
cancers

Article

Preliminary Report on Computed Tomography Radiomics
Features as Biomarkers to Immunotherapy Selection in Lung
Adenocarcinoma Patients

Vincenza Granata 1, Roberta Fusco 2,*, Matilde Costa 3, Carmine Picone 1, Diletta Cozzi 4,5 , Chiara Moroni 4,
Giorgia Viola La Casella 6, Agnese Montanino 7, Riccardo Monti 6, Francesca Mazzoni 8, Roberta Grassi 5,6,
Valeria Grazia Malagnino 9, Salvatore Cappabianca 6, Roberto Grassi 5,6, Vittorio Miele 4,5

and Antonella Petrillo 1

����������
�������

Citation: Granata, V.; Fusco, R.;

Costa, M.; Picone, C.; Cozzi, D.;

Moroni, C.; La Casella, G.V.;

Montanino, A.; Monti, R.; Mazzoni, F.;

et al. Preliminary Report on

Computed Tomography Radiomics

Features as Biomarkers to

Immunotherapy Selection in Lung

Adenocarcinoma Patients. Cancers

2021, 13, 3992. https://doi.org/

10.3390/cancers13163992

Academic Editors: Paolo Graziano

and Giulio Rossi

Received: 28 June 2021

Accepted: 4 August 2021

Published: 7 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli,
I-80131 Naples, Italy; v.granata@istitutotumori.na.it (V.G.); c.picone@istitutotumori.na.it (C.P.);
a.petrillo@istitutotumori.na.it (A.P.)

2 Medical Oncology Division, Igea SpA, I-80013 Naples, Italy
3 R & D Lab. of Tecnologie Avanzate TA Srl, Science and Technology Park, I-10153 Udine, Italy;

matilde.costa@tecnologieavanzate.com
4 Division of Radiodiagnostic, Azienda Ospedaliero-Universitaria Careggi, I-50134 Firenze, Italy;

cozzid@aou-careggi.toscana.it (D.C.); moronic@aou-careggi.toscana.it (C.M.); vmiele@sirm.org (V.M.)
5 Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, I-20122 Milan, Italy;

roberta.grassi@policliniconapoli.it (R.G.); roberto.grassi@unicampania.it (R.G.)
6 Division of Radiodiagnostic, Università degli Studi della Campania Luigi Vanvitelli, I-80128 Naples, Italy;

giorgialacasella@glose.it (G.V.L.C.); riccardo.monti@studenti.unicampania.it (R.M.);
salvatore.cappabianca@unicampania.it (S.C.)

7 Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli,
I-80131 Naples, Italy; a.montanino@istitutotumori.na.it

8 Division of Oncology, Azienda Ospedaliero-Universitaria Careggi, I-50134 Firenze, Italy;
mazzonifr@aou-careggi.toscana.it

9 Dipartimento Diagnosi e Terapia per Immagini, Radiologia Diagnostica, IRCCS Istituto Tumori G, Paolo II,
I-70124 Bari, Italy; v.malagnino@oncologico.bari.it

* Correspondence: r.fusco@igeamedical.com

Simple Summary: The objective of the study was to assess the radiomics features obtained by
computed tomography (CT) examination as biomarkers in order to select patients with lung adeno-
carcinoma who would benefit from immunotherapy. We demonstrated that specific radiomic features
could be used to select patients with lung adenocarcinoma who would benefit from immunotherapy
by predicting OS or PFS time.

Abstract: Purpose: To assess the efficacy of radiomics features obtained by computed tomography
(CT) examination as biomarkers in order to select patients with lung adenocarcinoma who would ben-
efit from immunotherapy. Methods: Seventy-four patients (median age 63 years, range 42–86 years)
with histologically confirmed lung cancer who underwent immunotherapy as first- or second-line
therapy and who had baseline CT studies were enrolled in this approved retrospective study. As a
control group, we selected 50 patients (median age 66 years, range 36–86 years) from 2005 to 2013
with histologically confirmed lung adenocarcinoma who underwent chemotherapy alone or in com-
bination with targeted therapy. A total of 573 radiomic metrics were extracted: 14 features based on
Hounsfield unit values specific for lung CT images; 66 first-order profile features based on intensity
values; 43 second-order profile features based on lesion shape; 393 third-order profile features; and
57 features with higher-order profiles. Univariate and multivariate statistical analysis with pattern
recognition approaches and the least absolute shrinkage and selection operator (LASSO) method
were used to assess the capability of extracted radiomics features to predict overall survival (OS) and
progression free survival (PFS) time. Results: A total of 38 patients (median age 61; range 41–78 years)
with confirmed lung adenocarcinoma and subjected to immunotherapy satisfied inclusion criteria,
and 50 patients in a control group were included in the analysis The shift in the center of mass of the
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lesion due to image intensity was significant both to predict OS in patients subjected to immunother-
apy and to predict PFS in patients subjected to immunotherapy and in patients in the control group.
With univariate analysis, low diagnostic accuracy was reached to stratify patients based on OS and
PFS time. Regarding multivariate analysis, considering the robust (two morphological features, three
textural features and three higher-order statistical metrics) application of the LASSO approach and all
patients, a support vector machine reached the best results for stratifying patients based on OS (area
under curve (AUC) of 0.89 and accuracy of 81.6%). Alternatively, considering the robust predictors
(six textural features and one higher-order statistical metric) and application of the LASSO approach
including all patients, a decision tree reached the best results for stratifying patients based on PFS
time (AUC of 0.96 and accuracy of 94.7%). Conclusions: Specific radiomic features could be used to
select patients with lung adenocarcinoma who would benefit from immunotherapy because a subset
of imaging radiomic features useful to predict OS or PFS time were different between the control
group and the immunotherapy group.

Keywords: lung adenocarcinoma; radiomics; computed tomography; texture analysis; morphological
analysis

1. Introduction

For men, lung cancer is the leading cause of morbidity and mortality among oncological
diseases; for women, on the other hand, it is third in incidence and second in mortality [1,2]. As
first-line therapy in advanced non-small cell lung cancer (NSCLC), immunotherapy is used
both as a single treatment and as a treatment in combination with chemotherapy.

The efficacy of immunotherapy in NSCLC and its pathophysiology has made evident
over time the new cellular mechanisms associated with the response to treatment and
to intrinsic resistance [3]. Moreover, bioinformatics analyses are becoming increasingly
sophisticated, allowing the analysis and integration of complex clinical and biological data
to further understand the biology of cancer, notably of lung carcinoma [3–6].

It is necessary to consider that even in the context of recent clinical scientific progress,
the belief in clinical evidence of new robust biomarkers that predict response, resistance
and/or toxicity to treatment in clinical care practice remains idealistic. Consequently, there
is an urgent need to develop efficient biomarkers that can select patients who would
benefit from immunotherapy, thereby providing the appropriate treatment and avoiding
toxicity [3,6].

Radiomics is an emerging field, especially in the oncology field [7–11]. The radiomic
approach has been used, in fact, in various research studies on pancreatic cancer [7], lung
cancer [8,9], rectal cancer [10] and lymphoma [11].

The use of radiomics, as amply demonstrated by some studies, has been fundamental
for predicting TNM and histological grade, response to therapy and survival in numerous
oncological diseases [12–14].

It is inevitable to consider that by associating radiomic parameters with useful clinical
and laboratory data, accurate and robust evidence-based clinical decision support systems
(CDSS) could be established [15–17].

The radiogenomic approach (constituted by the combination of genomic data and
radiomic metrics) [18,19] would allow the achievement of the most considerable level of
precision medicine [20,21].

The primary endpoint of this study was to assess the efficacy of radiomics features
obtained by computed tomography (CT) examination as biomarkers that could select
patients with lung adenocarcinoma who would benefit from immunotherapy.
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2. Materials and Methods
2.1. Patient Selection

The Local Ethics Committee of the National Cancer Institute of Naples, involving the
National Cancer Institute of Naples Pascale Foundation and the Careggi University Hospi-
tal of Florence, with internal resolution no. 15 of 4 March 2019, approved a spontaneous
multicenter retrospective study.

For the study, 74 patients (mean age 63 years, range 42–86 years) with histologically
confirmed lung cancer who underwent immunotherapy (programmed cell death protein 1
(PD-1) and programmed death-ligand 1 (PD-L1) inhibitors) as first- or second-line therapy
and a baseline CT study.

Because the study was performed in accordance with relevant guidelines and regula-
tions, informed consent was not required by the Local Ethics Committee of the National
Cancer Institute of Naples due to the retrospective nature of the study.

Inclusion and exclusion criteria are provided in Table 1.
As a control group, we selected 50 patients (median age 66 years, range 36–86 years)

from 2005 to 2013 with histologically confirmed lung adenocarcinoma who underwent
chemotherapy alone or combined with targeted therapy other than immunotherapy and
who were subjected to a baseline CT study, including a CT venous phase protocol.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Lung adenocarcinoma histologically confirmed Baseline CT study is not accessible

Lung nodule size > 10 mm Tumor histology other than adenocarcinoma

Immunotherapy ((PD-1)/programmed
death-ligand 1 (PD-L1) inhibitors) as first- or

second-line therapy

CT examination within 1 month of
immunotherapy

CT protocol included venous phase (70–90 s
post-contrast agent injection)

2.2. CT Protocol

Thanks to the use of 4 different scanners: General Electric Healthcare CT tomographs
with 64 detectors (1 Optima 660 and 1 Discovery 750 HD, General Electric Healthcare,
Milwaukee, Wisconsin, USA), 1 Philips CT scanner with 128 detectors (ICT SP 128 slice,
Philips, Amsterdam, The Netherlands) and 1 Siemens CT scanner with 64 sections (Siemens
Somatom Flash, Erlangen, Germany) it was possible to acquire computed tomography.
Parameters of the CT scan data were already reported [22].

2.3. Radiological Assessment

Several radiologists with different levels of experience in reading and interpreting
chest CT (low experience 5 years, average experience 5–15 years, and high experience
≥15 years) performed the radiological evaluations.

By selecting a single target lesion for each patient, the most visible lesion with the
largest diameter was then analyzed.

Radiologists performed CT assessment using dedicated CT post-processing work-
stations and the HealthMyne® software platform (www.healthmyne.com, accessed on
16 January 2020, HealthMyne, Madison, WI, USA). To reduce recall bias, all 3 readers
maintained a gap of more than 2 weeks between the 2 sessions.

2.4. CT Post-Processing with Radiomic Precision Metrics (RPM™) Tool

In this study we used the HealthMyne® platform for lesion segmentation and for
radiomic features extraction from the delineated volumes of interest (VOIs). By means of

www.healthmyne.com
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the RPM™ algorithms, it was possible to semi-automatically recognize and segment the
volume of the target lesions identified by the radiologist and automatically extract a wide
range of quantitative data. The user initialized the lesion segmentation by drawing a long
axis on a plane of the multiplanar reconstruction (MPR) (Figure 1A). A 2D segmentation
updated in real-time with interactive feedback of the lesion boundary [23,24] and 2D
segmentations on the other MPR planes were immediately proposed. When the contour
on a MPR plane was unsatisfactory, the user could update the segmentation by either
drawing long axes on the other MPR views or using a 2D brush tool (Figure 1B). When
the segmentation was satisfactory, the user could confirm to initiate the 3D segmentation
computation. Based on these initial user interactions, the RPM™ algorithms combined
statistical sampling methods together with deep learning strategies in order to delineate the
target volume and provide an automatic 3D segmentation (Figure 1C). The 3D segmentation
occurred quickly (approximate time = 1–2 s), and could be reviewed by scrolling through
slices on the MPR views. Interactive editing tools including 2D and 3D brushes could be
used to reduce/enlarge or add details to the proposed volume segmentation. As the 3D
segmentation was confirmed by the user, the measure of the long and short lesion axes was
automatically determined by leveraging the volume delineation (Figure 2).
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Figure 1. Semi-automatic lesion identification: (A) Manual ROI indication. In blue, it is possible to
observe the axes that cross the lesion manually delineated by the radiologist on a plane of the MPR.
The intensity of the lesion boundary (estimated) is represented with a red outline. (B) Additional
axes can be dragged onto other orthogonal MPR views. From left to right, it is possible to observe
the initial long axis outlined by the radiologist and the 2D contours on the axial, coronal and sagittal
views of the lesion used as a starting point for the RPM ™ algorithms. (C) Resulting 3D contour of
the lesion (in blue).

Figure 1. Semi-automatic lesion identification: (A) Manual ROI indication. In blue, it is possible to
observe the axes that cross the lesion manually delineated by the radiologist on a plane of the MPR.
The intensity of the lesion boundary (estimated) is represented with a red outline. (B) Additional
axes can be dragged onto other orthogonal MPR views. From left to right, it is possible to observe
the initial long axis outlined by the radiologist and the 2D contours on the axial, coronal and sagittal
views of the lesion used as a starting point for the RPM ™ algorithms. (C) Resulting 3D contour of
the lesion (in blue).
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Figure 2. Two examples (A,B) of the semi-automated identification of the target lesion. On the left,
the CT image with the lesion segmentation (light blue contour) and the longest diameters measured
on the lesion volume. The blue lines represent the longest long axes and the green lines represent the
longest short axes on the axial direction. On the right, it is possible to observe the 3D rendering of the
lesion volume and its location inside the automatic lung segmentation.

A total of 573 radiomic metrics were extracted from the delineated VOIs as previously
reported in [24]: 14 features based on Hounsfield unit (HU) values specific for lung CT
images; 66 first-order profile features based on intensity values (statistical distribution of
image value); 43 second-order profile features based on lesion shape (geometric analysis
of shape, volume, curvature and volumetric length); 393 third-order profile features, i.e.,
texture features, with IBSI-consistent implementation [25] of the grey-level co-occurrence
matrix (GLCM), the grey-level distance zone matrix (GLDZM), the grey-level run length
matrix (GLRLM), the grey-level size zone matrix (GLSZM), the neighboring grey-level
dependence matrix (NGLDM), the neighboring grey-tone difference matrix (NGTDM)
and the different features’ aggregation methods, as well as 57 features with higher-order
profiles (statistical metrics after transformations and wavelet analysis).

2.5. Statistical Analysis
2.5.1. Univariate Analysis

Overall survival (OS) was defined as the time between the date of first dose of therapy
and the date of death or date of last clinical follow-up. Similarly, progression-free survival
(PFS) was measured from the date of first dose of therapy to the time of tumor progression,
recurrence, death or the time the patient was last known to be alive. The estimate of overall
survival and progression-free survival was calculated with Kaplan—Meier analysis.

For each metric, median and range values were calculated.
The calculation of inter-observer variability between readers by intraclass correlation

coefficient (ICC) and the evaluation of unstable features were performed.
Cox proportional hazard models were used for exploring univariate associations

between OS and each stable imaging feature (identified as ICC value ≥0.8) and between PFS

Figure 2. Two examples (A,B) of the semi-automated identification of the target lesion. On the left,
the CT image with the lesion segmentation (light blue contour) and the longest diameters measured
on the lesion volume. The blue lines represent the longest long axes and the green lines represent the
longest short axes on the axial direction. On the right, it is possible to observe the 3D rendering of the
lesion volume and its location inside the automatic lung segmentation.

A total of 573 radiomic metrics were extracted from the delineated VOIs as previously
reported in [24]: 14 features based on Hounsfield unit (HU) values specific for lung CT
images; 66 first-order profile features based on intensity values (statistical distribution of
image value); 43 second-order profile features based on lesion shape (geometric analysis
of shape, volume, curvature and volumetric length); 393 third-order profile features, i.e.,
texture features, with IBSI-consistent implementation [25] of the grey-level co-occurrence
matrix (GLCM), the grey-level distance zone matrix (GLDZM), the grey-level run length
matrix (GLRLM), the grey-level size zone matrix (GLSZM), the neighboring grey-level
dependence matrix (NGLDM), the neighboring grey-tone difference matrix (NGTDM)
and the different features’ aggregation methods, as well as 57 features with higher-order
profiles (statistical metrics after transformations and wavelet analysis).

2.5. Statistical Analysis
2.5.1. Univariate Analysis

Overall survival (OS) was defined as the time between the date of first dose of therapy
and the date of death or date of last clinical follow-up. Similarly, progression-free survival
(PFS) was measured from the date of first dose of therapy to the time of tumor progression,
recurrence, death or the time the patient was last known to be alive. The estimate of overall
survival and progression-free survival was calculated with Kaplan—Meier analysis.

For each metric, median and range values were calculated.
The calculation of inter-observer variability between readers by intraclass correlation

coefficient (ICC) and the evaluation of unstable features were performed.
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Cox proportional hazard models were used for exploring univariate associations
between OS and each stable imaging feature (identified as ICC value ≥0.8) and between PFS
and each stable imaging feature (identified as ICC value ≥0.8). The evaluation between the
survival rate and the variables was done using a technique called Cox regression analysis.

The risk measure provided for each variable was the risk ratio (RR): a RR of 1 means
that the risk is the same for each participant; a RR >1 indicates higher risk; a RR <1 indicates
lower risk.

A Wilcoxon–Mann–Whitney U test was performed to identify differences among
imaging radiomic metrics of two groups (immunotherapy group and control group).
A non-parametric Kruskal—Wallis test was performed to identify the significant features
for stratifying the patients into two groups based on median cutoff of survival time (i.e.,
OS = 32 months and PFS = 10 months) corresponding to short (i.e., <median survival time)
or long survival time (i.e., ≥median survival time).

Receiver operating characteristic (ROC) analysis was performed. The Youden index
was used to individuate the optimal cutoff value for each feature and area under the
ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV),
negative predictive value (NPV) and accuracy (ACC) were obtained, considering the
optimal cutoff value.

The statistical analyses were performed using the Statistics Toolbox of MATLAB
R2007a (MathWorks, Natick, MA, USA).

2.5.2. Multivariate Analysis

For multivariate analysis, we considered all stable significant features of univariate
analyses as inputs for a classifier model. Pattern recognition methods (linear discrimination
analysis (LDA), support vector machine (SVM), k-nearest neighbor (KNN), artificial neural
network (ANN) and decision tree (DT)) were considered to assess the survival prediction
ability [26]. The best model was chosen considering the highest area under the ROC curve
and highest accuracy. Moreover, the analysis was made before and after a feature selection
method: the robust features were selected by the least absolute shrinkage and selection
operator (LASSO) method [27,28]. In the LASSO method, 10-fold cross-validation was
used to select the optimal regularization parameter alpha, considering that the average of
each patient’s mean square error was the smallest. With the optimal alpha, features with a
nonzero coefficient in LASSO were reserved. Feature selection was carried out considering
the λ value with the minimum mean square error (minMSE) [29,30].

A 10-k-fold cross validation approach was used to individuate the best classifier on
the training set; therefore, median and 95% confidence interval values of AUC, accuracy,
sensitivity, and specificity were calculated.

Multivariate analysis was performed using the statistics and Machine Learning Tool-
box of MATLAB R2007a (MathWorks, Natick, MA, USA).

3. Results

Thirty-eight patients (median age 61; range 41–78 years) with confirmed lung adeno-
carcinoma and subjected to immunotherapy satisfied the inclusion criteria. We excluded:
(a) 19 patients since the histological diagnosis was other than adenocarcinoma, (b) 17 patients
since the baseline CT studies were not performed with contrast media.

3.1. Univariate Analysis Results

The Kruskal—Wallis test did not detect statistically significant differences in OS (Figure 3a)
and PFS values (Figure 4a) among the two groups (immunotherapy group and control
group), demonstrating the homogeneity among the two patient groups. Kaplan—Meier
curves of OS and PFS are shown, respectively, in Figure 3b,c for the immunotherapy and
control group and in Figure 4b,c for the immunotherapy and control group. The median
value of OS for the immunotherapy group was equal to 32 months (range 2–72 months),
while the median value of OS in the control group was 28 months (range 6–162 months).
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The median value of PFS for the immunotherapy group was equal to 12 months (range
1–60 months), while median value of PFS in the control group was 10 months (range
3–162 months).
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Stable features (intraclass correlation coefficient value ≥ 0.8) were 121 among 573 cal-
culated (see Appendix A for the description of each stable feature): 5 lung CT features,
26 morphological features, 1 feature based on intensity values, 76 texture features and
13 higher-order statistical features. The median value of intraclass correlation coefficients
for stable features was 0.9 (range 0.85–0.96). Median size of lesions was 3 cm, with range
of 1.0–12 cm. The size of the lesion did not affect the stable metrics (p value > 0.05 at the
Wilcoxon–Mann–Whitney U test performed between the groups obtained by dividing
patients with lesions < 3 cm and patients with lesions ≥ 3 cm).

Using Cox proportional hazard models, we found significant radiomic features to
predict OS and PFS time in both groups (see Tables 2 and 3): exclusively textual features
including higher-order statistical metrics were significant in the Cox proportional hazard
model. No metrics in the control group had a risk ratio > 1 to predict OS, while only one
textural metric in immunotherapy group had a risk ratio > 1 to predict OS (Table 2): the
grey-level nonuniformity as volume, with full merging by grey-level size zone matrix
(GLSZM_IBSI_GL_NONUNIF_3D_HU GLSZM).

Several radiomic textural metrics in the immunotherapy group had a risk ratio >1
to predict PFS, while only one textural metric in the control group had a risk ratio >1 to
predict PFS (Table 3): the NGLDM GL nonuniformity by slice, with merging by slice by
neighboring grey-level dependence matrix (NGLDM_IBSI_GLNONUNIF_2DV_HU).
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Stable features (intraclass correlation coefficient value ≥ 0.8) were 121 among 573 cal-
culated (see Appendix A for the description of each stable feature): 5 lung CT features,
26 morphological features, 1 feature based on intensity values, 76 texture features and
13 higher-order statistical features. The median value of intraclass correlation coefficients
for stable features was 0.9 (range 0.85–0.96). Median size of lesions was 3 cm, with range
of 1.0–12 cm. The size of the lesion did not affect the stable metrics (p value > 0.05 at the
Wilcoxon–Mann–Whitney U test performed between the groups obtained by dividing
patients with lesions < 3 cm and patients with lesions ≥ 3 cm).

Using Cox proportional hazard models, we found significant radiomic features to
predict OS and PFS time in both groups (see Tables 2 and 3): exclusively textual features
including higher-order statistical metrics were significant in the Cox proportional hazard
model. No metrics in the control group had a risk ratio > 1 to predict OS, while only one
textural metric in immunotherapy group had a risk ratio > 1 to predict OS (Table 2): the
grey-level nonuniformity as volume, with full merging by grey-level size zone matrix
(GLSZM_IBSI_GL_NONUNIF_3D_HU GLSZM).

Several radiomic textural metrics in the immunotherapy group had a risk ratio >1
to predict PFS, while only one textural metric in the control group had a risk ratio >1 to
predict PFS (Table 3): the NGLDM GL nonuniformity by slice, with merging by slice by
neighboring grey-level dependence matrix (NGLDM_IBSI_GLNONUNIF_2DV_HU).
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Table 2. Significant radiomic features in Cox regression analysis with risk ratio value based on OS time stratification (short and long OS time).

Group Feature Feature Type Risk Ratio p Value

Immunotherapy group GLSZM_IBSI_GL_NONUNIF_3D_HU

texture features

21.09 0.02

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_3D_HU 0.00 0.01

NGLDM_IBSI_GLNONUNIF_2DV_HU −0.02 0.01

NGLDM_IBSI_GLNONUNIF_3D_HU −0.02 0.01

NGLDM_IBSI_DEP_NONUNIF_2DV_HU −0.02 0.01

NGLDM_IBSI_DEP_NONUNIF_3D_HU −0.06 0.01

LOG_2D_ENERGY_0_0MM_HU higher-order statistical features 0.00 0.00

Table 3. Significant radiomic features in Cox regression analysis with risk ratio value based on PFS time stratification (short and log PFS time).

Group Feature Feature Type Risk Ratio p Value

Immunotherapy group

GLCM_IBSI_CORRELLATION_2DF_HU

texture features

−3.86 0.01

GLCM_IBSI_CORRELLATION_2DS_HU −4.03 0.01

GLCM_IBSI_CORRELLATION_2DV_HU −4.06 0.04

GLCM_IBSI_CORRELLATION_3DF_HU −4.07 0.00

GLCM_IBSI_CORRELLATION_3DV_HU −4.63 0.00

GLCM_IBSI_FMIC_3DF_HU −4.88 0.02

GLCM_IBSI_SMIC_3DV_HU −4.69 0.02

GLCM_ASM 349.75 0.00

GLCM_CORRELATION −4.65 0.01

GLCM_CORRELATION_GL −4.50 0.01

GLCM_ENERGY 39.37 0.00

GLCM_ENTROPY −0.37 0.00

GLDZM_IBSI_SMALL_DIST_EMPH_2DS_HU 4.00 0.02
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Table 3. Cont.

Group Feature Feature Type Risk Ratio p Value

Immunotherapy group

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_2DS_HU

texture features

−0.55 0.01

GLDZM_IBSI_SMALL_DIST_EMPH_2DV_HU 3.45 0.03

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_2DV_HU −0.47 0.02

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_2DV_HU 4.80 0.03

GLDZM_IBSI_SMALL_DIST_EMPH_3D_HU 2.84 0.02

GLDZM_IBSI_SMALL_DIST_LOW_GL_EMPH_3D_HU 119.27 0.00

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_3D_HU −0.45 0.01

GLSZM_IBSI_ZS_ENTROPY_2DS_HU −1.09 0.01

GLSZM_IBSI_ZS_ENTROPY_2DV_HU −0.98 0.03

GLSZM_IBSI_ZS_ENTROPY_3D_HU −0.79 0.04

NGLDM_IBSI_DEP_ENTROPY_2DF_HU −0.86 0.02

NGLDM_IBSI_DEP_ENTROPY_3D_HU −0.94 0.01

NGTDM_COARSENESS_2DV_HU 47.72 0.00

NGTDM_COARSENESS_3D_HU 88.65 0.00

NGTDM_STRENGTH_2DV_HU 0.13 0.00

NGTDM_STRENGTH_3D_HU 0.18 0.00

LOG_2D_ENTROPY_2_5MM_HU

higher-order statistical features

−0.17 0.03

WAVELET_HHL_PERCENTILE90_HU −0.01 0.02

WAVELET_HHL_ENTROPY_HU −0.17 0.03

Control group

NGLDM_IBSI_GLNONUNIF_2DV_HU

texture features

−2.93 0.01

NGLDM_IBSI_GLNONUNIF_3D_HU −0.02 0.00

NGLDM_IBSI_DEP_NONUNIF_2DV_HU −0.02 0.00

NGLDM_IBSI_DEP_NONUNIF_3D_HU −0.06 0.00

NGTDM_COMPLEXITY_2DF_HU 0.00 0.04
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With regard to ROC analysis, we considered only the most important features. Table 4
reports the subset of significant features from Kruskal—Wallis tests for stratifying the
patients into two groups based on median cutoff of OS time (short and long OS time). A
total of 19 features were significant (3 morphological features, 1 feature based on intensity
value, 12 textural metrics and 3 higher-order statistical metrics) to predict overall survival
time. Among these 19, the best feature for stratifying the patients with short or long OS
time was a higher-order statistical metric: the mean value of 2D Laplacian of Gaussian
transformed voxels at 2.5 mm of smoothing (LOG_2D_MEAN_2_5MM_HU) with an AUC
of 66.0%, a sensitivity of 69.0% and a specificity of 65.0%.

Table 5 reports the subset of significant features from Kruskal—Wallis tests for strat-
ifying the patients into two groups based on median cutoff of PFS time (short and long
PFS time). A total of 104 features (5 lung CT features, 23 morphological features, 1 fea-
ture based on intensity value, 64 textural features and 11 higher-order statistical metrics)
were significant in predicting PFS time. Among these 104, the best feature for stratifying
the patients based on PFS time was a textural feature: the average energy of gray-level
co-occurrence matrix (GLCM_ENERGY) with an AUC of 70.0%, a sensitivity of 73.0% and
a specificity of 64.0%.

The shift in the center of mass of the lesion due to image intensity (SHIFT_CENTE-
R_OF_MASS_MM) was significant for predicting OS in patients subjected to immunother-
apy and also for predicting PFS in both groups (patients subjected to immunotherapy and
patients in the control group).

3.2. Multivariate Analysis Results

Regarding multivariate analyses, only the most useful results considering the purposes
of this study are reported. Using all stable significant features, no tested classifier reached
higher accuracy than a single radiomics feature for stratifying patients based on OS and
PFS time (short or long survival time).

Considering the robust predictors by the LASSO approach and all patients, an SVM
(Figure 5) reached the best results for stratifying patients based on OS time, with an AUC of
0.93 (0.85–0.96 95% confidence interval (CI)), an accuracy of 84.1% (80–86% 95% CI), a sensitiv-
ity of 74.4% (69–78% 95% CI) and a specificity of 93.3% (88–95% 95% CI). The robust predic-
tors as input to the SVM totaled seven, including two morphological features, two textural
features and three higher-order statistical metrics: greatest planar axis; volume fraction
of the approximate enclosing ellipsoid occupied by the ROI (VOLUME_DENSITY_AEE);
two features by GLCM cluster prominence for grey-leveled image from IBSI by slice
(GLCM_IBSI_CLUSTERPROMINENCE_2DS_HU and complexity from averaging metrics
by neighborhood gray-tone difference matrix (NGTDM_COMPLEXITY_2DF_HU)); median
value of voxels under wavelet transforms with filters HHL (WAVELET_HHL_MEDIAN_HU);
minimum value of voxels under wavelet transforms with filters (HHL WAVELET_HHL_MI-
N_HU); and the mean value of 2D Laplacian of Gaussian transformed voxels at 2.5 mm of
smoothing (LOG_2D_MEAN_2_5MM_HU). The SVM classifier in the subset of patients
treated with immunotherapy reached an AUC of 0.89, an accuracy of 81.6%, a sensitivity of
82.4% and a specificity of 81.0%.
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Table 4. Median and range values for textural features significant for stratifying the patients into two groups based on median cutoff of OS time (short and long time). Diagnostic
performance is also reported for each significant feature, considering the optimal cutoff value obtained by ROC analysis.

Group Feature Feature Type p Value at
Kruskal—Wallis Test Median Value Minimum Value Maximum Value

Immunotherapy group

SHIFT_CENTER_OF_MASS_MM
morphological features

0.04 3.75 0.20 63.03

VOLUME_DENSITY_AEE 0.05 1.17 0.85 1.33

GLCM_IBSI_CLUSTERPROMINENCE_2DF_HU

texture features

0.03 225,339.31 844.00 2,812,662.20

GLCM_IBSI_CLUSTERPROMINENCE_2DS_HU 0.03 225,858.72 847.54 2,817,987.50

GLCM_IBSI_CLUSTERPROMINENCE_2DV_HU 0.03 292,282.78 1011.46 2,989,657.50

GLCM_IBSI_CLUSTERPROMINENCE_3DF_HU 0.03 214,326.87 778.73 2,815,961.20

GLCM_IBSI_CLUSTERPROMINENCE_3DV_HU 0.03 220,935.36 783.67 2,819,584.20

GLDZM_IBSI_GL_VARIANCE_2DS_HU 0.05 82.02 8.15 205.34

GLDZM_IBSI_GL_VARIANCE_2DV_HU 0.04 99.27 10.18 212.22

GLDZM_IBSI_GL_VARIANCE_3D_HU 0.03 116.19 19.56 239.15

GLSZM_IBSI_GL_VARIANCE_2DS_HU 0.05 82.02 8.15 205.34

GLSZM_IBSI_GL_VARIANCE_2DV_HU 0.04 99.27 10.18 212.22

GLSZM_IBSI_GL_VARIANCE_3D_HU 0.03 116.19 19.56 239.15

NGTDM_COMPLEXITY_2DF_HU 0.04 1176.02 79.07 6533.22

LOG_2D_MEAN_2_5MM_HU

higher-order statistical
features

0.04 −0.18 −1.27 2.42

WAVELET_HHL_ENERGY_HU 0.04 1,998,296.25 43886.58 63,200,000.00

WAVELET_HHL_MEDIAN_HU 0.05 0.02 −0.39 2.19

WAVELET_HHL_MIN_HU 0.01 −149.82 −299.53 −68.56

Control group
GREATEST_PLANAR_AXIS morphological features 0.00 1.00 0.00 2.00

LOG_2D_MEAN_2_5MM_HU higher-order statistical
features 0.03 −0.18 −1.27 2.42
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Table 5. Median value and range for textural features significant for stratifying the patients into two groups based on median cutoff of PFS time (short and long time).

Group Feature Feature Type
p Value at

Kruskal—Wallis
Test

Median Value Minimum Value Maximum Value

Immunotherapy group

ANTPOST_LENGTH_MM

morphological
features

0.02 41.52 5.94 111.37

APPROXIMATE_VOLUME_ML 0.03 26.33 0.23 718.78

APPROXIMATE_VOLUME_MM3 0.03 26,329.14 231.27 718,778.30

AVG_AXIAL_DIAMETER_MM 0.01 38.40 6.37 114.50

AVG_CORONAL_DIAMETER_MM 0.02 36.60 7.46 125.46

AVG_SAGITTAL_DIAMETER_MM 0.02 41.02 7.42 121.31

LARGEST_PLANAR_DIAMETER_MM 0.01 47.87 6.78 121.53

LARGEST_PLANAR_ORTHO_DIAMETER_MM 0.01 29.75 5.97 109.43

SHIFT_CENTER_OF_MASS_MM 0.03 3.75 0.20 63.03

COMPACTNESS1_MM 0.04 45.68 3.49 324.34

CORONAL_LONG_AXIS_MM 0.02 42.04 8.38 139.23

CRANIALCAUDAL_LENGTH_MM 0.04 37.28 5.67 131.15

GREATEST_PLANAR_LENGTH 0.02 50.87 8.72 145.10

SAGITTAL_LONG_AXIS_MM 0.02 50.25 8.72 145.10

SAGITTAL_SHORT_AXIS_MM 0.04 30.55 3.33 102.60

SURFACE_AREA_MM2 0.02 5048.57 164.85 44,177.98

TRANSVERSE_LENGTH_MM 0.02 38.62 6.76 117.99

VOLUME_ML 0.03 24.48 0.19 718.42

VOLUME_MM3 0.03 24,480.15 185.97 718,415.94

VOLUME_VOXELS 0.01 16,348.50 97.00 534,080.00

VOLUMETRIC_LENGTH_MM 0.01 52.86 8.90 145.30

L1_DISTANCE_MM 0.02 48.33 7.82 121.30

L2_DISTANCE_MM 0.03 34.81 6.56 100.44

L3_DISTANCE_MM 0.03 25.00 4.36 89.54

SOLID_VOLUME_MM3

lung CT features

0.04 25,469.57 128.75 717,505.20

SOLID_VOLUME_ML 0.04 25.47 0.13 717.51

SOLID_VOLUME_VOXELS 0.01 15,791.50 54.00 533,134.00

PART_SOLID_DIAMETER_MM 0.01 37.89 5.24 114.44
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Table 5. Cont.

Group Feature Feature Type
p Value at

Kruskal—Wallis
Test

Median Value Minimum Value Maximum Value

Immunotherapy group

INTENSITY_HISTOGRAM_ENERGY_HU features based on
intensity value 0.02 37,350,000.00 39,863.00 1,450,000,000.00

GLCM_IBSI_CORRELLATION_2DF_HU

texture features

0.00 0.72 0.33 0.89

GLCM_IBSI_CORRELLATION_2DS_HU 0.00 0.72 0.34 0.89

GLCM_IBSI_CORRELLATION_2DV_HU 0.03 0.80 0.42 0.94

GLCM_IBSI_CORRELLATION_3DF_HU 0.01 0.58 0.08 0.89

GLCM_IBSI_CORRELLATION_3DV_HU 0.01 0.59 0.22 0.89

GLCM_IBSI_FMIC_3DV_HU 0.00 −0.11 −0.25 −0.03

GLCM_IBSI_SMIC_3DV_HU 0.01 0.74 0.46 0.92

GLCM_ASM 0.01 0.00 0.00 0.01

GLCM_CORRELATION 0.01 0.64 0.39 0.91

GLCM_CORRELATION_GL 0.01 0.64 0.00 0.90

GLCM_ENERGY 0.01 0.01 0.01 0.10

GLCM_ENTROPY 0.00 12.89 6.60 14.86

GLDZM_IBSI_SMALL_DIST_EMPH_2DS_HU 0.02 0.41 0.18 0.67

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_2DS_HU 0.00 6.43 4.28 8.09

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_2DS_HU 0.00 45.38 11.58 90.68

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_NORMALIZED_2DS_HU 0.03 0.22 0.07 0.45

GLDZM_IBSI_ZONE_DISTANCE_VARIANCE_2DS_HU 0.05 8.07 0.52 149.19

GLDZM_IBSI_GL_NONUNIFORMITY_2DV_HU 0.02 255.74 3.26 9626.30

GLDZM_IBSI_SMALL_DIST_EMPH_2DV_HU 0.02 0.35 0.13 0.63

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_2DV_HU 0.01 7.68 5.26 9.16

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_2DV_HU 0.00 777.59 33.98 7437.29

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_NORMALIZED_2DV_HU 0.03 0.16 0.04 0.40

GLDZM_IBSI_GL_NONUNIFORMITY_3D_HU 0.00 109.21 2.64 1697.68

GLDZM_IBSI_LARGE_DIST_EMPH_3D_HU 0.01 5.64 1.00 93.17

GLDZM_IBSI_SMALL_DIST_EMPH_3D_HU 0.01 0.68 0.35 1.00

GLDZM_IBSI_SMALL_DIST_LOW_GL_EMPH_3D_HU 0.02 0.00 0.00 0.03

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_3D_HU 0.03 6.67 4.40 8.57
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Table 5. Cont.

Group Feature Feature Type
p Value at

Kruskal—Wallis
Test

Median Value Minimum Value Maximum Value

Immunotherapy group

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_3D_HU

texture features

0.00 1097.70 52.00 6943.99

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_NORMALIZED_3D_HU 0.01 0.43 0.13 1.00

GLDZM_IBSI_ZONE_DISTANCE_VARIANCE_3D_HU 0.01 1.76 0.00 53.91

GLRLM_IBSI_GLNONUNIFORMITY_2DV_HU 0.04 4350.77 14.15 254,334.25

GLRLM_IBSI_GLNONUNIFORMITY_3DF_HU 0.03 1171.83 3.58 69,500.89

GLRLM_IBSI_GLNONUNIFORMITY_3DV_HU 0.03 15,231.78 46.31 903,435.10

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_2DF_HU 0.01 374.04 29.69 2766.90

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_2DS_HU 0.01 1491.65 118.62 11,004.87

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_2DV_HU 0.01 29,137.73 355.64 612,642.30

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_3DF_HU 0.01 9072.57 91.34 177,585.50

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_3DV_HU 0.01 117,863.44 1187.01 2,296,799.20

GLSZM_IBSI_GL_NONUNIF_2DV_HU 0.02 255.74 3.26 9626.30

GLSZM_IBSI_GL_NONUNIF_3D_HU 0.00 109.21 2.64 1697.68

GLSZM_IBSI_SMALL_ZONE_EMPH_3D_HU 0.03 0.74 0.60 0.83

GLSZM_IBSI_SMALL_ZONE_LOW_GL_EMPH_3D_HU 0.04 0.00 0.00 0.03

GLSZM_IBSI_ZS_ENTROPY_2DS_HU 0.00 5.70 4.24 6.37

GLSZM_IBSI_ZS_ENTROPY_2DV_HU 0.03 6.52 5.16 7.07

GLSZM_IBSI_ZS_ENTROPY_3D_HU 0.03 6.62 5.32 7.44

GLSZM_IBSI_ZS_NONUNIF_NORMALISED_3D_HU 0.03 0.51 0.33 0.65

GLSZM_IBSI_ZS_NONUNIF_2DS_HU 0.00 130.66 23.54 725.63

GLSZM_IBSI_ZS_NONUNIF_2DV_HU 0.00 2406.05 69.56 34,717.15

GLSZM_IBSI_ZS_NONUNIF_3D_HU 0.00 1367.97 44.19 13,020.40

NGLDM_IBSI_GLNONUNIF_2DV_HU 0.04 2108.79 3.66 118,346.81

NGLDM_IBSI_GLNONUNIF_3D_HU 0.04 2108.79 3.66 118,346.81

NGLDM_IBSI_DEP_ENTROPY_2DF_HU 0.01 5.55 4.28 6.48

NGLDM_IBSI_DEP_ENTROPY_3D_HU 0.01 7.00 5.52 7.89

NGLDM_IBSI_DEP_NONUNIF_2DF_HU 0.01 185.29 22.44 1201.75

NGLDM_IBSI_DEP_NONUNIF_2DV_HU 0.01 3029.10 64.51 82,117.83
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Table 5. Cont.

Group Feature Feature Type
p Value at

Kruskal—Wallis
Test

Median Value Minimum Value Maximum Value

Immunotherapy group

NGLDM_IBSI_DEP_NONUNIF_3D_HU

texture features

0.00 1532.28 43.76 32,843.65

NGLDM_IBSI_HIGH_DEP_LOW_GL_EMPH_3D_HU 0.04 0.03 0.01 0.21

NGTDM_BUSYNESS_2DV_HU 0.02 0.43 0.03 9.34

NGTDM_BUSYNESS_3D_HU 0.01 0.58 0.06 11.04

NGTDM_COARSENESS_2DV_HU 0.03 0.00 0.00 0.05

NGTDM_COARSENESS_3D_HU 0.01 0.00 0.00 0.04

NGTDM_STRENGTH_2DV_HU 0.00 3.35 0.24 33.97

NGTDM_STRENGTH_3D_HU 0.00 2.01 0.19 23.53

LOG_2D_ENERGY_0_0MM_HU

higher-order
statistical features

0.00 628,000,000.00 0.00 15,700,000,000.00

LOG_2D_ENERGY_2_5MM_HU 0.00 462,665.47 5610.69 10,400,000.00

LOG_2D_ENTROPY_2_5MM_HU 0.01 14.00 6.60 19.03

LOG_2D_MEAN_2_5MM_HU 0.01 −0.18 −1.27 2.42

WAVELET_HHL_ENERGY_HU 0.01 1,998,296.25 43,886.58 63,200,000.00

WAVELET_HHL_ENTROPY_HU 0.01 14.00 6.60 19.03

WAVELET_HHL_KURTOSIS_HU 0.04 29.91 2.04 324.52

WAVELET_HHL_PERCENTILE10_HU 0.03 −7.04 −35.16 −2.24

WAVELET_HHL_PERCENTILE90_HU 0.04 7.53 2.31 33.86

WAVELET_HHL_ROBUST_MEAN_DEVIATION_HU 0.05 2.53 0.93 13.78

Control group

SHIFT_CENTER_OF_MASS_MM morphological
features 0.03 3.75 0.20 63.03

PERCENT_AIR lung CT features 0.02 0.00 0.00 1.05

NGLDM_IBSI_DEP_VARIANCE_2DF_HU texture features 0.03 2.57 0.19 5.69

LOG_2D_COV_2_5MM_HU higher-order
statistical features 0.01 −9.83 −1429.77 308.28
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Figure 5. ROC curve and confusion matrix of SVM as the best classifier for stratifying the patients based on OS time (short
and long time).

Conversely, considering the robust predictors by the LASSO approach and all patients,
a decision tree (Figure 6) reached the best results for stratifying patients based on PFS
time with an AUC of 0.96 (0.895–1.0 95% confidence interval (CI)), an accuracy of 93.2%
(88–96% 95% CI), a sensitivity of 91.1% (87–94% 95% CI) and a specificity of 5.3% (90–99%
95% CI). The robust predictors as inputs of SVM totaled seven (six textural features and
one higher-order statistical metric):

Figure 6. ROC curve and confusion matrix of decision tree as the best classifier for stratifying the patients based on PFS
time (short and time).

Grey-level variance by neighborhood grey-level difference matrix (NGLDM_IBSI_DE-
P_VARIANCE_2DF_HU); average correlations of GLCM (GLCM_IBSI_CORRELLATION_2D-
S_HU); grey-level non-uniformity in three dimensions (GLDZM_IBSI_ZONE_DISTANCE_NO-
NUNIFORMITY_3D_HU); entropy value in three dimensions by neighborhood grey-level
difference matrix (NGLDM_IBSI_DEP_ENTROPY_3D_HU); high grey-level run emphasis
in three dimensions by neighborhood grey-level difference matrix (NGLDM_IBSI_HIGH_D-
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Grey-level variance by neighborhood grey-level difference matrix (NGLDM_IBSI_DE-
P_VARIANCE_2DF_HU); average correlations of GLCM (GLCM_IBSI_CORRELLATION_2D-
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NUNIFORMITY_3D_HU); entropy value in three dimensions by neighborhood grey-level
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in three dimensions by neighborhood grey-level difference matrix (NGLDM_IBSI_HIGH_D-
EP_LOW_GL_EMPH_3D_HU); strength value by slice with full merging by neighborhood
grey-level difference matrix (NGTDM_STRENGTH_2DV_HU); the mean value of 2D Lapla-
cian of Gaussian transformed voxels at 2.5 mm of smoothing (LOG_2D_MEAN_2_5MM_HU).
The decision tree classifier in the subset of patients treated with immunotherapy reached
an AUC of 0.96, an accuracy of 94.7%, a sensitivity of 87.5% and a specificity of 100.0%.

4. Discussion

Immunotherapy, capable of stimulating the cellular immune response against cancer,
uses immune checkpoint blockade (ICI), a treatment paradigm in advanced cancer treatment.

The two main groups of agents used almost exclusively in tumors [31,32] are pro-
grammed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors;
some authors analyzed the results of these ligands in small cell lung cancer [33–35]. De-
spite this, resistance to primary therapy does not allow all patients to benefit from the
treatment regimen.

Considering this, it is therefore necessary to identify biomarkers that allow the appro-
priate selection of patients and the right stratification. Radiomics can therefore effectively
support precision medicine decisions by identifying imaging biomarkers. Indeed, radiomics
consists in the extraction of many quantitative characteristics through medical images [36].
This quantitative analysis, considering the heterogeneity of the macroscopic features based
on the image [37], can identify the overall tumor.

The division into segments is not an immediate step in the whole of the radiomic
process because the subsequent extraction of the characteristics is obtained from the seg-
mented VOI. Lately, plot analysis has broadened its application to medical applications [37].
The quantification of grayscale patterns and pixel interrelationships that provide a measure
of heterogeneity is what is called texture analysis.

In this study we evaluated 573 radiomic features; among them 121 were stable: 5 lung
CT features, 26 morphological features, 1 feature based on intensity values, 76 texture fea-
tures and 13 higher-order statistical features. Considering Cox proportional hazard models,
textual features including higher-order statistic metrics were exclusively significant.

Considering Kruskal—Wallis tests, 19 radiomic features (3 morphological features,
1 feature based on intensity value, 12 textural metrics and 3 higher-order statistical met-
rics) were significant for predicting overall survival time. The best feature for stratify-
ing the patients with short or long OS time was a higher-order statistical metric: the
mean value of 2D Laplacian of Gaussian transformed voxels at 2.5 mm of smoothing
(LOG_2D_MEAN_2_5MM_HU), with an AUC of 66.0%, a sensitivity of 69.0% and a speci-
ficity of 65.0%.

Considering Kruskal—Wallis tests, 108 radiomic features (5 lung CT features, 23 mor-
phological features, 1 feature based on intensity value, 64 textural features and 11 higher-
order statistical metrics) were significant for predicting PFS time. The best feature for
stratifying the patients based on PFS time was a textural feature: GLCM ENERGY, with an
AUC of 70.0%, a sensitivity of 73.0% and a specificity of 64.0%.

However, the subset of imaging radiomic features for predicting OS or PFS time was
different in the control group and immunotherapy group; this demonstrated that specific
radiomic features could be used to select patients with lung adenocarcinoma who would
benefit from immunotherapy.

Exclusively, the shift in the center of mass of the lesion due to image intensity
(SHIFT_CENTER_OF_MASS_MM) was significant both for predicting OS in patients sub-
jected to immunotherapy and for predicting PFS in patients subjected to immunotherapy
and in patients in the control group.

However, in univariate analysis, low diagnostic accuracy was reached for stratifying
patients based on OS and PFS time.

A multivariate analysis using all stable significant features found that no tested
classifier reached higher accuracy than a single radiomic feature for stratifying patients
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based on OS and PFS time (short or long survival time). Conversely, considering the robust
predictors by the LASSO approach and all patients, an SVM reached the best results for
stratifying patients based on OS. The SVM classifier in the subset of patients treated with
immunotherapy reached an AUC of 0.89, an accuracy of 81.6%, a sensitivity of 82.4% and a
specificity of 81.0%. However, considering the robust predictors of the LASSO approach
and all patients, a decision tree reached the best results for stratifying patients based on
PFS time. The decision tree classifier in the subset of patients treated with immunotherapy
reached an AUC of 0.96, an accuracy of 94.7%, a sensitivity of 87.5% and a specificity
of 100.0%.

The relationship between radiomics and immunotherapeutic response was demon-
strated by numerous experts.

Radiomic signatures could be considered critically important inputs as a biomarkers
for immune profiles and immune checkpoint inhibition response, according to a multi-
center retrospective study on advanced cancers that considered all advanced cancers,
including lung cancer [38].

Consequently, in a sample of 200 advanced NSCLC patients who received single anti-
PD-1/PD-L1, Yang et al. assessed 1633 CT scans and 3414 blood samples, including serial
radiomics, laboratory data and baseline clinical data, to build deep learning models useful
for the selection and identification of responders and non-responders to immunotherapy.
They found that a deep learning-based prediction model showed a good performance in
distinguishing responders from non-responders to anti-PD-1/PD-L1 therapy [39].

In patients treated with the anti-PD-1 antibody, by combining PD-L1ES with a clinical
model that was constructed using age, sex, smoking history and family history of malignant
tumors, the reaction to immunotherapy could be anticipated in a manner more accurate
than using PD-L1ES or the clinical model alone as predictors [40].

Accordingly, Tian et al. conducted analyses on PD-L1 expression in 939 consecutive
stage IIIB–IV NSCLC patients with baseline CT images and found that deep learning on
computed tomography images could predict a high expression of PD-L1 (PD-L1 ≥50%),
with an AUC of 0.78.

The present study has several limitations: the small population size considered, the
retrospective nature of the study and the awareness that CT images were collected by differ-
ent centers and thus were usually obtained using different protocols. The radiomic model
can be affected by these differences; radiomics data were not correlated and combined with
clinical information.

5. Conclusions

With the contribution of medical images usually acquired in clinical practice, radiomics
can be a useful support for precision medicine.

We demonstrated that specific radiomic features extracted by CT could be used to
select patients with lung adenocarcinoma who would benefit from immunotherapy; in fact,
the subset of radiomic features able to predict OS or PFS time was different in the control
group and immunotherapy group.
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Appendix A

Metric Code Name Feature Type Units IBSI Compliance Description

SOLID_VOLUME_ML Solid Density Volume

lung CT features

mL Volume of the solid density of the specified ROI
in milliliters.

SOLID_VOLUME_MM3 Solid Density Volume mmˆ3 Volume of the solid density of the specified ROI in
cubic millimeters.

SOLID_VOLUME_VOXELS Solid Density Volume voxels Volume of the solid density of the specified ROI
in voxels.

PART_SOLID_DIAMETER_MM Part-Solid Diameter mm The average diameter of the solid portions of a
part-solid lesion.

PERCENT_AIR Percent Air The estimated percent of volume that is air in this ROI.

ANTPOST_LENGTH_MM Anterior-Posterior Length

morphological
features

mm A measure of the anterior-posterior distance.

APPROXIMATE_VOLUME_ML Approximate Volume mL
Approximate volume of the specified ROI of the image
in milliliters. For studies with gantry tilt,
PARALLELEPIPED_VOLUME_MM3 is recommended.

APPROXIMATE_VOLUME_MM3 Approximate Volume mmˆ3

Approximate volume of the specified ROI of the image
in cubic millimeters assuming water equivalent. For
studies with gantry tilt,
PARALLELEPIPED_VOLUME_MM3 is recommended.

AVG_AXIAL_DIAMETER_MM Average Axial Diameter mm The average of largest axial planar and orthogonal
diameters, in millimeters

AVG_CORONAL_DIAMETER_MM Average Coronal Diameter mm The average of largest coronal planar and orthogonal
diameters, in millimeters

AVG_SAGITTAL_DIAMETER_MM Average Sagittal Diameter mm The average of largest sagittal planar and orthogonal
diameters, in millimeters

COMPACTNESS1_MM Mesh Compactness 1 mmˆ5/3 1

IBSI-consistent dimensionful measure of compactness of
ROI, independent of scale and orientation (first of three
implementations), using standard unit
shape-derived information.

CORONAL_LONG_AXIS_MM Coronal Long Axis mm
A measure of the longest straight line that can fit entirely
inside an XZ-planar slice of the 3D structure (from edge
to edge, without ever leaving structure), in millimeters.

CRANIALCAUDAL_LENGTH_MM Cranial-Caudal Length mm A measure of the cranial-caudal distance.

VOLUME_DENSITY_AEE Volume Density-Approximate
Enclosing Ellipsoid 1 IBSI-consistent volume fraction of the approximate

enclosing ellipsoid occupied by the ROI

VOLUME_ML Volume mL IBSI-consistent volume of the specified ROI of the image
in milliliters.

VOLUME_MM3 Volume mmˆ3 IBSI-consistent volume of the specified ROI of the image
in cubic millimeters.
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Metric Code Name Feature Type Units IBSI Compliance Description

VOLUME_VOXELS Volume

morphological
features

voxels IBSI-consistent approximate volume derived from voxel
count inside ROI

VOLUMETRIC_LENGTH_MM Volumetric Length mm
A measure of the longest straight line that can fit
entirely inside the 3D structure (from edge to edge,
without ever leaving structure).

GREATEST_PLANAR_AXIS Greatest Planar Axis Length mm

GREATEST_PLANAR_LENGTH Greatest Planar Long Axis Length mm Greatest length among the sagittal longest axis, axial
longest axis, and coronal longest axis lengths.

L1_DISTANCE_MM Long (L1) Full Axis Length mm IBSI-consistent length of the long (L1) full principal axis,
in millimeters, from edge to edge of the ROI.

L2_DISTANCE_MM Short (L2) Full Axis Length mm IBSI-consistent length of the short (L2) full principal
axis, in millimeters, from edge to edge of the ROI.

L3_DISTANCE_MM Normal (L3) Full Axis Length mm IBSI-consistent length of the normal (L3) full principal
axis, in millimeters, from edge to edge of the ROI.

LARGEST_PLANAR_DIAMETER_MM Axial Long Axis mm
A measure of the longest straight line that can fit entirely
inside an XY-planar slice of the 3D structure (from edge
to edge, without ever leaving structure), in millimeters.

LARGEST_PLANAR_ORTHO_DIAMETER_MM Axial Short Axis mm

A measure of the longest orthogonal line to the longest
planar line, that can fit entirely inside an XY-planar slice
of the 3D structure (from edge to edge, without ever
leaving structure), in millimeters

SAGITTAL_LONG_AXIS_MM Sagittal Long Axis mm
A measure of the longest straight line that can fit entirely
inside an YZ-planar slice of the 3D structure (from edge
to edge, without ever leaving structure), in millimeters.

SAGITTAL_SHORT_AXIS_MM Sagittal Short Axis mm

A measure of the longest orthogonal line to the longest
planar line, that can fit entirely inside an YZ-planar slice
of the 3D structure (from edge to edge, without ever
leaving structure), in millimeters

SHIFT_CENTER_OF_MASS_MM Center of Mass Shift mm 1 IBSI-consistent shift in the center of mass due to
image intensity.

SURFACE_AREA_MM2 Surface Area mmˆ2 1 IBSI-consistent surface area of the specified ROI of the
image in square millimeters.

TRANSVERSE_LENGTH_MM Transverse Length mm A measure of the transverse distance.

INTENSITY_HISTOGRAM_ENERGY_HU Intensity Histogram Energy Intensity-based
feature 1 IBSI-consistent intensity histogram energy of all voxels

in ROI binned for PET.
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Metric Code Name Feature Type Units IBSI Compliance Description

GLCM_ASM GLCM Avg Angular Second Moment

textural features

Average angular second moments of GLCM in all 26
directions. Raw HU used, unbinned and with
background padding 1 voxel around the ROI.

GLCM_CORRELATION GLCM Avg Correlation
Average correlations of GLCM in all 26 directions. Raw
HU used, unbinned and with background padding 1
voxel around the ROI.

GLCM_CORRELATION_GL GLCM Avg Correlation for Grey
Leveled Image

Average correlations of GLCM in all 26 directions for
grey leveled CT or PET image with background
padding 1 voxel around the ROI.

GLCM_ENERGY GLCM Avg Energy
Average energies of GLCM in all 26 directions. Raw HU
used, unbinned and with background padding 1 voxel
around the ROI.

GLCM_ENTROPY GLCM Avg Entropy
Average entropies of GLCM in all 26 directions. Raw
HU used, unbinned and with background padding 1
voxel around the ROI.

GLCM_IBSI_CLUSTERPROMINENCE_2DF_HU
GLCM Cluster Prominence for Grey
Leveled Image from IBSI by Slice
without Merging

1
IBSI-consistent cluster prominence of GLCM of
unpadded ROI binned for CT with aggregation by slice
without merging.

GLCM_IBSI_CLUSTERPROMINENCE_2DS_HU
GLCM Cluster Prominence for Grey
Leveled Image from IBSI by Slice
with Merging by Slice

1
IBSI-consistent cluster prominence of GLCM of
unpadded ROI binned for CT with aggregation by slice
with merging by slice.

GLCM_IBSI_CLUSTERPROMINENCE_2DV_HU
GLCM Cluster Prominence for Grey
Leveled Image from IBSI by Slice
with Merging

1
IBSI-consistent cluster prominence of GLCM of
unpadded ROI binned for CT with aggregation by slice
with merging.

GLCM_IBSI_CLUSTERPROMINENCE_3DF_HU
GLCM Cluster Prominence for Grey
Leveled Image from IBSI by Volume
without Merging

1
IBSI-consistent cluster prominence of GLCM of
unpadded ROI binned for CT with aggregation by
volume without merging. binning

GLCM_IBSI_CLUSTERPROMINENCE_3DV_HU
GLCM Cluster Prominence for Grey
Leveled Image from IBSI by Volume
with Full Merging

1
IBSI-consistent cluster prominence of GLCM of
unpadded ROI binned for CT with aggregation by
volume with full merging. binning

GLCM_IBSI_CORRELLATION_2DF_HU
GLCM Correlation for the Grey
Leveled Image from the IBSI by Slice
without Merging

1 IBSI-consistent correlation of GLCM ROI binned for CT
with aggregation by slice without merging.

GLCM_IBSI_CORRELLATION_2DS_HU
GLCM Correlation for the Grey
Leveled Image from the IBSI by Slice
with Merging by Slice

1 IBSI-consistent correlation of GLCM ROI binned for CT
with aggregation by slice with merging by slice.

GLCM_IBSI_CORRELLATION_2DV_HU
GLCM Correlation for the Grey
Leveled Image from the IBSI by Slice
with Merging

1 IBSI-consistent correlation of GLCM ROI binned for CT
with aggregation by slice with merging.
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Metric Code Name Feature Type Units IBSI Compliance Description

GLCM_IBSI_CORRELLATION_3DF_HU
GLCM Correlation for the Grey
Leveled Image from the IBSI by
Volume without Merging

textural features

1 IBSI-consistent correlation of GLCM ROI binned for CT
with aggregation by volume without merging.

GLCM_IBSI_CORRELLATION_3DV_HU
GLCM Correlation for the Grey
Leveled Image from the IBSI by
Volume with Full Merging

1 IBSI-consistent correlation of GLCM ROI binned for CT
with aggregation by volume with full merging.

GLCM_IBSI_FMIC_3DV_HU

GLCM First Measure of
InformationCorrelation for Grey
Leveled Image from IBSI by Volume
with Full Merging

1
IBSI-consistent first measure of information correlation
of GLCM of unpadded ROI binned for CT with
aggregation by volume with full merging.

GLCM_IBSI_SMIC_3DV_HU

GLCM Second Measure of
Information Correlation for Grey
Leveled Image from IBSI by Slice
with Full Merging

1
IBSI-consistent second measure of inform of unpadded
ROI binned for CT with aggregation by slice with
full merging.

GLDZM_IBSI_GL_NONUNIFORMITY_2DV_HU GLDZM Grey Level Nonuniformity
with Merging by Slice from CT 1

IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 8 directions in 2
dimensions with merging.

GLDZM_IBSI_GL_NONUNIFORMITY_3D_HU GLDZM Grey Level Nonuniformity
from CT 1

IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 26 directions in
3 dimensions.

GLDZM_IBSI_GL_VARIANCE_2DS_HU GLDZM Grey Level Variance from
CT without Merging 1

IBSI-consistent grey level variance of GLDZM of
unpadded ROI binned for CT from 8 directions in
2 dimensions.

GLDZM_IBSI_GL_VARIANCE_2DV_HU GLDZM Grey Level Variance with
Merging by Slice from CT 1

IBSI-consistent grey level variance of GLDZM of
unpadded ROI binned for CT from 8 directions in 2
dimensions with merging.

GLDZM_IBSI_GL_VARIANCE_3D_HU GLDZM Grey Level Variance
from CT 1

IBSI-consistent grey level variance of GLDZM of
unpadded ROI binned for CT from 26 directions in
3 dimensions.

GLDZM_IBSI_LARGE_DIST_EMPH_3D_HU GLDZM Large Distance Emphasis
with Full Merging from CT 1

IBSI-consistent large distance emphasis of GLDZM of
unpadded ROI binned for CT from 26 directions in
3 dimensions.

GLDZM_IBSI_SMALL_DIST_EMPH_2DS_HU GLDZM Small Distance Emphasis
without Merging from CT 1

IBSI-consistent small distance emphasis of GLDZM of
unpadded ROI binned for CT from 8 directions in
2 dimensions.

GLDZM_IBSI_SMALL_DIST_EMPH_2DV_HU GLDZM Small Distance Emphasis
with Merging by Slice from CT 1

IBSI-consistent small distance emphasis of GLDZM of
unpadded ROI binned for CT from 8 directions in 2
dimensions with merging.

GLDZM_IBSI_SMALL_DIST_EMPH_3D_HU GLDZM Small Distance Emphasis
with Full Merging from CT 1

IBSI-consistent small distance emphasis of GLDZM of
unpadded ROI binned for CT from 26 directions in
3 dimensions.
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Metric Code Name Feature Type Units IBSI Compliance Description

GLDZM_IBSI_SMALL_DIST_LOW_GL_EMPH_3D_HU
GLDZM Small Distance Low Grey
Level Emphasis with Full Merging
from CT

textural features

1
IBSI-consistent small distance low grey level emphasis
of GLDZM of unpadded ROI binned for CT from
26 directions in 3 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_2DS_HU GLDZM Zone Distance Entropy
without Merging from CT 1

IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 8 directions in
2 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_2DV_HU GLDZM Zone Distance Entropy with
Mergning by Slice from CT 1

IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 8 directions in 2
dimensions with merging.

GLDZM_IBSI_ZONE_DISTANCE_ENTROPY_3D_HU GLDZM Zone Distance Entropy
from CT 1

IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 26 directions in
3 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_2DS_HU
GLDZM Zone Distance
Nonuniformity without Merging
from CT

1
IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 8 directions in
2 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_2DV_HU
GLDZM Zone Distance
Nonuniformity with Merging by Slice
from CT

1
IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 8 directions in 2
dimensions with merging.

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_3D_HU GLDZM Zone Distance
Nonuniformity from CT 1

IBSI-consistent grey level nonuniformity of GLDZM of
unpadded ROI binned for CT from 26 directions in
3 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_NORMALIZED_2DS_HU
GLDZM Zone Distance
Nonuniformity Normalised without
Merging from CT

1
IBSI-consistent grey level normalized nonuniformity of
GLDZM of unpadded ROI binned for CT from
8 directions in 2 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_NORMALIZED_2DV_HU
GLDZM Zone Distance
Nonuniformity Normalised with
Mergning by Slice from CT

1
IBSI-consistent grey level normalized nonuniformity of
GLDZM of unpadded ROI binned for CT from
8 directions in 2 with merging dimensions.

GLDZM_IBSI_ZONE_DISTANCE_NONUNIFORMITY_NORMALIZED_3D_HU GLDZM Zone Distance
Nonuniformity Normalised from CT 1

IBSI-consistent grey level normalized nonuniformity of
GLDZM of unpadded ROI binned for CT from
26 directions in 3 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_VARIANCE_2DS_HU GLDZM Zone Distance Variance
without Merging from CT 1

IBSI-consistent grey level variance of GLDZM of
unpadded ROI binned for CT from 8 directions in
2 dimensions.

GLDZM_IBSI_ZONE_DISTANCE_VARIANCE_3D_HU GLDZM Zone Distance Variance
from CT 1

IBSI-consistent grey level variance of GLDZM of
unpadded ROI binned for CT from 26 directions in
3 dimensions.

GLRLM_IBSI_GLNONUNIFORMITY_2DV_HU GLRLM Grey Level Nonuniformity
by Slice with Full Merging from CT 1

IBSI-consistent grey levelnonuniformity from GLRLM
of unpadded ROI binned for CT from merging in
8 directions for each slice.
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Metric Code Name Feature Type Units IBSI Compliance Description

GLRLM_IBSI_GLNONUNIFORMITY_3DF_HU GLRLM Grey Level Nonuniformityas
Volume, without Merging from CT

textural features

1
IBSI-consistent grey levelnonuniformity from GLRLM
of unpadded ROI binned for CT from averaging
26 directions in 3 dimensions.

GLRLM_IBSI_GLNONUNIFORMITY_3DV_HU
GLRLM Grey Level Nonuniformity
as Volume, with Full Merging
from CT

1
IBSI-consistent grey levelnonuniformity from GLRLM
of unpadded ROI binned for CT from merging
26 directions in 3 dimensions.

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_2DF_HU GLRLM Run Length Nonuniformity
by Slice without Merging from CT 1

IBSI-consistent run length nonuniformity from GLRLM
of unpadded ROI binned for CT from averaging in
8 directions for each slice.

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_2DS_HU
GLRLM Run Length Nonuniformity
by Slice with Merging by Slice
from CT

1
IBSI-consistent run length nonuniformity from GLRLM
of unpadded ROI binned for CT from merging matrices
from each slice and averaging the result.

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_2DV_HU GLRLM Run Length Nonuniformity
by Slice with Full Merging from CT 1

IBSI-consistent run length nonuniformity from GLRLM
of unpadded ROI binned for CT from merging in
8 directions for each slice.

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_3DF_HU GLRLM Run Length Nonuniformity
as Volume, without Merging from CT 1

IBSI-consistent run length nonuniformity from GLRLM
of unpadded ROI binned for CT from averaging
26 directions in 3 dimensions.

GLRLM_IBSI_RUNLENGTHNONUNIFORMITY_3DV_HU
GLRLM Run Length Nonuniformity
as Volume, with Full Merging
from CT

1
IBSI-consistent run length nonuniformity from GLRLM
of unpadded ROI binned for CT from merging
26 directions in 3 dimensions.

GLSZM_IBSI_GL_NONUNIF_2DV_HU GLSZM Grey Level Nonuniformity
by Slice, with Full Merging 1

IBSI-consistent grey level nonuniformity of GLSZM of
unpadded ROI binned for CT with aggregation by
2D volume.

GLSZM_IBSI_GL_NONUNIF_3D_HU GLSZM Grey Level Nonuniformity
as Volume, with Full Merging 1

IBSI-consistent grey level nonuniformity of GLSZM of
unpadded ROI binned for CT with aggregation by
3D volume.

GLSZM_IBSI_GL_VARIANCE_2DS_HU GLSZM Grey Level Variance by Slice,
with Merging by Slice 1 IBSI-consistent grey level variance of GLSZM of

unpadded ROI binned for CT with aggregation by slice.

GLSZM_IBSI_GL_VARIANCE_2DV_HU GLSZM Grey Level Variance by Slice,
with Full Merging 1

IBSI-consistent grey level variance of GLSZM of
unpadded ROI binned for CT with aggregation by
2D volume.

GLSZM_IBSI_GL_VARIANCE_3D_HU GLSZM Grey Level Variance as
Volume, with Full Merging 1

IBSI-consistent grey level variance of GLSZM of
unpadded ROI binned for CT with aggregation by
3D volume.

GLSZM_IBSI_SMALL_ZONE_EMPH_3D_HU GLSZM Small Zone Emphasis as
Volume, with Full Merging 1

IBSI-consistent small zone emphasis of GLSZM of
unpadded ROI binned for CT with aggregation by
3D volume.

GLSZM_IBSI_SMALL_ZONE_LOW_GL_EMPH_3D_HU
GLSZM Small Zone Low Grey Level
Emphasis as Volume, with
Full Merging

1
IBSI-consistent small zone low grey level emphasis of
GLSZM of unpadded ROI binned for CT with
aggregation by 3D volume.
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Metric Code Name Feature Type Units IBSI Compliance Description

GLSZM_IBSI_ZS_ENTROPY_2DS_HU GLSZM Zone Size Entropy by Slice,
with Merging by Slice

textural features

1 IBSI-consistent zone size entropy from GLSZM of
unpadded ROI binned for CT with aggregation by slice.

GLSZM_IBSI_ZS_ENTROPY_2DV_HU GLSZM Zone Size Entropy by Slice,
with Full Merging 1

IBSI-consistent zone size entropy from GLSZM of
unpadded ROI binned for CT with aggregation by
2D volume.

GLSZM_IBSI_ZS_ENTROPY_3D_HU GLSZM Zone Size Entropy as
Volume, with Full Merging 1

IBSI-consistent zone size entropy from GLSZM of
unpadded ROI binned for CT with aggregation by
3D volume.

GLSZM_IBSI_ZS_NONUNIF_2DS_HU GLSZM Zone Size Nonuniformity by
Slice, with Merging by Slice 1 IBSI-consistent zone size uniformity from GLSZM of

unpadded ROI binned for CT with aggregation by slice.

GLSZM_IBSI_ZS_NONUNIF_2DV_HU GLSZM Zone Size Nonuniformity by
Slice, with Full Merging 1

IBSI-consistent zone size uniformity from GLSZM of
unpadded ROI binned for CT with aggregation by
2D volume.

GLSZM_IBSI_ZS_NONUNIF_3D_HU GLSZM Zone Size Nonuniformity as
Volume, with Full Merging 1

IBSI-consistent zone size uniformity from GLSZM of
unpadded ROI binned for CT with aggregation by
3D volume.

GLSZM_IBSI_ZS_NONUNIF_NORMALISED_3D_HU
GLSZM Normalised Zone Size
Nonuniformity as Volume, with
Full Merging

1
IBSI-consistent normalizedzone size nonuniformity of
GLSZM of unpadded ROI binned for CT with
aggregation by 3D volume.

NGLDM_IBSI_DEP_ENTROPY_2DF_HU NGLDM Dependence Entropy by
Slice, without Merging 1

IBSI-consistent dependence entropy of NGLDM of
unpadded ROI binned for CT with aggregation by slice
without merging.

NGLDM_IBSI_DEP_ENTROPY_3D_HU NGLDM Dependence Entropy as
Volume, with Full Merging 1

IBSI-consistent dependence entropy of NGLDM of
unpadded ROI binned for CT with aggregation by
volume with full merging.

NGLDM_IBSI_DEP_NONUNIF_2DF_HU NGLDM Dependence Nonuniformity
by Slice, without Merging 1

IBSI-consistent dependence nonuniformity of NGLDM
of unpadded ROI binned for CT with aggregation by
slice without merging.

NGLDM_IBSI_DEP_NONUNIF_2DV_HU NGLDM Dependence Nonuniformity
by Slice, with Merging by Slice 1

IBSI-consistent dependence nonuniformity of NGLDM
of unpadded ROI binned for CT with aggregation by
slice with merging.

NGLDM_IBSI_DEP_NONUNIF_3D_HU NGLDM Dependence Nonuniformity
as Volume, with Full Merging 1

IBSI-consistent dependence nonuniformity of NGLDM
of unpadded ROI binned for CT with aggregation by
volume with full merging.

NGLDM_IBSI_DEP_VARIANCE_2DF_HU NGLDM Dependence Variance by
Slice, without Merging 1

IBSI-consistent dependence entropy of NGLDM of
unpadded ROI binned for CT with aggregation by slice
without merging.
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Metric Code Name Feature Type Units IBSI Compliance Description

NGLDM_IBSI_GLNONUNIF_2DV_HU NGLDM GL Nonuniformity by Slice,
with Merging by Slice

textural features

1
IBSI-consistent grey level nonuniformity of NGLDM of
unpadded ROI binned for CT with aggregation by slice
with merging.

NGLDM_IBSI_GLNONUNIF_3D_HU NGLDM GL Nonuniformity as
Volume, with Full Merging 1

IBSI-consistent grey level nonuniformity of NGLDM of
unpadded ROI binned for CT with aggregation by
volume with full merging.

NGLDM_IBSI_HIGH_DEP_LOW_GL_EMPH_3D_HU
NGLDM High Dependence Low GL
Emphasis as Volume, with
Full Merging

1
IBSI-consistent high dependence low grey level of
NGLDM of unpadded ROI binned for CT with
aggregation by volume with full merging.

NGTDM_BUSYNESS_2DV_HU NGTDM Busyness by Slice with
Full Merging 1 IBSI-consistent busyness of NGTDM of unpadded ROI

with aggregation by merging 8 matrices for each slice

NGTDM_BUSYNESS_3D_HU NGTDM Busyness as Volume, with
Full Merging 1

IBSI-consistent busyness of NGTDM of unpadded ROI
with aggregation by merging matrices from all
26 directions

NGTDM_COARSENESS_2DV_HU NGTDM Coarseness, by Slice with
Full Merging 1 IBSI-consistent coarseness of NGTDM of unpadded ROI

with aggregation by merging 8 matrices for each slice

NGTDM_COARSENESS_3D_HU NGTDM Coarseness, as Volume,
with Full Merging 1

IBSI-consistent coarseness of NGTDM of unpadded ROI
with aggregation by merging matrices from all
26 directions

NGTDM_COMPLEXITY_2DF_HU NGTDM Complexity by Slice
without Merging 1

IBSI-consistent complexity of NGTDM of unpadded
ROI with aggregation by averaging metrics from
all matrices

NGTDM_STRENGTH_2DV_HU NGTDM Strength by Slice with
Full Merging 1 IBSI-consistent strength of NGTDM of unpadded ROI

with aggregation by merging 8 matrices for each slice

NGTDM_STRENGTH_3D_HU NGTDM Strength as Volume, with
Full Merging 1

IBSI-consistent strength of NGTDM of unpadded ROI
with aggregation by merging matrices from all
26 directions

LOG_2D_COV_2_5MM_HU Coefficient of Variation of LoG (2.5
mm) Filtered Slice by Slice

higher order
statistics features

Coefficient of variation of 2D LoG transformed voxels at
2.5 mm smoothing

LOG_2D_ENERGY_0_0MM_HU Energy of LoG (0.0 mm) Filtered Slice
by Slice HUˆ2 Energy of 2D LoG transformed voxels at

0 mm smoothing

LOG_2D_ENERGY_2_5MM_HU Energy of LoG (2.5 mm) Filtered Slice
by Slice HUˆ2 Energy of 2D LoG transformed voxels at 2.5 mm

smoothing

LOG_2D_ENTROPY_2_5MM_HU Entropy of LoG (2.5 mm) Filtered
Slice by Slice

Entropy of 2D LoG transformed voxels at
2.5 mm smoothing

LOG_2D_MEAN_2_5MM_HU Mean of LoG (2.5 mm) Filtered Slice
by Slice HU Mean of 2D LoG transformed voxels at

2.5 mm smoothing

WAVELET_HHL_ENERGY_HU Wavelet HHL Energy HUˆ2 Energy of voxels under wavelet transforms with
filters HHL.
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Metric Code Name Feature Type Units IBSI Compliance Description

WAVELET_HHL_ENTROPY_HU Wavelet HHL Entropy

higher order
statistics features

Entropy of voxels under wavelet transforms with
filters HHL.

WAVELET_HHL_KURTOSIS_HU Wavelet HHL Excess Kurtosis Excess kurtosis voxels under wavelet transforms with
filters HHL.

WAVELET_HHL_MEDIAN_HU Wavelet HHL Median HU Median of voxels under wavelet transforms with
filters HHL.

WAVELET_HHL_MIN_HU Wavelet HHL MInimum HU Minimum of voxels under wavelet transforms with
filters HHL.

WAVELET_HHL_PERCENTILE10_HU Wavelet HHL 10th Percentile HU The 10th percentile of voxels under wavelet transforms
with filters HHL.

WAVELET_HHL_PERCENTILE90_HU Wavelet HHL 90th Percentile HU The 90th percentile voxels under wavelet transforms
with filters HHL.

WAVELET_HHL_ROBUST_MEAN_DEVIATION_HU Wavelet HHL Robust
Mean Deviation HU Robust absolute deviation from the mean of voxels

under wavelet transforms with filters HHL.
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