium of the brain in various
regions including the cortex and brainstem [123]. ACE2 contributes to the neuroprotective
ACE2/Ang(1–7)MasR signaling axis by converting ATII to Ang(1–7) which is a ligand for
MasR [124].

The RAS, as a constituent of the TME, is involved in several hallmarks of cancer,
including angiogenesis, hypoxia, and tumor cell proliferation [125]. Components of the
RAS are expressed in different types of cancer including colon adenocarcinoma [126] and
malignant melanoma [127]. RAS components are also expressed by CSCs in oral cavity
SCC [128,129], renal clear cell carcinoma [130], primary [131], and metastatic [132], cuta-
neous SCC, metastatic colon adenocarcinoma [133], metastatic malignant melanoma [82,83],
and GB [134]. In GB, PRR, AT1R, and AT2R are co-expressed with stemness-associated
markers [134]. PRR is highly expressed in GB compared with lower-grade gliomas; this
higher expression of PRR in higher-grade glioma is notable as the Wnt/β-catenin signaling
pathway is implicated in the self-renewal of stem cells [135] (Figure 1).

The Wnt/β-catenin signaling pathway, which sits downstream of the RAS, is impli-
cated in tumor initiation in several cancer types [136]. In brief, this pathway results in
active β-catenin translocating into the nucleus, upregulating the expression of oncogenes
such as c-Myc, AXIN2, and CCND1 [136]. PRR is a component of the Wnt receptor com-
plex and acts as an adapter between vacuolar H+-adenosine triphosphate (V-ATPase) and
low-density lipoprotein receptor-related protein 6. V-ATPase, a proton pump, is essential
for cellular acidification and is involved in the mechanism for β-catenin activation [137].
This process facilitates binding of Wnts to their respective Wnt receptor complex [138].
Further, PRR promotes brain cancers via the Wnt/β-catenin signaling pathway, and in
addition to being a membrane receptor, exists in the cytoplasm and increases the protein
expression of Wnt2 within glioma cells [135]. This evidence underscores the PRR as a
potential oncoprotein via Wnt/β-catenin pathway-related carcinogenesis [136], which
influences cell stemness [139], tumorigenesis, and cellular proliferation [140,141]. Renin is
expressed in GB and may contribute to the mechanisms of neovascularization in GB [142].
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Furthermore, downregulation of the Ang(1–7)/MAS signaling axis by podocalyxin results
in enhanced GB cell invasion and proliferation [143]. Finally, bypass loops of the RAS
involving various cathepsins that may also contribute to the proliferative activity in GB,
for example, cathepsin G coverts ATI to AII and from AGT directly to ATII, which binds
to AT1R, to promote cancer progression [144–146]. GB CSCs have been shown to secrete
Wnt-induced signaling protein 1 (WISP1) that promotes the survival of both the CSCs and
M2 TAMs to promote a pro-TME [147] (Figure 1).
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Figure 2. A schema showing the effect of the renin–angiotensin system (RAS) and its convergent signaling pathways
on the tumor microenvironment to influence cellular proliferation, invasiveness, and cell survival in cancer develop-
ment. The RAS interacts with downstream pathways, such as the Ras/RAF/MEK/ERK (light blue) pathway and the
PI3K/AKT/mTOR (dark blue) pathway, and the upstream Wnt/β-catenin pathway (intermediate blue) that influence
cellular proliferation, migration, inhibition of apoptosis, migration, and invasion (see text). PRR, pro-renin receptor; LRP6,
low-density lipoprotein receptor-related protein; Fzd, frizzled receptor; Cath G, cathepsin G; Cath B, cathepsin B; Cath D,
cathepsin D; ACE1, angiotensin-converting enzyme 1; ACE2, angiotensin-converting enzyme 2; ADP, adenosine diphos-
phate; AGT, angiotensinogen; ATP, adenosine triphosphate; Ang(1–7), angiotensin (1–7); Ang(1–9), angiotensin (1–9); AP-A,
aminopeptidase-A; NEP, neutral endopeptidase; AP-N, aminopeptidase-N; ATI, angiotensin I; ATII, angiotensin II; ATIII,
angiotensin III; ATIV, angiotensin IV; AT1R, angiotensin II receptor 1; AT2R, angiotensin II receptor 2; AT4R, angiotensin II
receptor 4; MrgD, Mas-related-G protein coupled receptor; MasR, Mas receptor; mTOR, mammalian target of rapamycin;
NF-κB, nuclear factor kappa B; TGF-β1, transforming growth factor-β1; V-ATPase, vacuolar H+-adenosine triphosphate.

Other related signaling pathways, such as the PI3K/AKT/mammalian target of ra-
pamycin (mTOR) and Ras/RAF/MEK/ERK pathways within the GB TME, downstream to
the RAS, are activated via AT1R and PRR signal transduction. MAPK/ERK signaling is
activated upon binding of renin or prorenin to PRR, and this upregulates ERK1/2 in vari-
ous cell types including neurons [148]. ERK1/2 activation induces TGF-β1 formation and
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cellular proliferation, both of which influence cancer development [136]. Supporting this is
the fact that silencing of PRR downregulates expression of ERK1/2, AKT, and NF-κB [149].
Additionally, PRR activation leads to the production of reactive oxygen species, which
activates both the PI3K/AKT/mTOR and Ras/RAF/MEK/ERK pathways (Figure 2). It
is interesting to speculate that both pathways operate in conjunction with the RAS and
Wnt/β-catenin to influence proliferation, survival, stemness, and invasiveness of CSCs
within the GB TME.

The use of RAS inhibitors (RASis) in the treatment of cancer may mitigate the cytotoxic
treatment-related adverse effects experienced by cancer patients to improve their overall
quality of life [150]. A meta-analysis of 17 observational studies by Shen et al. [123]
show RASis are associated with a reduced risk of cancer [151]. A prospective population-
based study also shows long-term (>3 years) administration of RASis is associated with
a decreased risk of cancer in patients with a DD genotype, which is associated with high
levels of ACE and, thus, increased RAS activity. This is relevant as increased levels of ATII
caused by elevated RAS activity promotes cancer progression by its actions on AT1R [152].
Other epidemiological studies have shown a protective benefit of RASis against colorectal
cancer [153,154] and an overall reduced risk of cancer [155]. RASis have also been shown to
improve the overall survival of patients with aggressive non-metastatic pancreatic ductal
adenocarcinoma [156]. Although current data remain inconclusive, RASis appear to be
broadly protective against cancer [157].

A retrospective study analyzing clinical data from 810 patients enrolled in two large
multicenter studies investigating the role of two drugs targeting the RAS combined with
statins in GB, shows no benefit in overall survival [158]. A recent trial on repurposing
multiple drugs in combination with temozolomide, including two drugs that affect the RAS
(i.e., captopril and celecoxib) for patients with GB, observed maintenance of good quality
of life [159]. Captopril, an ACE inhibitor, and celecoxib, which inhibits cyclocoxygenase-2,
reduce RAS activity [19]. In addition, RASis, in combination with bevacizumab, improve
survival in patients with GB [160], although there is no overall survival benefit of this
VEGF inhibitor as a monotherapy for de novo or recurrent GB [161]. PRR may be a crit-
ical biomarker and a therapeutic target for the treatment of GB with its connections to
V-ATPase function [162], and the Wnt/β-catenin, MAPK/ERK, and PI3K/AKT/mTOR
pathways [135,136,149,163] (Figure 1). Several other steps of the RAS pathway can poten-
tially be targeted [164]. The effects of a novel approach, targeting the RAS, its bypass loops,
and converging pathways simultaneously using multiple repurposed drugs on the quality
of life and progression-free survival in GB patients are currently being investigated in a
clinical trial [165]. Therapeutic options may be facilitated by augmenting the compensatory
mechanisms of the RAS [136,164–166].

5. Recent Developments

Recent technological breakthroughs in generating human cerebral organoids [167]
from pluripotent cells, combined with genetic engineering [168], mass spectroscopic pro-
teomics [169], and next generation gene sequencing tools [170], allow more detailed investi-
gation into the GB TME, and the role of the RAS in this niche. Cerebral organoids have been
shown to more faithfully recapitulate the temporal and spatial aspects of the developing
brain [171,172]. Vascularized cerebral organoids have been developed by utilizing ectopic
expression of human ETS variant 2 in engineered ESCs to form a vascular-like network
in organoids akin to endothelial cells [173]. In addition, VEGF has been used to induce
blood vessel-like structures in cerebral organoids expressing markers associated with the
BBB, namely, CD31 and claudin-5 [174]. In addition, human umbilical vein endothelial
cells have been used to develop cerebral organoids with a well-developed tubular vascular
structure. In another notable development, choroid plexus-like organoids modeled cere-
brospinal fluid production with a selective barrier akin to the BBB, which may be used to
model the BBTB in the GB TME [175–177]. Using RNA sequencing, moreover, GB cerebral
organoid models have been shown to best mimic the cellular states and plasticity found in
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the GB TME compared to gliospheres, tumor organoids, and orthotopic patient-derived
xenografts [177].

6. Conclusions

Despite intensive research into the biology and treatment of GB, the prognosis of
patients with GB remains dismal. Understanding the heterogeneity of the tumor–host
microenvironment in GB, the role of RAS and CSCs, and mapping salient interactions on a
cellular level employing techniques, such as single-cell RNA sequencing, may lead to the
discovery of potential therapeutic targets [178]. Cerebral and GB organoids represent an
exciting yet relatively cost-effective way to delineate relevant signaling pathways within
the GB TME, including the RAS, and provide models for developing and testing drug
screening and therapeutic targets including RASis [179].
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