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Simple Summary: Integration of multimodality imaging (MMI) methods in head and neck squamous
cell carcinomas (HNSCC) provides complementary information of the tumor and its microenviron-
ment. Quantitative positron emission tomography (PET)/computed tomography (CT), DW- and
DCE-MRI provide the functional information of tumor tissue based on metabolic process, diffusion
of water molecules, and enhancement of water proton relaxation with a contrast agent, respectively.
The present study aimed to investigate correlations at pre-treatment between quantitative imaging
metrics derived from FDG-PET/CT(SUL), FMISO-PET/CT (K1, k3, TBR, and DV), DW-MRI (ADC,
IVIM [D, D*, and f]), and FXR DCE-MRI [Ktrans, ve, and τi]) using a community detection algo-
rithm (CDA) based on the “spin-glass model” and Spearman rank analysis in patients with HNSCC.
Correlations between MMI-derived quantitative metrics evaluated using a CDA in addition to the
Spearman analysis in a larger population may enable the identification of potential biomarkers for
prognostication and management of patients with HNSCC.

Abstract: The present study aimed to investigate the correlation at pre-treatment (TX) between
quantitative metrics derived from multimodality imaging (MMI), including 18F-FDG-PET/CT, 18F-
FMISO-PET/CT, DW- and DCE-MRI, using a community detection algorithm (CDA) in head and
neck squamous cell carcinoma (HNSCC) patients. Twenty-three HNSCC patients with 27 metastatic
lymph nodes underwent a total of 69 MMI exams at pre-TX. Correlations among quantitative metrics
derived from FDG-PET/CT (SUL), FMSIO-PET/CT (K1, k3, TBR, and DV), DW-MRI (ADC, IVIM
[D, D*, and f]), and FXR DCE-MRI [Ktrans, ve, and τi]) were investigated using the CDA based on a
“spin-glass model” coupled with the Spearman’s rank, ρ, analysis. Mean MRI T2 weighted tumor
volumes and SULmean values were moderately positively correlated (ρ = 0.48, p = 0.01). ADC and D
exhibited a moderate negative correlation with SULmean (ρ ≤ −0.42, p < 0.03 for both). K1 and Ktrans

were positively correlated (ρ = 0.48, p = 0.01). In contrast, Ktrans and k3max were negatively correlated
(ρ = −0.41, p = 0.03). CDA revealed four communities for 16 metrics interconnected with 33 edges in
the network. DV, Ktrans, and K1 had 8, 7, and 6 edges in the network, respectively. After validation
in a larger population, the CDA approach may aid in identifying useful biomarkers for developing
individual patient care in HNSCC.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a complex disease with remark-
able intratumoral heterogeneity resulting in different treatment responses and outcomes [1].
HNSCC arises from the mucosa lining of the aerodigestive tract, including the oropha-
ryngeal axis. Human papillomavirus (HPV)-related oropharyngeal cancers (OPCs) have
molecular features and etiology distinct from those of smoking- and alcohol-related HN-
SCC [2,3]. Both qualitative and quantitative imaging, including computed tomography
(CT), T1-weighted and T2-weighted magnetic resonance imaging (MRI), positron emission
tomography (PET)/CT, diffusion-weighted (DW-), and dynamic contrast-enhanced (DCE)-
MRI, have shown potential in staging, predicting treatment (TX) response, and post-TX
follow-up of patients with HNSCC [4–8].

Quantitative analysis of multimodality imaging (MMI), including 18F-Fluorodeoxyglucose
(FDG) PET/CT, 18F-Fluoromisonidazole (FMISO) PET/CT, DW- and DCE-MRI, data pro-
vide imaging metrics, reflecting the tumor metabolism, hypoxia, cellularity, and vessel
permeability in HNSCC [6,9–12]. Therefore, the measurement of MMI-derived quantitative
imaging (QI) metrics at pre-TX is vital for evaluating and planning precision radiotherapy
in HNSCC. The standardized uptake value (SUV) from 18F-FDG-PET/CT assesses the
changes in glucose uptake as a measure of response to radiotherapy (RT) [13]. Pharma-
cokinetic modeling of FMISO yields a metric, a biomarker of cell oxygenation (hypoxia),
reflecting malignant tissue radiosensitivity [14]. Previous studies have reported that pre-TX
18F-FMISO-PET/CT could aid in predicting RT outcome and survival prognosis in HN-
SCC [9,15]. Riaz et al. recently demonstrated that dose de-escalation of radiotherapy to 30
Gy based on intra-treatment hypoxia using imaging response utilizing 18F-FMISO-PET/CT
was feasible, safe, and associated with minimal toxicity [16].

The measurement of diffusion of water molecules in malignant tissue can reveal
abnormalities of the tissue cellular organization and microstructure [17]. The ADC derived
from monoexponential modeling of diffusion-weighted (DW) signal data with at least two
b-values, a surrogate marker of tumor cellularity, has shown promise in predicting and
detecting early response to chemo-RT HNSCC in metastatic lymph nodes (LNs) [18,19].
Quantitative imaging (QI) metrics derived from the intravoxel incoherent motion (IVIM)
model [20] without contrast agent (CA), including perfusion fraction (f) and true diffusion
coefficient (D), exhibited potential markers for early prediction of chemo-RT response
in HNSCC patients [21–23]. Paudyal et al. further reported subtypes within human
papillomavirus-positive (HVP+) patients with HNSCC treated with 70 Gy chemo-RT. This
finding raises the question of whether every individual should be treated with the same
dose of radiation [23].

DCE-MRI pharmacokinetics modeling estimates perfusion/permeability and volume
fractions of the CA distribution spaces based on the changes in the time course of signal
intensity from target tissue after a bolus administration of CA [24]. The post-TX DCE-MRI
showed potential for identifying residual masses, both in primary tumors and in metastatic
LNs, that had failed [25]. The extended Tofts model [24], assuming an infinitesimally
fast water exchange kinetics between the tissue compartments, derived volume transfer
constant (Ktrans), extravascular extracellular volume fraction [EES] (ve), and plasma volume
fraction (vp) from primary tumors and metastatic LNs have shown promise in differentiat-
ing responders from non-responders [26]. Shukla-Dave et al. reported that the skewness of
pre-TX Ktrans values was the strongest predictor of progression-free survival and overall
survival in Stage IV HNSCC patients with the nodal disease [27]. Kim et al. implemented
the fast exchange (FXR) model, accounting for the finite rate of transcytolemmal water
exchange, and reported that the pre-TX Ktrans exhibited a potential to predict metastatic
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LNs treatment response to chemo-RT in HNSCC cancer patients [28]. The poor pre-TX
tumor perfusion may be a common mechanism associated with radioresistance and the
development of the distant metastatic phenotype [29]. Recent preclinical and clinical stud-
ies suggested that the FXR model-derived intracellular water molecule’s mean lifetime (τi)
can be a surrogate marker of tumor cell metabolic activity [30,31]. Chawla et al. reported
that the metric τi could be a prognostic marker in HNSCC patients [32].

Previous studies explored the correlation between metastatic LN tumor volume and
18F-FDG- PET/CT and 18F-FMISO-PET/CT derived QI metrics [15,33,34]. The correlations
between ADC and 18F-FDG SUV results were inconsistent in HNSCC [33–35]. The mean
Ktrans and SUVmax showed a trend towards a significant positive correlation in 28 primary
tumors of HNSCC [11]. Jansen reported significantly lower median Ktrans and the rate
constant of CA from the EES back into the plasma space, kep, values in hypoxic than in non-
hypoxic nodes in HNSCC [36]. Wiedenmann demonstrated that the multiple parameters’
values differ significantly between hypoxic and non-hypoxic tumor regions, defined on
FMISO-PET/CT in HNSCC [37].

A Spearman correlation analysis between MMI-derived QI metrics measures the
strength of a monotonic relationship. Still, it does not explicitly show how and to what
extent these metrics are interconnected within a group. These QI metrics can be represented
as a network in which nodes (metrics) with similar characteristics are clustered to form
sub-networks (communities) [38]. Herein, the community detection algorithm (CDA)
based on a “spin-glass model” was employed to create a community for MMI-derived
metrics [39]. In the network, nodes within the same groups are densely coupled. In contrast,
nodes between the group’s nodes are sparsely connected, indicating the CDA approach
can be helpful to identify the cancer biomarkers for understanding solid tumor biology.
To our knowledge, this is the first study that introduces a CDA-based “spin-glass model”
approach in patients with HNSCC.

Despite the significant advances in MMI methods, identifying useful QI metrics that
can assess the effectiveness of RT response in patients with HNSCC is still a challenging
task. We hypothesize that the CDA approach could help identify robust biomarkers in
developing cutting-edge strategies for precision therapy in HNSCC patients. The present
study aimed to investigate correlations between QI metrics derived from MMI methods
using a CDA based on the “spin-glass model” in HNSCC patients.

2. Materials and Methods
2.1. Patient Selection

Our institutional review board approved this prospective study compliant with the
Health Insurance Portability and Accountability Act. We obtained written informed con-
sent from all eligible patients who had a biopsy-proven, newly diagnosed HN cancer;
diagnostic biopsies were tested for human papillomavirus (HPV) status before the CT and
MRI study. Patients with previous chemotherapy or radiation therapy planned for upfront
surgery and other primaries than HNSCC were excluded from the study. Between Decem-
ber 2013 and November 2015, a total of twenty-three (N = 23) HPV (21 HPV positive [+]
and 2 HPV negative [−]) HN cancer patients (median age = 58 years, range = 45–82 years;
Male/Female = 21/2) enrolled in the study and underwent a total of 69 pre-TX examina-
tions, including 18F-FDG-PET/CT (N = 23), 18F-FMISO dynamic PET/CT (N = 23), and
MRI (combined DW- and DCE-MRI; N = 23). Of the 23 patients included with HNSCC,
15 patients had tumor sites in the base of the tongue, seven patients with tumors in a tonsil,
one patient had an unknown primary tumor site, and four patients had bilateral metastatic
LNs. The patients were categorized according to the American Joint Committee on Cancer
(AJCC) tumor, node, metastasis (TNM) system. The majority of patients had T2 (65%), N2
nodal mass was found in all 23 patients, and none had M0. Patients were treated with
concurrent chemotherapy and radiotherapy (70 Gy).
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2.2. PET Data Acquisition

Baseline FDG-PET scans on HNSCC patients were performed for radiotherapy plan-
ning purposes.

Patients were positioned on a flat-top couch wearing a customized radiotherapy
treatment immobilization mask, which allows for accurate repositioning. The same im-
mobilization mask was subsequently used for FMISO dynamic PET scans as detailed else-
where [10,40]. Patients were administered an intravenous bolus injection of 390 ± 16 MBq
of FMISO. Approximately 300–450MBq of FDG was administered after a fasting period
of ≥6 h through intravenous lines inserted in antecubital veins. The PET acquisition
commenced at 70–80 min post-injection on the General Electric Discovery ST scanner (GE
Health Care Inc., Chicago, IL, USA) with an imaging time of 5 min per bed position. The
corresponding x-ray computed tomography (CT) images were acquired immediately prior
to commencement of the PET scan and with the following settings: 140 kVp, 250 mAs, and
3.8-mm slice thickness. Each FMISO dynamic PET acquisition consisted of 3 segments:
(i) at time t = 0, a 30 min dynamic acquisition binned into 6 × 5-sec, 3 × 10-sec, 4 × 60-sec,
2 × 150-sec, 2 × 300-sec, and 1 × 600-sec frames; (ii) a 10 min static acquisition, starting at
~90 min, and; (iii) a 10 min static acquisition starting at ~160 min post-injection. Between
scans, patients rested in quiet waiting rooms.

2.3. PET/CTData Analysis

All PET data were corrected for attenuation, scatter, and random events, and were itera-
tively reconstructed into a 256 × 256 × 47 matrix (voxel dimensions: 1.95 × 1.95 × 3.27 mm3)
using the ordered subset expectation maximization algorithm provided by the manu-
facturer. 18F-FDG-PET and three 18F-FMISO-PET scans were spatially co-registered us-
ing the rigid-body transformation calculated with the General Co-Registration TM tool
applied to their corresponding CT scans (Advantage Workstation v4.7; GE Healthcare,
Chicago, IL, USA). Lesions were segmented using the adaptive threshold algorithm in PET
VCARTM (Advantage Workstation 4.7; GE Healthcare, Chicago, IL, USA) semi-automated
software based on the companion CT as a fiduciary marker and a count-based edge
recognition algorithm.

FDG uptake was calculated as the standard uptake value (SUV) corrected by lean
body mass (SUL). SUV normalized by total body weight overestimates metabolic activity in
all patients. Thus, the SUL is recommended for more accurate SUV results for quantitative
assessment of clinical PET [20]. Tumor lesions were delineated on the FDG PET/CT images,
using the adaptive threshold algorithm in the PET VCAR™ (Volume Computer-Assisted
Reading; General Electric Advantage Workstation v4.7) semi-automated software, based
on the companion CT as a fiduciary marker and a count-based edge recognition algorithm.
The resulting segmented lesson was used to calculate the metastatic LN volumes (Vt-PET)
for PET/CT [41]. Pharmacokinetic modeling of FMISO dynamic PET data was conducted
in PMOD v3.604 (PMOD Software, RRID: SCR_016547) as reported previously [10,40].
Briefly, an irreversible one-plasma two-tissue compartment model with a blood volume
component was utilized to calculate surrogate biomarkers of tumor hypoxia (k3, tumor-to-
blood ratio [TBR]), perfusion (K1), and total 18F-FMISO distribution volume (DV), i.e., the
overall concentration of unbound FMISO relative to blood. Image-based input function
(IF) was derived from the dynamic FMISO-PET images by segmenting the jugular vein on
the early frame with the highest image intensity and fitting the time-activity curves with a
triphasic exponential function.

2.4. MRI Data Acquisition

HNSCC patients underwent MRI examinations on a 3 Tesla (T) MRI scanner (Philips
Ingenia; Philips Healthcare, Eindhoven, Netherlands) using a neurovascular phased-array
coil. The standard MR multiplanar (axial, coronal, and sagittal) T2-weighted (T2w) and
T1-weighted images were acquired as detailed elsewhere [23,42]. DW- and DCE-MRI
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acquisitions followed standard T1w and T2w imaging. The total MR acquisition time was
approximately 30 min for the whole examination.

DW-MRI data were acquired using a single-shot echo-planar imaging (SS-EPI) sequence
with the following MR parameters: repletion time (TR)/echo time (TE) = 4000/minimum
(80) ms, NA = 2, matrix = 128 × 128, FOV = 20–24 cm, slices = 8–10, slice thickness = 5 mm,
and ten b-values (i.e., b = 0, 20, 50, 80, 200, 300, 500, 800, 1500, and 2000 s/mm2). The
spatial saturation bands were graphically prescribed on scout images by the technologist
prior to DW-MRI scanning. Their angulation, center, and width were adjusted, depending
on the neck anatomy of the patients. The total acquisition time was 5 min.

The T1w images for both pre-contrast (T10) and dynamic (i.e., before, during, and
after an injection of CA) were acquired using a fast 3D T1w spoiled gradient recalled echo
sequence. The pre-contrast T1 images were acquired with the multiple flip angles (FA) of 5◦,
15◦, and 30◦ with TR/TE = 7/2.7 ms; acquisition matrix = 256 ×1 28, FOV = 20–24 cm, slice
thickness = 5 mm, and slices = 8–10. Dynamic series images were acquired using FA = 15◦

and other acquisition MR parameters, as mentioned above. A bolus of 0.1 mmol/kg Gd-
based CA was injected through an antecubital vein catheter at two cc/s, followed by a
20-mL saline flush after acquiring 5–6 images as detailed elsewhere. A total of 40 dynamic
images were obtained with a temporal resolution ranging from 7.20–8.96.0 s/image.

2.5. MRI Data Analysis
2.5.1. DWI Analysis

DW signal intensity data from multiple b-values were fitted to (i) a monoexponential
(Equation (1)) and (ii) bi-exponential equation of the IVIM model (Equation (2)) [20]:

S(b) = S0 e−b×ADC (1)

S(b) = S0

[
f e−b×D∗

+ (1 − f )e−b×D
]

(2)

where S0 and Sb are the signal intensities without and with diffusion weighting, b is the
diffusion weighting factor (s/mm2), D (mm2/s) is the true diffusion coefficient, D* (mm2/s)
is the pseudo-diffusion coefficient (mm2/s), and f is the perfusion fraction.

2.5.2. Fast Exchange Regime DCE-MRI Analysis

The longitudinal relaxation rate constant-with time course for tissue R1t (R1t = 1/T1t) and
EES R1e in the fast exchange limit is given by Equations (3) and (4) as follows [43]:

R1t(t) = R10 + r1(t)Ct(t) (3)

R1e(t) = R10e + r1(t)Ce(t) (4)

where R10 and R10e are the precontrast longitudinal relation rate constants for tissue and
EES, respectively, Ct(t) and Ce(t) are the CA concentration with time in tissue and EES. The
r1 is the longitudinal relaxivity of CA.

The CA concentration with time in tissue is given by the standard Toft model (Equa-
tion (5)) [24].

Ct(t) = Ktrans
t∫

0

e−kep(t−τ)Cp(τ) dτ (5)

where Ktrans is the volume transfer constant, Cp is the plasma CA concentration (called
arterial input function [AIF]), and kep (kep = Ktrans/ve) is the CA transfer rate constant from
the EES to vascular space. The CA concentration in EES is given by Ce(t) = Ct(t))/ve.

The two-site water exchange (2SX) model (i.e., between the intracellular space [ICS]
and EES) is derived from the three-site-two water exchange model formulated based on
Bloch-McConnell’s, assuming a negligible vascular space [44,45]. The solution of Bloch-
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McConnell’s 2SX system yields two eigenvalues [46]. One of the eigenvalues represents
the observable longitudinal relaxation rate R1 of the FXR model given by Equation (6) [16].

R1t(t) =
1
2

[
(R1i + kie + R1e + kei)−

√
(R1i + kie − R1e − kei)

2 + 4 kiekei

]
(6)

where R1i and R1e are the ICS and EES longitudinal relaxation rate constants. The kie
(kie = 1/τi) and kei are the water exchange rates between ICS and EES and vice versa. The
kie is related to P (A/vi), where P is the cell membrane water permeability coefficient, and
A/vi is the ratio of surface area to volume of a cell. For DCE data analysis, the R1i value
was set equal to that of R10.

2.6. MRI Tumor Regions of Interests Analysis

Regions of interest (ROIs) were manually delineated on the metastatic lymph nodes
(LNs) on b = 0 (s/mm2) DW images and late phases of T1w dynamic images by a team
of neuroradiologists based on T1w/T2w images using Image J [47]. The metastatic LN
volumes (Vt-MRI) were calculated from the T2-weighted images as detailed elsewhere [23].
The AIF was extracted from the carotid artery in each patient [48]. Equations (2) and (6)
were fitted on a voxel-wise basis with a nonlinear least-square curve fitting method [49,50].
T10 values were estimated on a voxel-wise basis from the multiple angles as described
elsewhere [51,52]. DW and DCE post-image processing, including parametric map genera-
tion, were conducted using MRI-QAMPER (MRI Quantitative Analysis of Multi-Parameter
Evaluation Routines) [42,50].

2.7. Statistical Analysis

QI metric values derived from MMI (FDG-PET/CT, FMISO-PET/CT, and DW- and
DCE-MRI) were reported as mean ± standard deviation (SD). Wilcoxon signed-rank test
(WSRT) was performed to compare the tumor volume obtained from MMI techniques. A
nonparametric measure of the correlation, the Spearman’s rank (ρ) analysis, was performed
to examine the relationship among MMI-derived QI metrics. The correlation coefficient (ρ)
of <0.3 was considered weak, 0.3–0.5 moderate, and 0.5–1.0 strong. The significance level
was set at p < 0.05.

To determine how and to what extent the MMI-derived QI metrics were interconnected
on the network, the CDA algorithm based on the “spin-glass” model was employed for
the QI metrics whose Spearman’s rank test p-value was <0.05 [39]. The spin-glass is a
unique community detection algorithm based on the statistical mechanics of spin around
the networks [39]. The CDA-based “spin-glass” model approach splits MMI-derived QI
metrics into distinct communities [53]. Links or edges heavily or sparsely connect the
groups that can also reveal strong or weak, including positive or negative correlations [53].
All statistical analyses were performed using R-4.0.3 software [54].

3. Results

Ninety-two imaging datasets (FDG-PET/CT, FMSIO-PET/CT, DW-, and DCE-MRI)
were successfully analyzed from 27 metastatic LNs. The median Karnofsky Performance
Status (KPS) was 90 (range 80–90).

The representative signal versus b-values curve for DW data is displayed in Figure 1.
The signal time representative curves for FMISO and DCE data are displayed in Figure 2A,B,
respectively. The corresponding arterial input functions are also displayed. The FMISO
data was taken from the metastatic LN displayed in Figure 3. Similarly, DW- and DCE-MRI
data were extracted from ROIs shown in Figure 4.
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(circles) data connected with a solid line (blue), and the corresponding input function (in the inset). (B) Signal intensity 
time curves fitted with the fast exchange regime (FXR) model. The circle (black) and solid line (red) represent the data and 
FXR model fit. Insert: Plasma contrast agent concentration, Cp with time. 

Figure 3 shows the representative PET/CT image and QI metrics extracted from the 
FDG-PET/CT and FMISO-PET/CT. 

 

Figure 1. Representative mean semilogarithmic signal intensity decay curve as a function of the
multiple b-value (black circle). The data were fitted with the monoexponential model (solid red line)
and intravoxel incoherent motion (IVIM) model (solid blue line).
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Figure 3 shows the representative PET/CT image and QI metrics extracted from the
FDG-PET/CT and FMISO-PET/CT.

Representative DW, T1-weighted image, and QI metrics derived from IVIM and FXR
model are displayed in Figure 4. The representative MRI images were from the same
patient shown in Figure 2.

The mean tumor ROI volume and QI metrics values from MMI are given in Table 1.

Table 1. Summary of multimodality imaging derived quantitative imaging metrics values.

Method Model Parameter Value 1

18F-FDG-PET/CT
SULmax 8.91 ± 3.94
SULmean 5.26 ± 2.76

18F-FMISO-PET/CT

K1 (min−1) 0.33 ± 0.15
k3 max (min−1) 0.0087 ± 0.0049
k3 mean (min−1) 0.0034 ± 0.0021

TBRmax 1.76 ± 0.53
TBRmean 1.29 ± 0.27

DV 0.89 ± 0.14

DW

ADC × 10−3 (mm2/s) 0.93 ± 0.14
D × 10−3 (mm2/s) 0.67 ± 0.13

D* × 1 0−3 (mm2/s) 9.02 ± 1.80
f 0.16 ± 0.06

DCE
Ktrans (min−1) 0.18 ± 0.06

ve 0.32 ± 0.09
τi (s) 0.670 ± 0.15

FDG-PET tumor volume Vt-PET (cm3) 13.59 ± 7.65

T2w MRI tumor volume Vt-MRI (cm3) 11.41 ± 10.09

Note: 1 Data are represented as mean ± SD.

Mean metastatic LN volumes obtained from PET (Vt- PET) and MRI (Vt- MRI) were
significantly different (Vt-PET = 13.59 ± 7.65 cm3 vs. Vt-MRI = 11.41 ± 10.09 cm3, p = 0.005,
WSRT) and were strongly positively correlated (ρ = 0.85, p < 0.0001) in HNSCC. Mean
Vt-MRI was strongly positively correlated with 18F-FDG-PET/CT-derived metrics SULmean
(ρ = 0.48, p = 0.01) and SULmax (ρ = 0.57, p = 0.0001) (Figure 5). The metrics SULmax and
SULmean derived from FDG-PET/CT represent the standardized uptake value normalized
to lean body mass, respectively. No significant correlations were found between Vt-PET and
metrics obtained from 18F-FMISO-PET/CT, DW-, and DCE-MRI (p > 0.05). Vt-MRI also did
not show a significant correlation with 18F-FMISO-PET/CT, DW-, and DCE-MRI derived
metrics (p > 0.05).

Spearman correlation analysis identified several weak, moderate, and strong statis-
tically significant, either positive or negative, correlations between QI metrics (surrogate
markers of cellularity, glucose metabolism, perfusion, and hypoxia) derived from MMI
data (Table 2). Herein, a summary of the Spearman correlation results is reported.
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Table 2. Summary of Spearman rank correlation analysis (ρ) results between the quantitative metrics derived from multimodality imaging data.

Quantitative metric PET
volume

MR T2 weighted
volume ADC D D * f Ktrans ve τi kep SULmax SULmean K1 k3.max k3.mean DV TBR

Max
TBR

Mean

PET volume 0.84 * −0.09 −0.10 0.28 −0.06 0.19 −0.09 0.16 0.17 0.58 * 0.42 * 0.26 0.29 0.13 0.16 0.30 0.20
MRI T2 weighted volume −0.17 −0.18 0.07 0.01 0.14 −0.14 0.12 0.26 0.57 * 0.48 * 0.17 0.30 0.31 0.04 0.25 0.27

ADC 0.95 * −0.34 −0.18 −0.48 * 0.46 * −0.36 0.18 −0.29 −0.42 * −0.40 * 0.26 0.15 −0.31 0.07 −0.14
D −0.26 −0.18 −0.43 * 0.32 −0.41 * 0.23 −0.31 −0.41 * −0.40 * 0.32 0.23 −0.32 0.14 −0.08
D* 0.39 * 0.39 * −0.11 0.01 0.04 0.21 0.24 0.40 * −0.25 −0.35 0.49 * 0.09 0.13
f 0.31 0.18 0.14 −0.14 0.06 0.20 0.20 −0.45 * −0.30 0.40 * −0.18 0.12

Ktrans −0.10 0.43 * 0.12 0.17 0.28 0.48 * −0.41 * −0.27 0.44 * −0.17 −0.03
ve −0.41 * −0.15 0.17 0.15 0.02 −0.20 −0.26 0.40 * 0.14 0.13
τi −0.03 0.06 0.11 0.08 −0.17 0.05 −0.04 −0.23 −0.12

kep −0.11 −0.16 0.20 0.34 0.20 −0.23 −0.09 −0.20
SULmax 0.94 * −0.01 −0.09 −0.02 0.42 * 0.36 0.44 *

SULmean 0.003 −0.15 −0.02 0.48 * 0.38 0.53*

K1 −0.26 −0.46 * 0.59 * −0.18 −0.19
k3.max 0.79 * −0.57 * 0.57 * 0.34
k3.mean −0.60 * 0.57 * 0.54 *

DV 0.13 0.23
TBRmax 0.88 *
TBRmean

The p-value < 0.05 is denoted by an asterisk *. ADC: Apparent diffusion coefficient, D: true diffusion coefficient, D*: pseudo-diffusion constant, f: perfusion fraction, Ktrans: volume transfer constant, ve: volume
fraction of extravascular extracellular space (EES), τi: mean lifetime of water molecules, kep: transport constant for contrast agent form EES to blood plasma space, SUL: standardized uptake values of
18F-fluorodeoxyglucose divided by lean body mass, K1: transport rate constant of tracer from the plasma to the tissue for 18F-fluoromisonidazole (FMISO), k3: kinetic rate constant approximating the rate of
irreversible binding of FMISO, TBR: Tumor-to-Blood Ratio, and DV: total 18F-FMISO distribution volume.
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The metrics ADC and D, markers of tumor cellularity, exhibited a significant moderate
negative correlation with SULmean, a feature of glycolytic activity (ρ = −0.42, p = 0.03
for ADC and ρ = −0.41, p = 0.03 for D). Additionally, there was a significant moderate
negative correlation between D and Ktrans, a marker of tumor perfsuion//permeability
(ρ = −0.43, p = 0.03), and D and τi, a maker of cell metabolic activity (ρ = −0.41, p = 0.04).
ADC and ve, a leakage space for CA, showed a significant positive correlation (ρ = 0.46,
p = 0.02). D showed a moderate negative correlation with K1, a measure of perfusion for
FMISO (ρ = −0.40, p = 0.04).

The metric D*, a marker of capillary perfusion in tissue, showed a moderate positive
correlation with Ktrans and K1 (ρ = 0.39, p = 0.04 for Ktrans and ρ = 0.40, p = 0.04 for K1).
The perfusion fraction, f (the volume fraction occupied by capillaries), showed a moderate
positive correlation with DV, a distribution volume of FMISO (ρ = 0.40, p = 0.04). In contrast,
it showed a moderate negative correlation with k3max (ρ = −0.40, p = 0.02). The metrics
Ktrans and K1 were moderately positively correlated (ρ = 0.48, p = 0.01). Ktrans and k3max,
a marker of tumor hypoxia, were moderately negatively correlated (ρ = −0.41, p = 0.03).
Ktrans and DV exhibited a moderate positive correlation (ρ = 0.44, p = 0.02). The metric ve
and DV were moderately positively correlated (ρ = 0.40, p = 0.04).

Figure 6 shows the representative scatter plots between MMI-derived QI metrics.
The network as a graph constructed from 16 MMI-derived QI metrics, including T2

weighted tumor volume (Vt-MRI), using the CDA-based “spin-glass” analysis, is illustrated
in Figure 7. The CDA approach resulted in four communities with 33 edges in the network.
As a note, the edges were constructed between the nodes that yielded a Spearman rank
correlation value p < 0.05 (Table 2). The nodes within the community are densely coupled
to each other. In contrast, these nodes are relatively sparsely connected with other com-
munities in the same graph. The solid blue line represents the negative correlation. In
contrast, the positive correlation is represented by the orange and red colors, respectively.
The thickness of the lines representing the extent of correlation ranging from weak to strong
between them.
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multimodality imaging methods. (A) True diffusion coefficient (D) vs. mean of the maximum standardized uptake value
normalized to lean body mass (SULmean). (B) D vs. K1 (Perfusion constant for FMISO). (C) Ktrans (Volume transfer constant
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fraction of the extravascular extracellular space ) vs. DV.
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Figure 7. Sample network with 16 nodes and 33 edges constructed from a community detection
algorithm (CDA) based on the spin-glass model. The nodes represent the quantitative imaging (QI)
metrics derived from four multimodality imaging which are connected by lines or edges in the graph.
The perfusion metric, K1, and distribution volume (DV) derived from the 18FMISO-PET/CT overlap
with DW- and DCE-MRI metrics and are densely interconnected compared to other metrics in the
network ( blue color: 3 nodes [Vt-MRI, SULmax, mean], green color: 4 nodes [TBRmax, mean, and
k3max,mean] black color 6 nodes [K1, DV, D* and f, Ktrans and τi], and red color: 3 nodes [ADC, D,
and ve]). A solid blue line represents the negative correlation, whereas the orange and red colors
represent the positive correlation among the QIs. The thickness of lines indicates the extent of a
correlation (weak, moderate, and strong). The value in the color bar scale represents either negative
or positive links detected by the CDA approach in networks.
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Vt-MR is a community member in the network formed by FDG-PET/CT-derived
metrics (SULmax,mean [3 nodes, blue color]). The quantitative metrics ADC, D, and ve
formed the 2nd community network (3 nodes, red color). The metrics k3max,mean, and
TBRmax,mean created the 3rd community (4 nodes, green color). The fourth community
consisted of 6 nodes (black color), including K1 and DV (FMISO), f and D* (DW-MRI), and
Ktrans and τi (DCE-MRI). CDA approach yielded 8, 7, and 6 edges for the metrics DV, Ktrans,
and K1, respectively.

Ktrans is regarded as one of the most influential metrics to assess tumor microvascula-
ture. Ktrans (a member of the black community) exhibits distinct relationships with nearby
nodes (red community [ADC and D] and green community [k3.max]). In contrast, Ktrans did
not directly link FDG-PET/CT-derived metrics and tumor volume in the network. The
extent of the Ktrans relationship with nearby nodes (K1, DV, k3.max, and D*) was further
evaluated using regression analysis. The combination of three nodes (K1, DV, and k3max)
yielded a significant correlation (R2 = 0.45, adjusted R2 = 0.38, p = 0.002). In contrast, linear
regression analysis between Ktrans and k3max yielded a meaningful inverse relationship
(R2 = 0.23, adjusted R2 = 0.19, p = 0.011), indicating the influence of vascular permeability
on radiotracer diffusion in hypoxic tumors.

4. Discussion

Integration of metabolic (18F-FDG-PET/CT and 18FMISO- PET/CT) and functional
imaging (DW-, and DCE-MRI) aggregate the complementary information of tumor phys-
iology [10,23,41,42]. The present study investigated a correlation at pre-TX between QIs
obtained from MMI characterizing tumor = physiology, including glucose metabolism,
perfusion, hypoxia, pseudo-diffusion in the capillary network, cellularity, and perfu-
sion/permeability and metabolic activity markers using a CDA-based “spin-glass model”
in addition to Spearman correlation in HNSCC patients. The CDA approach identified the
four communities and revealed that Ktrans, a measure of perfusion/vascular permeability,
links to seven edges in the community. Thus, detecting communities and identifying their
relationship is an essential step to investigate robust imaging biomarkers for precision
medicine in HNSCC. Our previous two separate studies used 18F-FMISO dynamic PET
(dPET) to assess the tumor hypoxia and perfusion and monitor early response to chemo-RT
in HNSCC [41]. The first study with 18F-FMISO dPET data provided parametric maps
of tumor hypoxia, perfusion, and radiotracer distribution volume, improving the char-
acterization of a tumor lesion [40]. The other study concluded that kinetic modeling of
FMISO dPET data reveals a more detailed description of the tumor microenvironment
and improved assessment of response to chemo-RT than a single static image [10]. In DW-
MRI, IVIM derived QI metrics obtained at pre-TX and intra-TX weeks 1, 2, and 3 were
used to characterize and monitor response to chemo-RT. Hierarchical clustering performed
using the intra-TX IVIM derived QI metrics demonstrated the subtypes in HPV + patients
in HNSCC [23].

Jansen et al. found a correlation between tumor volume and 18F-FMISO SUV in
13 HNSCC patients [36]. The present study also found a strong correlation between
pre-TX MRI tumor volume with SULmax,mean. A moderate negative correlation between
SULmean and ADC was consistent with previous studies in HNSCC [6,55]. FDG-PET/CT-
derived SUV and DWI-MRI-derived ADC represent different aspects of the tumor cells.
The glycolytic activity of tumor cells (reflected by FDG uptake) is related to high tumor
cell density, consequently restricting water molecule diffusion and lowering ADC values.
It has been reported that there was a strong negative correlation between the mean of
pre-TX ADC and 18F-FDG PET SUV [56]. The present study did not find a significant
positive correlation between K1 and SULmax,mean. In contrast, Vidiri et al. reported a
significant negative correlation between Ktrans and 18F-FDG-PET/CT parameters in LNs of
oropharyngeal squamous cell carcinoma [13]. Surov et al. reported a moderate positive
correlation between SUVmax and kep [11]. In contrast, in the present study, SUL exhibited
a nonsignificant negative correlation with kep derived from the FXR model. Chen et al.
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study concluded that qMRI could provide additional value in distinguishing metastatic
nodes, particularly among small nodes, when used with FDG-PET [53].

Dynamic FMISO-PET/CT and DCE-MRI-derived QI metrics capture the tumor physi-
ology through various mechanisms. The molecular weights of FMISO (189.14 Daltons) and
Gd-based CA (Gd-DTPA ~ 547 Daltons) are different, and the transport mechanism across
the vasculature is assessed differently. The FMISO is lipophilic, and its uptake is driven by
passive diffusion out of the vasculature and through the cell membranes. The radiotracer
eventually accumulates in hypoxic regions, largely independently of the perfusion. In
contrast, the Ktrans measures the influx of a CA entering the EES, altering the T1 relaxation
of the tissue water protons, but CA does not enter the cell. As τi is associated with cell size,
τi = [(vi/A) × 1/P], where vi/A is the ratio of volume to the cell’s surface area and P is the
cell membrane’s permeability. Thus, a decrease in metric τi value associated with shrinkage
of a cell would correspond to an increase in ADC/D values. Previous studies reported
the inconsistent correlation between τi and SUV in breast cancer [57] and hepatocellular
carcinoma [58]. As a note, τi is mainly representing a cell metabolic activity characterized
by adenosine triphosphate production [30]. In the present study, Ktrans and k3max exhibited
a strong negative Spearman correlation.

Identifying the precise dose (e.g., dose escalation or de-escalation) for HNSCC patients
is difficult because of heterogeneous populations of various disease sites, stages, and
prognoses. HPV+ oropharyngeal cancer is a distinct biologic entity that shows a favorable
prognosis with standard chemo-RT [59]. In contrast, HPV-negative tumors continue to
have a poor prognosis despite treatment intensification. Thus, patient selection is vital
for treating less aggressive radiotherapy regimens to maintain excellent standard therapy
outcomes [60]. The utilities of MMI-derived biomarkers have been considerably improving
tumor delineation accuracy, subvolume determination, longitudinal tracking of treatment
response, permitting dose escalation or de-escalation to target tissues, and reducing toxicity
to nearby tissues and organs [16], thus highlighting the need for robust biomarkers to be
included in clinical trials.

Despite the significant advances in MMI methods, findings of reliable biomarkers
that can effectively assess changes in tumor physiology after RT are still challenging,
especially for precision therapy in HNSCC, given that we do not yet know which one
of these imaging modalities is the gold standard. The present study CDA “spin-glass”-
based analysis resulted in four communities for 16 MMI-derived metrics, clustering related
metrics together in a network. This indicates a preferential linking between nodes to the
other groups in the network exhibiting similar characteristics [39]. K1 and Ktrans, measures
of the tumor perfusion and permeability for FMISO and Gd-based CA, showed a strong
connection in the CDA network. Similarly, DV and ve, distribution volume for FMISO and
CA, exhibited a similar relationship. In contrast, k3max, a hypoxia marker, was negatively
correlated with the Ktrans and f. The metric k3 is related to the diffusive compartment, which
is hypoxic, consistent with the view that tumor hypoxia results from inadequate oxygen
supply to the tumor [61]. As a note, Ktrans represents a passive transport of CA across the
capillary wall driven by diffusion, whereas k3max is the FMISO uptake in hypoxic tissues
caused by convective transport [62]. Therefore, 18F-MISO-PET/CT and DCE-MRI can
provide complementary information for characterizing the tumor microenvironments [63].
The community structure displayed by a CDA approach is visually interpretable to identify
important biomarker metrics and infer their relationships. Thus, the CDA approach
may improve in identifying the surrogate biomarkers for prognostication at pre-TX in
HNSCC patients.

The present study is limited by the sample size for CDA analysis, which warrants
validation in a larger sample. Motion artifacts in the MR images due to the voluntary
and involuntary movements in the neck region, such as swallowing and breathing, can be
minimized by carefully setting up the scan. Respiratory motion artifacts can be minimized
with proper breath-holding and shortened scan duration. A robust co-registration method
could improve the correlation between QIs. The present study was also limited to assessing
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the correlation between mean QI values rather than a voxel-by-voxel basis. A B1 non-
uniformity due to varying the flip angle influences the accuracy and precision of DCE-
MRI-derived QIs at higher field strength. Hence, acquiring the B1 mapping sequence can
improve the accuracy of DCE-MRI-derived QI metrics. Despite these limitations, the CDA
approach demonstrated its potential in assessing the correlation between the QI metrics.

5. Conclusions

Significant Spearman correlations, ranging from moderate to strong, were observed
between few QI metrics. The CDA approach illustrated how and to what extent MMI-
derived QI metrics were associated in the network. After validation in a larger HNSCC
population, the present preliminary findings may help identify potential biomarkers in
individualized patient care.
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