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Simple Summary: One of the most frequently diagnosed cancer in men is adenocarcinoma of the
prostate. Once the disease is metastatic, only very limited treatment options are available, resulting
in a very short median survival time of 13 months; however, this reality is gradually changing
due to the discovery of prostate-specific membrane antigen (PSMA), a protein that is present in
cancerous prostate tissue. Researchers have developed pharmaceuticals specific for PSMA, ranging
from antibodies (mAb) to low-molecular weight molecules coupled to beta minus and alpha-emitting
radionuclides for their use in targeted radionuclide therapy (TRT). TRT offers the possibility of
selectively removing cancer tissue via the emission of radiation or radioactive particles within
the tumour. In this article, the major milestones in PSMA ligand research and the therapeutic
developments are summarised, together with a future perspective on the enhancement of current
therapeutic approaches.

Abstract: Prostate cancer (PC) is the second most common cancer among men, with 1.3 million yearly
cases worldwide. Among those cancer-afflicted men, 30% will develop metastases and some will
progress into metastatic castration-resistant prostate cancer (mCRPC), which is associated with a poor
prognosis and median survival time that ranges from nine to 13 months. Nevertheless, the discovery
of prostate specific membrane antigen (PSMA), a marker overexpressed in the majority of prostatic
cancerous tissue, revolutionised PC care. Ever since, PSMA-targeted radionuclide therapy has gained
remarkable international visibility in translational oncology. Furthermore, on first clinical application,
it has shown significant influence on therapeutic management and patient care in metastatic and
hormone-refractory prostate cancer, a disease that previously had remained immedicable. In this
article, we provide a general overview of the main milestones in the development of ligands for
PSMA-targeted radionuclide therapy, ranging from the firstly developed monoclonal antibodies to
the current state-of-the-art low molecular weight entities conjugated with various radionuclides, as
well as potential future efforts related to PSMA-targeted radionuclide therapy.

Keywords: PSMA; prostate-specific membrane antigen; targeted radionuclide therapy; prostate
cancer; theranostics

1. Introduction

Prostate cancer (PC) is one of the most commonly diagnosed malignancies among
men. PC prevalence is variable throughout the world, being the second most common
cancer in men in Europe and the USA, while it is much less prevalent in eastern Asia, North
Africa and the Middle East [1]. In 2020, almost 1.4 million men worldwide suffered from
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PC. Moreover, estimations indicate a gradual increase in PC-affected men worldwide, with
2.3 million cases predicted in 2040 [2]. PC is often asymptomatic, without any specific need
for treatment, although a significant percentage (30%) of patients develop metastases of
different severity that can lead to a morbid state and even death [3].

Specifically, metastatic castration-resistant prostate cancer (mCRPC) is a fatal form of
prostate cancer with widespread metastases in the body, particularly in the bones [4]. As of
today, the main burden in the treatment of mCRPC is the difficulty to completely eradicate
the cancerous cells [5]. Nevertheless, notable progress in the treatment of mCRPC has been
attained over recent years with targeted radionuclide therapy (TRT) approaches [6]. TRT
takes advantage of cytotoxic, highly energetic radioactive nuclides, which are conjugated
to high-affinity ligands targeting overexpressed markers in cancerous tissue, thereby
selectively removing tumours while sparing healthy tissue [7]. Moreover, theranostics
represent a promising approach in the field of nuclear medicine, referring to compounds
that can be used for both therapy and imaging [8]. Some radiopharmaceuticals (e.g., PSMA-
617) are typical examples, as they can be complexed with positron-emitters (e.g., 68Ga,
44Sc or 152Tb) for imaging and with the beta minus (β-) 177Lu or alpha (α) 225Ac-emitters
for the treatment of the previously staged lesions [9–11]. As a consequence, theranostic
compounds facilitate clinical applications and allow for personalised and precise treatment.

In particular, for mCRPC, PSMA represents the ideal target for TRT approaches as
it is physiologically expressed in prostatic tissue, with 100 to 1000 times upregulated
expression in mCRPC cells as compared to healthy cells [12]. Several hypotheses have
been formulated with respect to the role of PSMA in the prostate and in PC progression,
although it remains unknown thus far [13]; however, the physiological role of PSMA in
other tissues is well known. PSMA is a type II transmembrane glycoprotein characterised
by three main segments: a short N-terminal intracellular section, a transmembrane domain
and a large extracellular section (C-terminus) (Figure 1). The extracellular segment is the
most important with regard to the enzymatic function of this glycoprotein, as it contains the
catalytic domain and a zinc-containing, substrate-binding site capable of interacting with
specific inhibitors [14]. The enzymatic binding site of PSMA is organised as a pocket with
a funnel located at the entrance. In the active centre, PSMA inhibitors interact tightly with
zinc ions and charged amino acids, whereas the funnel accepts rather lipophilic interactions.
In Figure 1, a typical PSMA inhibitor is shown, addressing all necessary interactions for
tight binding with the active centre and the hydrophobic funnel. Compounds interacting
well with this pocket show the potential to internalise upon binding. After internalisation,
low-molecular weight inhibitors were shown to be released in the cytoplasm while the
receptor was recycled [15]. The accumulation of the inhibitor inside the cell results in
excellent tumour retention, which is ideal for imaging and therapy.

PSMA has been successfully targeted by many entities, ranging from monoclonal anti-
bodies (mAbs) to low-molecular weight (LMW) peptidomimetics, proving the feasibility
of PSMA-TRT as a powerful tool in the management of severe mCRPC [6]. This review
does not intend to be systematic but solely presents the main milestones in PSMA-targeted
research, from the conception of the first mAbs, to the development of the current ‘gold
standard’ PSMA-617, while emphasising the differential properties of biomolecules and
LMW peptidomimetics. Moreover, primary β- and α-based therapeutic studies will be
described, along with radionuclide comparisons and an outlook on the recent challenges
and future of PSMA-TRT.
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entities for nuclear medicine were monoclonal antibodies (mAbs). In 1987, Horoszewicz 
et al. developed 7E11, a murine-derived mAb that specifically binds to PSMA(+) cells [16]. 
Subsequently, 7E11 was conjugated to pendetide, forming the immunoconjugate known 
as CYT-356 [17]. Pharmacokinetic and immunohistochemical studies on CYT-356 revealed 
specific reactivity towards PSMA. Furthermore, in vivo mice biodistribution studies 
showed good results, with up to 30% of the injected dose of mAb accumulating in 
tumourous tissue after 3 days, without accumulation in off-target organs, as well as 
sufficient tumour-to-blood ratios [17]. Taking into account the satisfactory profile shown 
by 7E11/CYT-356 in preclinical models, this was translated into clinical applications. In 
this respect, studies carried out by Babaian et al. demonstrated that an 111In-labelled 
version of 7E11 could be employed in imaging pelvic lymph node metastases, with an 
overall sensitivity of 76% [18]. Nevertheless, 7E11 is limited to soft tissue tumourous 
lesions due to its inherent binding properties. The mAb binds to an intracellular epitope 
of PSMA and must transfuse into the tumour via non-specific pathways (e.g., permeable 
foci of dead cells due to tumour overgrowth). This makes 7E11 less sensitive to bone or 
compact tissue metastases, which limits its applicability in theranostic approaches [19]. 

The need of intracellular PSMA-targeting mAbs to internalise via non-specific 
pathways impede their widespread application in systematic approaches. Consequently, 
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Figure 1. Schematic drawing of PSMA in the cell membrane. The various domains are represented
along with the intracellular and extracellular mAb-binding epitopes. Moreover, a schematic drawing
of PSMA-1007 in complex with the binding funnel is displayed with the main features present in the
catalytic site of PSMA.

2. PSMA-Targeting Molecules: From mAbs to LMW Peptidomimetics
2.1. Monoclonal Antibodies (mAbs) Targeting PSMA

Over the last decades, notable efforts have been made to design and optimise PSMA-
targeting compounds for imaging and therapy of PC. The first designed PSMA-binding en-
tities for nuclear medicine were monoclonal antibodies (mAbs). In 1987, Horoszewicz et al.
developed 7E11, a murine-derived mAb that specifically binds to PSMA(+) cells [16]. Sub-
sequently, 7E11 was conjugated to pendetide, forming the immunoconjugate known as
CYT-356 [17]. Pharmacokinetic and immunohistochemical studies on CYT-356 revealed spe-
cific reactivity towards PSMA. Furthermore, in vivo mice biodistribution studies showed
good results, with up to 30% of the injected dose of mAb accumulating in tumourous tissue
after 3 days, without accumulation in off-target organs, as well as sufficient tumour-to-
blood ratios [17]. Taking into account the satisfactory profile shown by 7E11/CYT-356 in
preclinical models, this was translated into clinical applications. In this respect, studies
carried out by Babaian et al. demonstrated that an 111In-labelled version of 7E11 could be
employed in imaging pelvic lymph node metastases, with an overall sensitivity of 76% [18].
Nevertheless, 7E11 is limited to soft tissue tumourous lesions due to its inherent binding
properties. The mAb binds to an intracellular epitope of PSMA and must transfuse into
the tumour via non-specific pathways (e.g., permeable foci of dead cells due to tumour
overgrowth). This makes 7E11 less sensitive to bone or compact tissue metastases, which
limits its applicability in theranostic approaches [19].

The need of intracellular PSMA-targeting mAbs to internalise via non-specific path-
ways impede their widespread application in systematic approaches. Consequently, efforts
have been and are still being made to develop extracellular PSMA-targeting mAbs, aiming
to overcome the main burdens of intracellular targeting mAbs [19]. In this regard, Ban-
der et al. reported the first extracellular PSMA-binding mAbs comprising a series of mAbs
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(J591, J533, J415 and E99), which were evaluated in vitro by Smith-Jones et al. [16]. For
their evaluation, the mAbs were conjugated with a DOTA-chelator for 111In labelling or
directly labelled with 131I. In a competitive binding assay towards PSMA(+) LNCaP cells,
all mAbs showed nanomolar affinities, with J591 displaying the highest binding affinity
(Kd = 1.83 ± 1.21 nmol/L). Furthermore, after binding, the mAb–PSMA complexes were
rapidly internalised by LNCaP cells via endocytosis. With these results in hand, the same
team of researchers pursued preclinical evaluation of the mAbs in LNCaP tumour-bearing
mice; the study corroborated the in vitro findings. The mAbs were PSMA-specific, showing
no binding towards PSMA(-) cell lines. Biodistribution of the extracellular mAbs was
comparable to the intracellular 7E11, with long circulation times and peak tumour accumu-
lation 4 days p.i. (15.7 ± 3.5%ID/g for [111In]In-J591). Moreover, the extracellular mAbs,
specifically [111In]In-J591, were remarkably cleared from the bloodstream significantly
faster than 7E11 [20–22]. The faster clearance of J591 led to improved tumour-to-blood
ratios and provided the rationale for clinical mAb-based PSMA-TRT.

Consequently, the murine-derived J591 was humanised (huJ591) to avoid adverse
immune responses from repeated murine-based mAb dosing [23]. After first-in-human
imaging studies with [89Zr]Zr-huJ591, the mAb caused satisfactory tumour-to-background
ratios 8 days p.i. and 95% imaging accuracy of bone metastases [24]. The mAb was
radiolabelled with the therapeutic radionuclides 90Y and 177Lu and administered in phase
I/II trials. Nevertheless, in spite of the relatively good biodistribution and pharmacokinetic
profiles of huJ591, only 8% of patients receiving [177Lu]Lu-huJ591 showed significant
disease remission, with a time-sustained decline in PSA levels ≥ 50% [25].

In addition to J591, other second-generation extracellular PSMA-targeting mAbs have
been developed, such as 3/F11, 3C6 and 3/E7. These were tested in preclinical PET imaging
studies, showing typical pharmacokinetic profiles of mAbs, namely long circulation times
and good tumour accumulation and tumour-to-blood ratios after a few days [26,27]. Third-
generation mAbs have also been developed in conjugation with fluorescent agents for
hybrid approaches, such as the IgGD2B, which was recently developed, radiolabelled with
111In and tagged with the fluorescent moiety IRDye800CW [28,29].

Nevertheless, the reported characteristics and properties of mAbs generally limit
their application in theranostic approaches. Their large size (~150,000 Da) prolongs their
circulation times in comparison to LMW ligands. Furthermore, they show reduced pene-
tration in tissue, making it more difficult for mAbs to reach their target. Additionally, in a
similar way to endogenous substrates, mAbs are metabolised to their constituting amino
acids by proteases or peptidases and are further excreted through the bile, faeces or urine
(for the smallest fragments). The long circulation times along with the slow penetration
characteristics give mAbs extended half-life in the bloodstream, delivering an undesired
dose of radiation to healthy tissue. In a phase I/II imaging study with 89Zr-labelled J591, it
was concluded that mAbs have some practical limitations due to their size. Nearly 8 days
were required for high-contrast imaging and the high background noise at early time points
interfered with the detection of certain single lesions. Given these limitations, the authors
of this prospective study concluded that low molecular weight agents with more rapid
clearance profiles might be more suitable for nuclear medicine applications [24]. Neverthe-
less, mAbs are generally highly specific for their target, causing very minor off-target effects
and usually low toxicities. Imaging studies with [89Zr]Zr-J591 antibody have demonstrated
accumulation primarily by the liver, minimal uptake in the urinary tract and no uptake
in the salivary or lacrimal glands. During [177Lu]Lu-J591 therapy, the primary reported
dose-limiting side effect of the radiolabelled antibody was myelosuppression, a typical
event of long circulating compounds causing an excessive undesired radiation burden to
the bone marrow [30]. Although rare, mAbs can interfere with vital processes and lead to
severe adverse reactions, such as cytokine release syndrome or encephalopathy [31].

Due to the reported limitations of mAbs, researchers have shortened the length
and weight of the biomolecules in order to reduce their circulation time and allow for
generally faster accumulation or penetration in tumourous tissues. Following this line of
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reasoning, the first PSMA-targeting minibodies or diabodies were derived from huJ591
single-chain fragments (scFv). In a study reported by Viola-Villegas et al., two different
mAb derivatives were obtained from huJ591: Mb (~80 kDa minibody) and Db (~40 kDa
diabody). Both entities were radiolabelled with 89Zr to assess their biodistribution profiles
in mice bearing LNCaP xenografts. Their pharmacokinetic profile outperformed the parent
mAb at early time points, with maximal tumour accumulation 24 h p.i. for [89Zr]Zr-Mb
(12.1 ± 3.6% ID/g) and 12 h p.i. for [89Zr]Zr-Db (12.3 ± 2.5% ID/g). Furthermore, both
fragments showed comparable specificities towards PSMA when compared with their
parent mAb [32].

Subsequently, even smaller mAb-derived molecules were developed, e.g., nanobodies,
which are the smallest mAb derivatives, with high affinity and specificity towards their
target [33]. Moreover, due to their small size, they reach epitopes that are prohibited
for full mAbs [34]. Some of the first nanobodies developed for PSMA were reported by
Evazalipour et al. A series of nanobodies were labelled with 99mTc and showed better
pharmacokinetic profiles at early timepoints when compared to mAbs. They had high
specificity towards PSMA, good internalisation ratios (~16%) and fast renal clearance [35].
Similarly, in 2015, Chatalic et al. developed two nanobodies: JVZ007-c-myc-his and JVZ007-
cys. The 111In-labelled version of the nanobodies showed maximal tumour accumulation
4 h p.i. (3.91 ± 1.13%ID/g and 3.70 ± 0.29%ID/g, respectively) and prohibitive kidney
uptake that could only be reduced by co-infusion of gelofusine and lysine [36].

Overall, comprehensive efforts have been made in the development of PSMA-specific
mAbs, although ultimately the slow pharmacokinetic profile, which implies long circulation
times, limits their application in theranostic concepts. Their properties require the use of
long-lived isotopes that release an undesirable radiation burden to healthy tissue. Even
though efforts have been realised in shortening the circulation times of mAb-based PSMA
ligands, e.g., by truncation of their chains, the molecular format with the optimal toxicity–
efficacy balance in TRT is still to be determined.

2.2. Low-Molecular Weight (LMW) PSMA Inhibitors

Low-molecular weight (LMW) molecules targeting PSMA are typically based on a
skeleton containing a specific PSMA-binding entity, a linker and a chelator for labelling with
radiometals. This ligand–linker–chelator design allows discrete modifications in all three
structural elements, with potentially significant impacts on the affinity, pharmacokinetics
and pharmacodynamics of the molecule.

With the early discovery of PSMA being identical to NAALADase (N-
acetylaspartylglutamate peptidase) [37,38] and folate hydrolase 1 (FOLH-1) [39], the de-
velopment of LMW molecules targeting PSMA began to gain significance. Previously
discovered and already known inhibitors, which were mainly designed for the homolo-
gous enzymes, formed the basis for further scientific studies.

2.2.1. Binding Entity

The effective targeting of tumourous cells is one of the main characteristics of cancer-
specific (radio)pharmaceuticals, rendering the binding affinity a crucial characteristic for
therapeutic success. Furthermore, in oncological radiopharmacy, it is preferable to deposit
the radioactivity in the cytoplasm of the malignant cell, thereby emphasising the importance
of effective internalisation. Compounds targeting PSMA typically mimic either the natural
ligand NAAG (N-acetylaspartylglutamate) or the transition state of the PSMA-catalysed
hydrolysis of NAAG; therefore, binding entities of LMW inhibitors targeting PSMA can be
divided into three subgroups: phosphorus-based, thiol-based and urea-based structures.

In 1996, phosphorus-based PSMA inhibitors were introduced by Jackson et al. [40].
The main rationale for these inhibitors was to impede NAALADase function in the con-
text of neurological diseases. As a starting point, the substrate 2-phosphonomethyl pen-
tanedioic acid (2-PMPA) was employed, which showed an inhibition constant (Ki) of
0.275 ± 0.08 nM and is currently one of the most potent and widely used inhibitors for
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blocking PSMA (Figure 2) [41]. Based on the high affinity of 2-PMPA, a 18F-labelled ver-
sion (BAY 1075553) was synthesised [42]; however, subsequent investigations in a phase I
clinical study with a small cohort of patients produced inferior results in comparison to
[18F]fluoroethylcholine [43]. Further development included the introduction of substances
with a phosphinic or phosphonate core by Jackson et al. [44] and the development of
phosphoramidate compounds by Berkman et al. [45,46], with promising results for clin-
ical applications; therefore, the phosphoamidate-derived inhibitor was used in the first
phosphorous-based PSMA-targeting LMW molecule for 18F-PET imaging [47]. Addition-
ally, in the development of further tracers of this class, the described binding entity served
as a basic structure for numerous new radiopharmaceuticals [48–53]. With promising re-
sults in a phase I clinical study, the PSMA tracer CTT1057 showed great potential as a novel
candidate for further clinical testing [53]. Nevertheless, although phosphorus-based PSMA
inhibitors play a subordinate role in today’s PSMA-targeted diagnostics and treatment of
prostate cancer, ground-breaking work with phosphorus-containing inhibitors served as
the starting point for the development of current state-of-the-art molecules.
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The first approaches to developing thiol-based PSMA-binding entities were reported
by Tsukamotos et al. [54,55]. In this regard, the interaction of the free thiol with the Zn2+

binding site of PSMA was investigated in preclinical settings, highlighting 2-MPPA, which
showed the most promising results, with an IC50 of 90 ± 26 nM and a high concentration
in the blood after oral administration (Figure 2) [54]. Further clinical studies with 2-MPPA
showed degradation of the chemical structure in healthy subjects and gastrointestinal side
effects [56]. With the introduction of aromatic substructures, Stoermer et al. improved
the affinity of thiol-based inhibitors to a low nanomolar range [57]. In another study by
Ferraris et al., δ-thiolacetone derivatives showed great potential as pro-drugs with high
oral bioavailability [58]. Nevertheless, thiol-based PSMA inhibitors currently only play a
minor role in the diagnosis and treatment of PC, mainly due to their poor stability and
pronounced side effects.

Compared to the aforementioned binding entities, urea-based inhibitors showed
significantly better pharmacokinetic properties towards PSMA [59]; therefore, the ma-
jority of newly developed LMW PSMA-targeting pharmaceuticals are based upon the
Zn2+-targeting substructure [60,61]. Inspired by the phosphorous-containing predecessors,
urea-bearing structural analogues were first described by Jackson et al. [62]. The simplified
synthesis via in situ activation of the glutamic acid moiety through an isocyanate inter-
mediate was a major advance and is widely applied as of today in the manufacture of
PSMA-targeting molecules [62]. Furthermore, it was demonstrated that the stereochemistry
of glutamic acid is essential for achieving high affinity towards PSMA, resulting in the
(S)-configuration of the amino acid being the most favourable [62]. As a consequence,
the substitution or modification of the glutamic acid in the binding moiety results in a
considerable loss of affinity towards PSMA [63,64]. Foss et al. evaluated the potential
of urea-based inhibitors in a PSMA-expressing LNCaP mouse xenograft in one of the
first in vivo studies [65]. Up to this point, most PSMA-targeting LMW molecules of this
class had comprised either a Glu–urea–Glu or Cys–urea–Glu binding entity (Figure 2).
Thereafter, the development of the Glu–urea–Lys (EUK) entity introduced a third subgroup
of urea-based inhibitors (Figure 2) [66,67]. EUK-based inhibitors have thus far been the
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base for the most successful PSMA-targeting LMW inhibitors, such as 18F-DCFPyL or
the FDA-approved, 68Ga-labelled PSMA-11 for PET imaging or the theranostic variants
PSMA-617 and PSMA I&T. Moreover, scientists recently explored further modifications
in this PSMA-binding moiety. For example, Kim et al. demonstrated the negative im-
pacts on affinity towards PSMA when employing β- and γ-amino acids compared to the
α-amino acid counterparts [68]. Similar negative effects were observed by Kwon et al. by
inverting the configuration of the α-amino acid in the binding region of the moiety [69].
Other efforts related to the design of binding entities were based on sulfamides [70], car-
bamates [71,72], thioureas [64,73] and dimeric peptides [74,75]. These approaches were
generally not extensively evaluated due to the low PSMA-binding affinities.

2.2.2. Linkers and Chelators

In recent years, research on LMW PSMA-targeting molecules for TRT shifted to
modifications on the chelator, and especially the linker regions on EUK-based inhibitors.
Increasing evidence suggests that the binding affinity and internalisation ratios are not
only induced by the PSMA-binding entity, but are also strongly influenced by the moieties
present in the linker. Variations of the linker and chelator regions have significant im-
pacts on the pharmacokinetics, pharmacodynamics and biodistribution profiles of PSMA-
targeting LMW inhibitors. The early study by Barinka et al. showed the potential to
increase the PSMA-binding affinity using short-length linkers and non-polar functionalities
targeted towards the entrance region of the PSMA-binding funnel [67]. Further investiga-
tions uncovered the interactions of potent PSMA inhibitors with the Zn2+ ions and basic
amino acids in the PSMA catalytic subpocket, and also lipophilic and π-cationic interactions
in the S1 lipophilic region (Figure 1). Furthermore, Zhang et al. reported an additional
arene-binding site with potential aromatic stacking interactions of LMW inhibitors [76].

Theranostic PSMA-targeting approaches for diagnosis and treatment of mCRPC have
been closely related to the development of highly potent inhibitors. In early PSMA-
TRT trials, nuclides emitting α- or β--radiation were introduced by simple nucleophilic
substitution on aromatic ring systems bound to urea-based binding entities [77,78].

Two of the first PSMA-targeting small-molecule inhibitors for radionuclide therapy
of PC were radio-iodinated MIP-1072 and MIP-1095, as reported by Barrett et al. [79].
Preclinical imaging studies were used to compare the compounds to assess their feasibility
for a therapeutical application. The presence of an additional urea group in MIP-1095 was
expected to be associated with a higher potency compared to the amine group in MIP-1072,
due to increased lipophilicity [80]. Despite both agents clearing rapidly from the blood pool,
MIP-1072 showed faster kidney clearance, which was possibly caused by the structural
differences [79]. Nevertheless, due to the high tumour uptake of the radiopharmaceutical,
[131I]I-MIP-1095 was the radiopharmaceutical of choice for further clinical trials [77].

Kiess et al. transferred findings from diagnostic studies to the development of thera-
peutic variants by synthesizing small molecules based on the EUK binding motive and para-
substituted benzoic acid, giving rise to the first astatine-bearing LMW inhibitor, [211At]At-
DCAtBzL [78]. Both iodine and astatine variants of the inhibitors showed comparable
uptake into PSMA-expressing cells, demonstrating the potential of iodine compounds as
powerful tools to surrogate astatine in preclinical settings; however, the compound was
severely hampered by their high kidney uptake. To address this shortcoming, Childers
et al. evaluated constitutional isomers of the described inhibitors [81]. While maintaining
the lengths of the linker and functional subunits, structural analogues based on a Glu–
urea–Glu binding entity showed an 8-fold improvement in the tumour-to-kidney ratio in
mice bearing PSMA(+) tumours 21 h p.i. [81]. Recently, Vaidyanathan et al. demonstrated
further improvements in the biodistribution and pharmacokinetic profile by adding a
guanidino group to the aromatic ring of the inhibitor [82]. In addition, modifications with
quinolone derivatives appear advantageous in diagnostic tracers and could potentially
serve as templates for future therapeutic approaches [83].
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In contrast to previously discussed radionuclides such as 131I or 211At, radiometals
require a complexing agent (chelator) for their introduction to PSMA-targeting inhibitors.
The most commonly used chelators for therapeutic approaches are DOTA and DOTAGA,
which function as complexing agents for therapeutically relevant trivalent cations such as
[177Lu]Lu3+ or [225Ac]Ac3+. As an example, in recent years, the DOTA-based PSMA-617
and DOTAGA-bearing PSMA I&T gained dominant positions as ‘gold-standard’ LMW
peptidomimetics in TRT of mCRPC.

In order to render PSMA inhibitors suitable for radiometal-based therapy, appropriate
chelators have to be introduced into the chemical structures of LMW inhibitors. In 2010,
Banerjee et al. reported the first DOTA-based PSMA-targeting inhibitor with a EUK
binding entity [84]. The investigated compounds shared the common structural elements
of suberic acid and L-lysine in the linker region. The addition of two L-phenylalanine
units next to the DOTA chelator, while preserving the main linker elements, showed
improved target-to-tissue ratios with tumour uptakes comparable to the parental structure.
In further studies, additional modifications of the linker and chelator regions led to further
improvements [85]. Maintaining the EUK unit, a linker consisting of 6-aminohexanoic
acid was used to connect the binding motive with HBED-CC (diagnostic) and DOTA
(therapeutic) as chelators. While the DOTA derivative showed comparable performance to
the inhibitors previously described by Banerjee et al., the HBED-CC conjugate (PSMA-11)
provided a significantly improved internalisation in LNCaP cells, resulting in a higher
tumour uptake of 7.7%ID/g 1 h p.i. Although PSMA-11 was not a feasible agent for
therapeutic approaches, it was still implemented as a diagnostic tracer, with great clinical
impact and recent FDA approval [86,87]. In addition, relevant subsequent studies in relation
to linker modifications of LMW urea-based PSMA inhibitors made major contributions to
the entire field of PSMA theranostics [88–91].

In 2015, the preclinical development of PSMA-I&T and PSMA-617 was reported and
both radiopharmaceuticals were suggested for TRT [92,93]. Both compounds shared the
main characteristics of being urea-based, having a chelator able to host trivalent radionu-
clides and an outstanding pharmacokinetic profile.

In a preliminary study, Weineisen et al. demonstrated the benefits of introducing
DOTAGA as a chelator for TRT [94]. While maintaining the previously described linker
consisting of suberic acid, lysine and two L-phenylalanine building blocks, the DOTAGA
conjugate showed significantly improved tumour uptake when compared to the DOTA
equivalent and similar performance compared to PSMA-11. By using L-amino acids in
the linker region, a rapid proteolytic cleavage of the radiolabelled inhibitor was observed.
This issue was addressed by substituting the L-amino acids by the D-amino acid counter-
parts, thereby improving the in vivo stability and further enhancing the pharmacokinetic
profile. In following studies, further optimisation of the linker region led to the third-
generation tracer PSMA-I&T. Exploiting the potential of the peptidomimetic linker unit,
one D-phenylalanine was surrogated by 3-iodo-D-tyrosine to increase the lipophilic inter-
action of the molecule with the remote arene binding site in the PSMA-binding pocket.
This modification led to a higher affinity and internalisation ratios towards PSMA and a
comparable biodistribution to PSMA-11 [93].

Regarding DOTA-containing inhibitors, a novel approach with new tailormade mod-
ifications of the linker region led to an optimised inhibitor for TRT, PSMA-617 [92,95].
Since the simple replacement of HBED-CC in PSMA-11 by DOTA resulted in a significant
decrease of the tumour targeting properties, systematic linker alterations were carried out
to improve the interaction of the inhibitor with the binding funnel of PSMA [95]. The first
set of compounds included different units and arrangements of aromatic rings in the linker
region, demonstrating the importance of aromatic moieties inserted between the EUK entity
and DOTA. While the compound with three aromatic rings in the linker region showed the
most favourable affinity to PSMA, internalisation properties were diminished. In a second
set, it was observed that at least one aromatic moiety with a rigid conformation in the linker
region is required to preserve affinity, while having sufficient internalisation ratios. Among
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the investigated substances, PSMA-617 was deemed the best performing, with a linker
containing 2-naphthyl-L-alanine (2Nal) and trans-4-(aminomethyl) cyclohexanecarboxylic
acid (AMCHA). Further modifications showed that both the change in chirality of 2Nal
and the modification in constitutional isomerism did not have a positive effect on the
pharmacokinetic profile of the molecule. In the series of inhibitors reported by Benesova
et al., the only other structural modification with potential comprised a substitution of the
cyclohexyl ring by a phenyl. This change resulted in higher affinity towards PSMA but
also diminished the clearance ratio from the kidneys when compared to PSMA-617 [95].

In other studies based on PSMA-617, 68Ga-labeled derivatives did not show significant
improvements when the 2Nal moiety was substituted by 2-indanylglycine (Igl) or 3,3-
diphenylalanine (Dip) [96]. Additionally, Wüstemann et al. studied the effects of different
chelators on the pharmacological profile while maintaining the core structure of PSMA-
617 [97]. Of the eight chelators studied, the inhibitor containing CHX-A”-DTPA showed
the most promising results with respect to tumour uptake and retention, although with
adverse effects on renal excretion and clearance.

2.2.3. Pharmacokinetic Modifications: Albumin Binders, Charged Spacers and
Cleavable Linkers

The addition of different substructures to PSMA-targeting LMW inhibitors has been
reported to modify pharmacological characteristics or expand the scope of possible appli-
cations. Accordingly, multiple strategies have been exploited in attempts to improve the
biodistribution and excretion profiles of current LMW-PSMA inhibitors.

The attachment of albumin binders follows the widely recognised principle that serum
protein binding of pharmaceuticals can improve the tumour uptake of otherwise rapidly
cleared molecules by expanding their circulation half-life [98]. Extensive studies have
been reported related to LMW albumin-binding PSMA inhibitors, such as the initially
reported series of inhibitors by Kelly et al. [99] or the more recent Evans-Blue-modified
PSMA-617 derivative, which is currently in phase I trials [100,101]. Other remarkable
efforts related to albumin-binding PSMA inhibitors were reported by Benesova et al. [102],
Umbricht et al. [103], Kuo and co-workers [104,105] and more recently Deberle et al. [106].
In all instances, the tumour uptake of the modified radiopharmaceutical was higher than
for PSMA-617, although the longer circulation times also implied higher absorbed doses to
non-target tissue.

Additionally, the addition of charged moieties in the linker region [88,89] and the
introduction of cleavable linkers [107,108] are strategies that have proven impacts on the
pharmacokinetic profiles of PSMA inhibitors. Both modifications result in more accelerated
excretion profiles with better tumour-to-organ ratios and lower radiation burden to non-
target healthy tissue.

More detailed studies reviewing the main findings related to pharmacokinetic modifi-
cations of PSMA inhibitors have been published elsewhere [109,110]. Due to the lack of
clinical data, it is currently unclear which role the albumin-binding inhibitors will have in
the field of PSMA-TRT. Nevertheless, the introduction of albumin-binding moieties is a
simple way to enhance tumour enrichment and has the potential to increase therapeutic
efficacies; however, the potential increase in background uptake has to be considered and
carefully evaluated.

2.3. Biomolecules vs. LMW-Inhibitors

The breakthrough appearance of the first LMW PSMA inhibitors proved their superi-
ority in systematic theranostic approaches. The rapid pharmacokinetic profiles of the LMW
peptidomimetics, along with their sufficiently high binding affinities and internalisation
ratios, proved to be more favourable in PSMA-TRT as compared to other molecular formats.
Additionally, besides therapeutic approaches benefiting from LMW inhibitors, diagnostic
tools were also improved, with the possibility of employing short-lived isotopes such as 18F
of 68Ga. Furthermore, the radiation burden to healthy tissue decreased with the celerity of
clearance, along with a lesser concern regarding severe side reactions after administration
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and much-reduced costs of production when compared to mAbs; however, limitations of
LMW ligands have also been reported, as they show unspecific binding in healthy tissue,
i.e., salivary glands and kidneys, a shortcoming that is not present in mAbs. As such,
further studies are still needed to finally determine the molecular format with the best
balance between efficacy and side effects. At the moment, this seems to strongly depend
on the particular clinical scenario.

3. Targeted Radionuclide Therapy of PSMA-Positive Prostate Cancer
3.1. Beta Minus (β-)-Based Targeted Radionuclide Therapy

Beta minus emission is the process by which a radioactive nuclide emits an electron
(β--particle). After this emission, the daughter nucleus has one more proton and one less
neutron. The β--particles have a relatively low linear energy transfer (LET) range of around
0.2 to 0.5 keV/µm [111]. This low LET range means β--particles are sometimes not powerful
enough to fully eradicate the tumours, as they are occasionally not capable of causing
comprehensive irreversible DNA damage (Figure 3) [112]. Additionally, β--particles have
a relatively long range in tissue (from 1 to 10 mm), which can result in collisions and
consequent damage to healthy tissue surrounding the cancerous lesion; however, these
intrinsic properties lead to what is known as the ‘crossfire effect’. The effect results in the
destruction of not only the tumour, but also healthy stroma in the nearby vicinity, leaving
the cancerous cells without a viable environment to survive. Consequently, this allows the
treatment of macroscopic, cluster-like metastases without the radiopharmaceutical having
to be linked to (or in the direct vicinity of) each cancerous cell [113].
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Figure 3. Schematic drawing showing differences between β--and α-emission. The β--emission
is less focused, with a longer range and lower LET, leading to single-strand DNA damage. The
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3.1.1. β-Emitting Radionuclides for TRT

Only a limited number of the nuclides making up the periodic table are classified as
β--emitters. Within this category, there is an even more select list that represents β--emitters
suitable for nuclear medicine and TRT. The feasibility of a β--emitter for TRT is defined by
a series of basic prerequisites—having a sufficient but not overly long half-life, adequate
β--emission energy with a constrained range, availability of the radionuclide and ease of
conjugation with the respective pharmaceutical. In general, the majority of β--emitters
employed today are radiometals, which are usually conjugated to molecules via chelators
such as DOTA, DOTAGA or NOTA.

All of the radionuclides listed in Table 1 have been employed in the treatment of
mCRPC, either in preclinical or clinical settings. 89Sr has been used as a ‘calcium mimic’ in
the management of pain caused by late-stage osseous metastases and is generally not suit-
able for TRT applications due to its very long half-life and lack of practical chelators [114].

Copper-67 has recently emerged as an especially interesting therapeutic radionuclide
due to its favourable half-life, β--emission energies, range and applicability in simultane-
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ous therapy or SPECT, reducing the complexity in the diagnostic therapy timeline [115].
Moreover, the existence of 64Cu, a positron emitter, permits its application as an ‘authentic
theranostic’ pair.

Table 1. The β--emitters used in nuclear medicine, along with their basic properties. Data obtained
from [112,116].

Radionuclide Half-Life Emission Eβ(max)/Range(Max)
67Cu 61.9 h β-/γ 575 keV/2.1 mm
89Sr 50.5 d β- 1491 keV/7.0 mm
90Y 64.1 h β- 2284 keV/11.3 mm
131I 8.0 d β-/γ 606 keV/2.1 mm

161Tb 6.9 d β-/Auger/CE 150 keV/0.1 mm
177Lu 6.7 d β-/γ 497 keV/1.8 mm

In the case of 90Y, its half-life is ideal for systematic therapeutic approaches, although
the main downsides with the radionuclide are its significantly high emission energy and
long range, which often lead to excessively unspecific bystander healthy tissue dam-
age [117]. In contrast, 177Lu has so far been the most widely applied radionuclide for
β--TRT. In addition, its half-life is adequate for allowing sufficient accumulation in the
first days after administration, while decaying near the cancerous lesions. Furthermore, its
range and emission energy are not excessive and generally limit the exposure of healthy
stroma to radiation [118].

As for 131I, which is one of the few non-metallic β--emitters, its properties are generally
suitable for its application in TRT. Moreover, it emits gamma rays, which are energetic
enough for SPECT imaging. Nevertheless, iodine needs to be covalently bound to the phar-
maceutical, which can pose challenges in the synthetic pathway of the radiopharmaceutical.
Additionally, iodine is known to accumulate in tissues such as thyroids, often making them
a dose-limiting factor in 131I-based TRT [119].

Finally, terbium-161 is an experimental radiometal that is promising for its application
in TRT. 161Tb emits β- particles, along with Auger and conversion electrons. This particu-
larity of 161Tb makes it deliver higher radiation doses directly to the cancerous tissue and
gives it the ability to cause double-strand DNA damage, which can be more effective in
clearing cancerous tissue [120].

Taking into consideration the various available radionuclides, it is apparent that the
applicability of β--TRT in PSMA(+) PC depends on the nature of the tumours, stage of
disease and the administered dose or radionuclide, which should allow for a dose high
enough to destroy tumours but constrained to limit unspecific healthy tissue damage.

3.1.2. Preclinical PSMA β--TRT

From the beginning of the early development of PSMA-targeting entities, researchers
have sought to apply β--TRT to treat hormone-refractory PSMA(+) PC.

In this regard, the first preclinical evaluation of β--TRT was performed using the
intracellular mAb 7E11. The mAb was mainly developed and evaluated by employing
its 111In-labelled version, even though its 90Y version (90Y-CYT-356) was characterised in
preclinical settings before the first-in-human translation [121]. Nevertheless, as previously
noted, the main burden in 7E11-based approaches is the intracellular binding of the mAb;
therefore, scientists applied the extracellular-binding mAb, J591, in β--TRT of PC. For
this purpose, a variety of radionuclides, ranging from 131I to 90Y and finally 177Lu, were
assessed in preclinical studies [20,22,122,123]. The best candidate for clinical translation
was found to be the 90Y- and 177Lu-labelled huJ591. The radiolabelled mAbs showed a
significant dose tolerability along with an antitumour response, namely up to 90% reduction
in mean tumour volume and 2–3-fold increases in median survival times after a single
3.7–7.4 MBq dose.
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As previously discussed, PSMA-targeting LMW ligands have been shown to have
the ideal pharmacokinetic properties for TRT, namely specificity, efficient penetration,
high uptake in PSMA(+) cancerous cells and rapid blood clearance. Extensive preclinical
therapeutic evaluations in mouse xenografts were not initially carried out for many of
the LMW TRT applications, with the main reason being that the vast majority of LMW
ligands suited the definition of a theranostic agent allowing preclinical evaluations with
the imaging counterparts of the inhibitors. Such is the case for MIP-1095, which was only
evaluated preclinically as the 123I-labelled version before first-in-human studies [80]. In
contrast, PSMA-617 was tested in a LNCaP xenograft as the gallium-68 conjugate, although
its biodistribution was also evaluated with the 177Lu-labelled variant. In both cases,
the radiopharmaceutical showed specific uptake in PSMA(+) cancerous tissue, sufficient
tumour uptake up to 24 h p.i. (10.58± 4.50%ID/g) and rapid renal clearance [92,95]. PSMA
I&T, developed by Weineisen et al. and evaluated in a mouse LNCaP xenograft, also
showed specific PSMA-mediated uptake 1 h p.i., both as the 68Ga (4.95 ± 1.57%ID/g) and
177Lu (7.96 ± 1.76%ID/g)-labelled versions [93].

In 2019, Müller et al. reported a terbium-161 variant of PSMA-617. The radiophar-
maceutical was tested in PSMA(+) PC-3 PIP tumour-bearing mice, showing the same
pharmacokinetic profile as [177Lu]Lu-PSMA-617. Interestingly, [161Tb]Tb-PSMA-617 was
found to have an enhanced therapeutic effect on PSMA(+) PC-3 PIP tumours with higher
survival times among the mice when compared to its 177Lu counterpart (65 vs. 36 days).
The authors attributed the enhancement of therapy to the 161Tb properties, as it does not
only emit β--particles, but also Auger and conversion electrons, which might increase the
absorbed dose and thereby cause damage to the tumours [124].

More recently, McInnes et al. developed a bivalent LMW PSMA inhibitor named CuSar-
bisPSMA. The ligand was radiolabelled with the theranostic pair 64Cu/67Cu. Firstly, PET
imaging studies were carried out in a mouse LNCaP xenograft with [64Cu]CuSarbisPSMA to
assess the biodistribution and pharmacokinetic profile of the radiopharmaceutical [125].
Thereafter, its therapeutic efficacy was evaluated with [67Cu]CuSarbisPSMA in a head-to-
head comparison with [177Lu]Lu-PSMA-617. The results showed dose-dependent inhibi-
tion of tumour growth, which was comparable between the two radiopharmaceuticals at
13 days p.i. (30 MBq or 2 × 15 MBq) in a LNCaP mouse xenograft [126].

In general, preclinical evaluations, both with therapeutic and diagnostic radionuclides,
serve as proof-of-concept for clinical translation of PSMA-targeting radioligands for β--TRT
of recurrent PC.

3.1.3. Clinical PSMA β--TRT

As already mentioned, considering the intracellular binding properties of 7E11,
Deb et al. reported in 1996 one of the first approaches for β--TRT of PSMA(+) PC with a
DTPA-conjugated version of the mAb radiolabelled with 90Y. The radiopharmaceutical was
administered to 12 mCRPC patients and the study concluded that “no patient attained a
complete or partial response based on PSA or radiological criteria” [127].

In the same way as in the preclinical tests, efforts shifted towards the extracellular-
binding mAb J591. The 90Y- and 177Lu-labelled versions of the mAb were used in several
clinical settings. In a significant number of studies, various doses of the β--radiolabelled
mAb were administered. Initial studies found that both [90Y]Y- and [177Lu]Lu-J591-based
therapy could selectively target mCRPC tumourous lesions; however, PSA decreases ≥ 50%
were initially limited to ~20% of patients and dose-limiting reversible bone marrow sup-
pression was also reported [25,128,129]. The same researchers applied [177Lu]Lu-J591 in a
phase II clinical trial, which showed similar results to the phase I studies and an overall
progression-free survival period of 82 days between the treated patients [130]. Furthermore,
dose fractionation studies were also performed, which proved the feasibility of increasing
the dosing while controlling excessive myelotoxicity [131]. Moreover, [177Lu]Lu-J591 com-
bined with the chemotherapeutical agent docetaxel has been shown to generally improve
response with PSA level decreases > 50% in 73% of the treated mCRPC patients [132].
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Nevertheless, the development of LMW PSMA ligands shaped the clinical approaches
in the treatment of mCRPC. In this manner, the first developed and preclinically evaluated
MIP-1095 was radiolabelled with the therapeutic β--emitter iodine-131. [131I]I-MIP-1095
was administered to 28 mCRPC patients in a single-dose (mean activity: 4.8 GBq) study that
showed good uptake in tumourous lesions. Here, 61% of the patients showed decreases
in PSA levels > 50%, while symptoms such as bone pain were diminished in 85% of the
patients [77]. Nevertheless, further studies with repeated doses of [131I]I-MIP-1095 did
not show improvements of the therapeutic effects caused by multiple dosing, often not
completely eradicating the tumours and showing disease relapse in some cases. Addition-
ally, the repeated administration of the radiopharmaceutical increased the dose-limiting
uptake in the salivary glands, liver and kidneys [133]. Despite [131I]I-MIP-1095 limitations,
the clinical application still demonstrated the potential of LMW ligands in the clinical
management of recurrent PC.

Furthermore, in 2015, German Cancer Research Centre scientists applied PSMA-617
in a first-in-human study. Owing to the excellent targeting properties and pharmacoki-
netic profile of this radiopharmaceutical, the administration of a cumulative activity of
7.4 GBq (2 doses) of [177Lu]Lu-PSMA-617 to a single mCRPC patient showed positive
results, with an unprecedented radiological response and PSA levels dropping from 38.0 to
4.6 ng/mL [134]. Interestingly, in parallel, researchers from the Technical University of
Munich developed PSMA I&T and also applied it in a first-in-human single-dose study as
the 177Lu-radiolabelled version administered to two (5.7 and 8.0 GBq) mCRPC patients [93].
[177Lu]Lu-PSMA I&T showed specific tumour uptake and revealed partial remission of
PSMA(+) tumours accompanied by PSA decline (from 40.2 ng/mL to 0.7 ng/mL for one
patient). Both PSMA-617 and PSMA I&T performed significantly better than MIP-1095
and showed less side effects and less unspecific uptake. Consequently, both radiopharma-
ceuticals were translated in larger clinical cohorts. Nevertheless, clinical development has
been much more extensive for PSMA-617. Table 2 summarises some of the most relevant
retrospective data and clinical studies employing [177Lu]Lu-PSMA-617 over the last 5 years.

Table 2. The main retrospective analyses and clinical studies carried out with [177Lu]Lu-PSMA-617.

Year Num. of Patients % with PSA
Decline > 50%

Mean Administered
Dose per Cycle/s

Authors and
References

2015 10 50% 5.6 GBq (1 cycle) Ahmadzadehfar et al. [135]
2016 24 42% 6.0 GBq (2 cycles) Ahmadzadehfar et al. [136]
2016 74 31% 5.9 GBq (1 cycle) Rahbar et al. [137]
2017 99 40% 5.9 GBq (1–4 cycles) Rahbar et al. [138]
2017 52 44% 6.0 GBq (3–6 cycles) Ahmadzadehfar et al. [139]
2018 104 33% 6.1 GBq (1–8 cycles) Rahbar et al. [140]
2018 30 57% 7.5 GBq (2–4 cycles) Hofman et al. [141]
2019 30 23% 8 GBq (1–6 cycles) Yordanova et al. [142]
2019 32 38% 6 GBq (2–6 cycles) Maffey-Steffan et al. [143]
2020 54 58% 7.5 GBq (3 cycles) Rasul et al. [144]
2021 385 46% 7.4 GBq (4–6 cycles) Sartor et al. [145]

In general lines, the clinical studies treating hormone-refractory PC with [177Lu]Lu-
PSMA-617 demonstrate that approximately 75% of patients show response regarding PSA
level decline. Additionally, PSA decreases > 50% were observed in ~55% of the treated
men. Nevertheless, the data from the clinical studies are vastly heterogeneous, as the
starting point of therapy, disease stage and localisation of lesions play important roles
in the outcome. Another factor to weigh in assessing the effectivity of treatment is the
injected dose and the number of cycles, which were also heterogenous across the reported
studies. Furthermore, the treatment is well tolerated, as toxicities in vital organs have
generally not been observed and severe haematotoxicity has been reported in very few
cases. Unfortunately, salivary gland uptake might be a dose-limiting factor in systematic,
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multidose treatment regimens due to specific and unspecific uptake of PSMA-targeting
LMW ligands [146–148].

Currently ongoing β--TRT clinical trials for mCRPC patients are evaluating a variety
of radiopharmaceuticals. A modified albumin-binding version of PSMA-617, [177Lu]Lu-
PSMA-EB-617, is currently being tested in a phase I clinical trial [149]. A phase II study
is evaluating the outcome of patients treated with the antibody [177Lu]Lu-huJ591 co-
administered with the steroid ketoconazole [150]. Another ongoing phase II clinical trial
based on [177Lu]Lu-PSMA-617 is comparing this agent head-to-head with the conventional
treatment option cabazitaxel [151]. Finally, a large-scale phase III clinical study (SPLASH)
is currently recruiting patients to evaluate the efficacy and safety of [177Lu]Lu-PSMA I&T
in mCRPC patients following androgen-based therapy [152].

Independently of the ongoing clinical studies, in general lines, [177Lu]Lu-PSMA-617
has been demonstrated to be a viable therapeutic option for mCRPC, with acceptable
response rates and manageable side effects. In a phase II clinical trial conducted at the Peter
MacCallum Cancer Centre in Australia, the efficacy, safety and quality of life of patients
with mCRPC were analysed, showing PSA decreases of more than 50% in 57% of patients
and PSA decreases of more than 80% in 43% of patients. No grade 3/4 non-haematological
and no renal toxicities were observed. An exceptional response case was also part of this
phase II study. A patient with widespread mCRPC and a PSA of >900 had a complete
radiologic response accompanied by a PSA decrease of 99% following treatment with
[177Lu]Lu-PSMA-617 [141].

The most advanced clinical trial that [177Lu]Lu-PSMA-617 has undergone is a recently
concluded phase III trial (VISION) with 831 patients. The recently published data indicate
that [177Lu]Lu-PSMA-617 significantly improves overall survival in men with mCRPC,
reducing the risk of death by 38% and reducing radiographic disease progression by 60%,
bringing the radiopharmaceutical close to FDA approval [145].

3.2. Alpha (α)-Based Targeted Radionuclide Therapy

Alpha (α) emission is the process by which a radionuclide emits an α particle, which
is identical to a helium nucleus (2 protons + 2 neutrons). In contrast to β-emitting ra-
dionuclides, α-emitters have extremely high particle energy (~7500 keV). This amount
of energy is capable of causing double-strand DNA breaks, which generally render the
cancerous cells unable to repair (Figure 3) [153]. Moreover, the range of those particles in
tissue is extremely short (~80 µm), preventing damage to healthy stroma neighbouring the
cancerous cells. For these reasons, α-emitters have been postulated as ideal radionuclides
for the treatment of cancer [154–157]. In particular, the treatment regimen for disseminated
and poorly differentiated metastatic disease, e.g., PSMA(+) mCRPC, might highly benefit
from targeted α radionuclide therapy (TAT) [158]. Recently, extensive efforts have been
made to review in detail α-emitter-based radiotherapeutic approaches for PC [159]. This
section focuses on a general outline of the main preclinical and clinical milestones for
PSMA TAT.

3.2.1. α-Emitting Radionuclides for TRT

Homologous to β-emitters, a limited number of nuclides classify as α-emitters. Fur-
thermore, the applicability of α-emitters in nuclear medicine is limited to the properties of
the radionuclide. Requisites such as half-life, number of α-decays per nuclide as well as side
non-α decay influence the feasibility of using certain α-emitters in systematic approaches.

In respect to Table 3, all the listed α-emitters have been employed in preclinical or
clinical settings for the management of PC. In fact, 223RaCl2 (Xofigo®) represents the only
α-emitting radiopharmaceutical approved by the FDA for clinical use. Equivalent to 89Sr,
223Ra is used to non-specifically target mCRPC bone metastases by mimicking calcium and
being absorbed into the bones, where it eliminates invasive cancerous tissue, decreasing
patient pain and elongating their survival [160].
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Table 3. α-Emitters employed in mCRPC treatment and their properties. Data extracted from [110,111].

Radionuclide Half-life Emission Eα(max)/Range (Max)
149Tb 4.1 h α/β+ 3.97 MeV/28 µm
211At 7.2 h α 6.79 MeV/60 µm
212Pb 10.6 h β- to α 212Bi 6.05 MeV/80 µm
213Bi 45.6 min α/β- 8.32 MeV/84 µm
223Ra 11.4 d α 5.64 MeV/45 µm
225Ac 10.0 d α/β- 6.83 MeV/61 µm
227Th 18.7 d α 6.14 MeV/100 µm

Bismuth-213 was the first α-emitter conjugated with anti-PSMA mAbs for its applica-
tion in TAT. 213Bi is a mixed emitter, giving both α- and β--particles. Aside from not being
a pure α-emitter, it also has the limitation of a relatively short half-life of 45 min, which
does not match the typical pharmacokinetic profiles of the majority of PSMA-targeting
radiopharmaceuticals [161].

Actinium-225 was the first α-emitting radionuclide to be conjugated with the ‘gold-
standard’ PSMA-617 for its application in TAT. Although some studies have shown im-
pressive efficacy in single cases of PSMA-TAT, actinium-225 is far from being a routine
radionuclide for systematic approaches. As with other α-emitters, the radionuclide ex-
hibits certain drawbacks that are mainly related to its decay properties. Multiple α-active
daughter atoms are able to recoil from the parental radiopharmaceutical, which potentially
results in high toxicity in cumulative tissues. Furthermore, 225Ac is a very scarce element
that cannot be easily produced in a cyclotron [162]. In addition, its decay chain releases
detectable photons only after its first decay (t1/2 = 10 days), making its detection difficult
and raising radiation protection concerns for routine production.

Astatine-211 (211At) has so far only been employed in PC preclinical settings. The
main drawbacks in the application of 211At in systematic approaches are two-fold. Firstly,
the capacity for producing astatine is not widespread, as roughly 30 institutions have access
to it and its production is often not cost-effective [163]. Secondly, and most importantly,
the stability of carbon–astatide bonds in vivo has been discussed and shown not to be as
strong as its closest element, iodine. Even though the mechanisms by which astatine is
detached from the covalent bond in vivo have still not been elucidated, several hypotheses
exist, including oxidative dehalogenation by reactive oxygen species in the body [157,164].
Nevertheless, it remains an extremely promising radionuclide for TAT due to its very
favourable decay properties—one α particle per decay without any additional α-emitting
daughters or side β-emissions [163]. Additionally, its short-lived daughters emit secondary
low-energy X- and γ-rays, which might not be ideal for practical imaging purposes but
still present significant safety advantages [165,166].

Lead-212 (212Pb) is not an α-emitter per se, but a generator of in situ α-decay. It emits
a β--particle to give 212Bi, which then releases a helium nucleus, as well as a β--particle to
start a series of concomitant decays that end in 208Pb. Even though the staggered decay of
212Pb is not ideal for the stability, efficacy and biodistribution of the radioactivity, it has the
very interesting feature of having a ‘real theranostic pair’. As another isotope of lead, 208Pb
can be employed for imaging via SPECT [167].

Thorium-227 is a relatively newly developed radionuclide for TAT. Its physical half-life
of 18 days allows for viable applications in clinical routines, although its decay properties
pose a challenge as it gives up to five α-particles until it reaches the stable 207Pb. Homolo-
gous to 225Ac, the multistep α-decay raises concerns regarding recoiled daughter atoms
and accumulation in non-target tissue. 227Th-based TAT is still in its early developmental
stage and more data are needed to give a solid assessment of its feasibility [162].

Finally, terbium-149 is a recently developed radionuclide for TAT applications. Its
short half-life (4.1 h) reduces the radiation burden to non-target tissue and is perfectly suited
for conjugation with fast-clearing LMW ligands. Moreover, the emission of a positron in
its decay chain allows for PET imaging studies employing the same ligand and identical
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radionuclide [168]. Nevertheless, the availability of the radionuclide is still very limited for
practical clinical applications.

3.2.2. Preclinical PSMA TAT

Consequently, ever since the discovery of the first PSMA-binding mAbs, research has
been focused on TAT of mCRPC. The first reported study of TAT of PSMA(+) PC was a
preclinical evaluation of 213Bi-labelled J591 [169]. In this evaluation, McDevitt et al. tested
the therapeutic effect of the mAb in a mouse LNCaP xenograft. The study concluded
that the administration of ~3.5 MBq of [213Bi]Bi-J591 significantly prolonged the overall
survival of LNCaP xenograft mice (54 days for treated group, 33 for control and 31 for
non-treated). Furthermore, PSA levels in treated mice were also shown to be significantly
decreased after TAT treatment (28 ± 22% ng/mL for the treated group vs. 104 ± 54 ng/mL
for the untreated mice) [169]. Additional preclinical studies in mice further confirmed the
antitumour activity of [213Bi]Bi-J591 [170]. Nevertheless, even given its apparent effectivity
in preclinical settings, the 213Bi-labelled mAb never progressed into human trials.

After the initial TAT efforts, it was not until 2009 that Wilbur et al. reported another
preclinical TAT of PSMA(+) PC. In this case, the mAb 107-1A4 was modified with a
closodecaborate for its labelling with the pure α-emitter astatine-211 (211At). The treatment
was tested in mice implanted with C4-2B cells into the tibia, a situation that simulates bone
micrometastases [171,172]. The study showed that a single dose of 370 kBq of [211At]At-
107-1A4 significantly reduced PSA levels in blood when compared to control groups [172].
Additionally, Wilbur and colleagues further derivatised the mAb 107-1A4 into a Fab’.
Following the same strategy as with the mAb, the Fab’ was conjugated with closoborate
and labelled with 211At. In this instance, only the biodistribution in a LNCaP mouse
xenograft was assessed. The [211At]At-Fab’ showed an accelerated pharmacokinetic profile
when compared to its parental mAb, with good tumour enrichment up to 25 ± 13% ID/g
after 24 h but a noticeable kidney accumulation of 40 ± 16% ID/g at the rather late time
point of 24 h p.i. [173].

Kiess et al. employed the same radionuclide in further preclinical studies. They re-
ported the first LMW urea-based radiopharmaceutical to be tested in preclinical settings for
TAT of PC [78]. The compound, [211At]At-DCAtBzL, was administered to mice bearing PC-
3 PIP PSMA(+) micrometastases. The evaluation showed satisfactory tumour uptakes 1 h
p.i. (20 ± 5% ID/g) and effective antitumour properties, although also severe toxicity. The
radiopharmaceutical accumulated in the renal proximal tubes, most likely due to in vivo
de-astatination or due to the known high PSMA expression in rodent proximal tubes,
which resulted in severe nephropathy [78]. Most recently, the same group of researchers
reported the synthesis and preclinical evaluation of a second generation of 211At-bearing
compounds. In this case, the lead compound, known as [211At]At-VK-02-90-Lu, showed
in vitro an uptake of 13.4 ± 0.5% 4 h p.i. in PSMA-expressing PC-3 PIP cells. Its evaluation
in mouse PC-3 PIP xenografts showed even better uptake (30.6 ± 4.8% ID/g) 1 h p.i.,
with satisfactory kidney clearance over 24 h and a significant increase in overall survival
(dose > 1.48 MBq/mouse) for the treated mice when compared to control groups [174].

Umbricht et al. showed in a preclinical study the feasibility of employing terbium-149
in conjugation with PSMA-617. In an ‘α-PET’ study, [149Tb]Tb-PSMA-617 was adminis-
tered to mice bearing PSMA(+) PC-3 PIP tumours. The administration of 2 doses of 3 MBq
each significantly delayed tumour growth. Moreover, the administration of 5 MBq of
[149Tb]Tb-PSMA-617 also allowed for PET imaging studies. Additionally, the substitu-
tion of 177Lu for 149Tb in PSMA-617 did not have an effect on the biodistribution of the
radiopharmaceutical [175].

Further development of a LMW-ligand-based TAT led to the application of the
212Pb/212Bi tandem into PSMA-617-derived structures. In this sense, Dos Santos and
co-workers employed 212Pb in the ligands CA009 and CA012 [176]. Both structures were di-
rectly derived from PSMA-617, with a substitution of the DOTA chelator for better choices
for lead—DO3AM and p-SCN-Bn-TCMC. Both radiopharmaceuticals showed satisfactory
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biodistribution profiles, especially CA012, with LNCaP-tumour accumulation at 1 h p.i.
comparable to PSMA-617 (8.4 ± 3.7% ID/g) and a remarkably lower kidney uptake than
PSMA-617 (5.1 ± 2.5% ID/g vs. 113.3 ± 24.4% ID/g). Other similar efforts were reported
by Stenberg et al. [177] for the development and evaluation of NG001, the same structure
as CA009, which exhibited a very fast pharmacokinetic profile that also outperformed
current state-of-the-art PSMA-617 in kidney uptake at 2 h p.i. (21.07 ± 10.33% ID/g vs.
52.82 ± 26.62% ID/g). Finally, Banerjee et al. reported a series of three compounds for their
application in 212Pb PSMA TAT. Nevertheless, only one of the radioligands, [212Pb]Pb-L2,
was selected for preclinical testing. It was shown to improve survival times of PSMA(+)
PC-3 PIP mouse xenografts, as well as dose-limiting kidney uptake [178].

3.2.3. Clinical PSMA TAT

The discovery and clinical implementation of [177Lu]Lu-PSMA-617 was the most rele-
vant milestone in the development of PSMA-TRT, showing great promise in the treatment
of mCRPC and currently being on the verge of FDA approval [179]; however, PSMA-617
still has drawbacks. Recent studies have shown that approximately 40% of patients that
received [177Lu]Lu-PSMA-617 did not respond to the treatment [137,144]. This might be
attributed to the intrinsic nature of β--emitting radionuclides, which are potentially not
ideal for the treatment of small and disseminated tumours due to their long range in tissue
and relatively low energy. In contrast, α-emitters are more effective in treating tumours
due to their physical properties (short range and high LET). In this context, Kratochwil et al.
reported a variation of PSMA-617 labelled with actinium-225, [225Ac]Ac-PSMA-617, as a
salvage therapy for patients either non-respondent to or not eligible for [177Lu]Lu-PSMA-
617 [180]. The administration of [225Ac]Ac-PSMA-617 to 2 patients in a first-in-human
study showed promising antitumour effects, clearing the metastatic burden of the disease
and reducing PSA levels to non-detectable thresholds. In a further clinical study, the
efficacy of [225Ac]Ac-PSMA-617 was assessed in a 40 patient cohort [181]. The results
showed decreases of PSA levels greater than 50% in 63% of the patients, increasing the
overall survival time over the median value for mCRPC patients. Remarkably, 13% of the
patients showed disease remission for more than 2 years after treatment administration.
Nevertheless, the dosing and successful therapeutic cycles of the radiopharmaceutical were
heavily influenced by salivary gland uptake, as irreversible xerostomia was a common
side effect within the cohort of treated patients [181]. Other clinical studies carried out by
different researchers or institutions employing [225Ac]Ac-PSMA-617 had similar outcomes.
A significant percentage of patients showed disease remission, pronounced decrease of
PSA levels and extended overall survival times, although also noticeable dose-limiting
xerostomia and some blood disorders, as well as kidney toxicity [155,182–185].

It is important to note that there are ongoing clinical trials employing mAbs for TAT of
PC. For instance, the aforementioned mAb J591, in combination with 225Ac, is being used
in three different clinical trials [186–188].

More interestingly, Bayer recently developed a PSMA-targeted thorium conjugate
(PSMA-TTC), which comprises a mAb conjugated with 3,2-HOPO, a molecule capable
of chelating the α-emitter 227Th. In preclinical testing, the [227Th]Th-PSMA-TTC showed
promising results with clear antitumour efficacy in various murine PC models [189,190].
As a consequence, the radiopharmaceutical is currently being employed in an ongoing
phase I clinical trial, with a sample size of around 150 patients [191].

Overall, these investigations demonstrate the potential of α-radiation to overcome
the intrinsic limitations of β-emitters, especially with regard to widespread and poorly
differentiated disease, in systematic approaches for treatment of PSMA(+) PC. Therefore,
the future of PSMA TRT will be inevitably influenced by the developments in α-emitters
and how these can be effectively combined with PSMA-targeting pharmaceuticals without
excessive prohibitive side effects [162].
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3.3. Enhancement of PSMA-Targeted Radionuclide Therapy

In addition to the previously discussed therapeutic effects, improvements based on
structural modifications of the pharmaceuticals and combined therapeutic approaches
represent other options for enhancing the TRT of prostate cancer. Due to the continued
existence of clinical challenges (Figure 4) during PSMA-TRT, such as insufficient thera-
peutic success or severe side effects, new treatment strategies might result in significant
advantages for patients.
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3.3.1. Combinatorial PSMA-Targeted Therapy

Combinations of radio- and chemotherapy have already demonstrated high potential
when compared to single therapies in clinical trials [192]. Due to the relative novelty of
PSMA-TRT, only a few in-depth combinatorial studies have been conducted.

One approach to enhance the effectiveness of TRT is the use of chemical sensitisers
to increase the radiosensitivity of the tumour. Cytotoxic drugs increase the vulnerability
to DNA damage in cancer cells, resulting in better tumour clearance in TRT. Although
most of these studies were performed in an external beam radiotherapy setting, the results
demonstrate the potential of this combined approach [193].

The preclinical study by Tesson et al. showed the effects of the therapy with [131I]I-MIP-
1095 in combination with different chemotherapeutics (olaparib, topotecan, bortezomib,
nutlin-3 and disulfiram) on the tumour growth in LNCaP xenograft-bearing mice [194].
All agents significantly reduced [131I]I-MIP-1095-induced tumourous spheroid growth. In
another study, the joint effects of [177Lu]Lu-PSMA-617 and the radiosensitising substance
idronoxil (NOX66) were investigated in men with mCRPC [195,196]. The trial included
thirty-two men receiving up to six cycles of [177Lu]Lu-PSMA-617 (7.5 GBq) on day 1, with
escalating doses of NOX66 on days 1–10 of a 6-week cycle [195]. Overall, 91% of subjects
had detectable PSA responses, with a median overall survival rate of 17.1 months [195].

The most studied combinatorial approach remains the tandem application of docetaxel
as a chemotherapeutic agent. Targeting the microtubular network in cells, treatment
with docetaxel results in the desired radiosensitisation of prostate cancer cells [197]. The
first approaches to combine docetaxel with TRT were performed by Kelly et al. with
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the labelled monoclonal antibody [177Lu]Lu-hu3S193, showing significantly improved
efficacy in in vivo studies [198]. Similar improvements were shown in a phase I study of
docetaxel with the 177Lu-labeled PSMA-targeting antibody J591 [199]. This combination
appeared to have significant antitumour activity after application of docetaxel (75 mg/m2)
every 3 weeks combined with 2 fractionated doses of [177Lu]Lu-J591 (1.48 GBq/m3 up
to 2.96 GBq/m3). Eighty-three percent (83%) of patients showed PSA response, with a
median overall survival rate of 18.4 months. Addressing mCRPC, the UpFrontPSMA
Trial is investigating in a randomised phase 2 study the therapeutic options for sequential
[177Lu]Lu-PSMA-617 and docetaxel treatment vs. docetaxel alone [200]. Furthermore,
Maharaj et al. described favourable effects of 177Lu-PSMA therapy in combination with
docetaxel in a case report of a patient with mCRPC [201].

Clearly, the possibilities for combinational therapeutic approaches are not exhausted
at this point and require further research. For instance, combined therapies of TRT with
immunotherapy, external beam radiotherapy or chemotherapeutics could lead to better
outcomes for PC patients.

3.3.2. Side Effect Minimisation

The application of radiopharmaceuticals involves the challenge of administering
highly cytotoxic radioactive nuclides. These can lead to severe damage to healthy tissue
if undesired accumulation occurs. The cumulative off-target organs of PSMA-targeting
pharmaceuticals are mainly the kidneys and salivary glands; therefore, the current efforts
are mainly focused on reducing radiopharmaceutical uptake in these off-target tissues.

Despite its tremendous potential, PSMA-TRT must balance between prolongation
of survival and disease-related symptoms versus the direct side effects of the treatment.
Xerostomia is perhaps the most frequent and potentially debilitating of these conditions.
The symptoms depend on the absorbed dose and the employed isotope, although they
are especially relevant for 225Ac-LMW-based approaches. In contrast to small molecules,
accumulation in salivary glands does not occur during therapy with radiolabelled PSMA-
targeting antibodies [30]. Some suggested explanations for the disparity are differences
in molecular weight and the specific ionic charge of PSMA radioligands [202]. The low
accumulation of antibodies in the salivary glands indicates, at least partially, non-specific
salivary gland uptake pathways [59]. The results from the studies by Rupp et al. and
Tönnesmann et al. on [68Ga]Ga-PSMA-11 and [177Lu]Lu-PSMA-617, respectively, further
confirmed this thesis [145,147].

Data from different studies after therapy with [177Lu]Lu-PSMA-617 revealed only
mild to moderate xerostomia [138,203]; however, in a study performed by Kratochwil et al.
applying [225Ac]Ac-PSMA-617, severe xerostomia occurred frequently and was reported
to be dose-limiting [181]. To address this problem, various strategies were investigated in
clinical trials in order to protect the salivary glands.

In a first approach, external cooling of the salivary glands was expected to reduce the
PSMA inhibitor uptake due to vasoconstriction [204]. Although ice packs were affixed over
one parotid gland one hour before and four hours after application, no differences could
be found in side-by-side comparisons.

In order to supress the metabolism of the gland, Baum et al. injected botulinum
toxin in the parenchyma to reduce off-target uptake [205]. In a first-in-human study,
a decreased uptake in the pretreated parotid gland of up to 64% was observed when
compared to baseline.

Inspired by data on thyroid cancer patients with radioiodine-induced sialadenitis,
sialendoscopy represents another option of treatment [206]. In a study of 11 patients,
Rathke et al. investigated the effects of saline irrigation and steroid injection in the salivary
glands before or after every cycle of [225Ac]Ac-PSMA-617. Although beneficial effects on
the salivary gland functions were observed, chronic xerostomia still occurred after multiple
cycles of 225Ac-TAT.
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Attempts at blocking the salivary glands with non-radiolabelled PSMA inhibitors such
as 2-PMPA [207], TrisPOC-2PMPA [208] or PSMA-11 [209] were also investigated to prevent
specific binding. The results showed significant reductions of tracer uptake in the salivary
glands and the kidneys, although at the cost of diminished uptake within the tumour. The
recent studies by Harsini et al. on the effects of monosodium glutamate on PSMA tracer
uptake resulted in similar effects as blocking with the cold compounds [210]. Furthermore,
orally administered folic acid may also reduce the absorbed dose to the salivary glands, as
recently shown by Paganelli et al. [211]. Finally, Sarnelli et al. investigated the potential
of administering polyglutamate as a salivary gland protector combined with mannitol to
reduce kidney uptake [212]. Unfortunately, the clinical results showed no significant effects
on the accumulation of PSMA-targeting inhibitors in both organs.

In conclusion, the preventive strategies seem to be limited, with a still existing urgent
need for further developments. A way to bypass the problem might be the induction
of regeneration of the salivary glands by application of stem cells after radiation dam-
age [213]. Nevertheless, research is warranted in this area, especially as TAT approaches
gain relevance, in order to enhance patient care and decrease after-treatment morbidity.

4. Conclusions and Future Outlook

In recent years, PSMA-TRT has arisen as a feasible alternative to conventional treat-
ments in the field of mCRPC therapy. This rapid success story has had a huge impact on
the field of radiopharmaceutical research and encouraged major pharmaceutical industries
to intensify their efforts in the field of nuclear medicine.

In addition, research activities have yielded a wide range of suitable PSMA-targeting
radiopharmaceuticals that are available today, ranging from mAbs and mAb-derived
structures to LMW agents. Nevertheless, after clinical translation, LMW inhibitors of PSMA
seem to represent a favourable molecular format for TRT and TAT. In particular, current
phase III results of [177Lu]Lu-PSMA-617 impressively demonstrate the great potential of
LMW-based TRT for mCRPC, amounting to the best prerequisites for regulatory approval.
Moreover, recent FDA authorisations for [68Ga]Ga-PSMA-11 and [18F]F-DCFPyL further
support the approval for PSMA-617.

Additionally, studies with α-emitters conjugated to PSMA-targeted ligands have
gained significant impact over recent years, with encouraging results related to their
efficacy, especially in β--resisting lesions; however, accumulation of the inhibitors in
the kidneys and high uptake rates into the salivary glands remain the most challenging
limitations in the field of PSMA-TRT.

In conclusion, the favourable properties of LMW inhibitors, along with the proven
performance of PSMA-617, warrant a focus on these agents in PC-related research. Further-
more, current challenges such as undesired uptake in non-target organs, disease relapse
due to micrometastases, tumour heterogeneity and resistance will need to be addressed
through the development of combined therapeutic approaches, as well as the introduction
of the long-promised α-emitters in systematic clinical settings.
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