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Simple Summary: Dosiomics is born directly as an extension of radiomics: it entails extracting
features from the patients’ three-dimensional (3D) radiotherapy dose distribution rather than from
conventional medical images to obtain specific spatial and statistical information. Dosiomic studies,
in a multicentre setting, require assessing the features’ stability to dose calculation settings and
the features’ capability in distinguishing different dose distributions. This study provides the first
multicentre evaluation of the dosiomic features in terms of reproducibility, stability and sensitivity
across various dose distributions obtained from multiple technologies and techniques and consid-
ering different dose calculation algorithms of TPS and two different resolutions of the dose grid.
Harmonisation strategies to account for a possible variation in the dose distribution due to these
confounding factors should be adopted when investigating a correlation between dosiomic features
and clinical outcomes in multicentre studies.

Abstract: Dosiomics is a texture analysis method to produce dose features that encode the spatial 3D
distribution of radiotherapy dose. Dosiomic studies, in a multicentre setting, require assessing the
features’ stability to dose calculation settings and the features’ capability in distinguishing different
dose distributions. Dose distributions were generated by eight Italian centres on a shared image
dataset acquired on a dedicated phantom. Treatment planning protocols, in terms of planning
target volume coverage and dose—volume constraints to the organs at risk, were shared among
the centres to produce comparable dose distributions for measuring reproducibility /stability and
sensitivity of dosiomic features. In addition, coefficient of variation (CV) was employed to evaluate
the dosiomic features’ variation. We extracted 38,160 features from 30 different dose distributions
from six regions of interest, grouped by four features’ families. A selected group of features (CV <3
for the reproducibility/stability studies, CV > 1 for the sensitivity studies) were identified to support
future multicentre studies, assuring both stable features when dose distributions variation is minimal
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and sensitive features when dose distribution variations need to be clearly identified. Dosiomic is a
promising tool that could support multicentre studies, especially for predictive models, and encode
the spatial and statistical characteristics of the 3D dose distribution.

Keywords: dosiomics; dose distribution texture analysis; multicentric study; reproducibility; stability;
sensitivity; radiation dosimetry; radiotherapy

1. Introduction

In the era of personalised medicine and targeted therapy, one of the most promising
methods introduced in clinical practice is radiomics [1]. The key idea behind radiomics is
that we can mine images by extracting image descriptors, called radiomic features, which
can provide rich information about the tumour or healthy tissue and can be used to build
predictive or prognostic models. This method allows quantitative analysis of different

Image modalities and identification of patterns and correlations among voxels that
can be of interest for improving diagnosis, prognosis and prediction of treatment out-
comes [2—4]. Clinical outcomes can be therefore predicted employing radiomics features,
potentially changing the treatment paradigm. Nevertheless, several studies highlight
the importance of providing robust and unbiased descriptors. Objective quantification
of reproducibility, stability and redundancy of features is a prerequisite for radiomics.
This kind of process has been performed widely in radiomics [5-12], and it is even more
meaningful when performed in a multicentric setting [13,14]. Dosiomics is born directly as
an extension of radiomics; it entails extracting features from the patients’ three-dimensional
(8D) radiotherapy dose distribution rather than from conventional medical images [15,16]
to obtain specific spatial and statistical information. Furthermore, it can parameterise
the dose distribution in particular regions of interest (ROIs) by intensity, textural and
shape-based features allowing the description of the dose distribution at a high complexity
level, distinct from those obtained from dose-volume histograms (DVHs) [17]. Indeed, 3D
dose distribution optimisation and evaluation are still mostly based on DVH endpoints,
dose distribution visual inspection and DVH-based metrics. Nevertheless, the well-known
drawback of DVH is to collapse the 3D dose information in 2D metric, losing the infor-
mation on its spatial and statistical distribution. The integration of dosiomics with the
DVH could constitute an advanced tool to evaluate the radiotherapy plan quality [18] by
identifying new dose distribution metrics based on dosiomic features. A second appealing
development is introducing dosiomic features into Tumour Control Probability (TCP) and
Normal Tissue Complication Probability (NTCP) models, thus overcoming the current
limitation of these models [19]. Some authors recently employed dosiomics to improve the
prediction of side effects [20-22] or local control after radiotherapy [23], including prelimi-
nary multicentre experiences [24]. The proposed dosiomic signatures must be highly stable
and reproducible and need validation before being used in clinical practice. Developing
robust models requires ample training and validation datasets with radiotherapy data from
many patients for any specific cancer site. These needs settle dosiomics in the framework of
“big data” and push towards multicentre studies. Possible sources of variation for radiomic
features include different radiotherapy techniques, treatment planning systems (TPSs),
dose calculation algorithms and dose grid resolutions. The variability due to these sources
may hide any potential variability associated with the dose-response, making at least some
of the dosiomic models unreliable and preventing the generalization of results. In this
frame, Placidi et al. evaluated the robustness of dosiomic signatures across grid resolution
and algorithm for dose calculation [25] in a monocentric setting. The results of that study
highlighted the not negligible variation in dosiomic features, especially for target region
and for dosiomic textural features; therefore, dosiomic studies should always provide a
reporting of grid resolution and algorithm dose calculation. We here propose to investigate
the stability of dosiomic features in a multicentre setting with two main aims: (a) to provide
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an assessment of the stability of dosiomic features to dose calculation settings and (b) to
assess the dosiomic features capability in discriminating dose distributions that are gen-
erated with different radiation therapy devices. This study provides the first multicentre
evaluation of the dosiomic features in terms of reproducibility, stability and sensitivity
across various dose distributions obtained from multiple technologies and techniques and
considering different dose calculation algorithms of TPS and two different resolutions of
the dose grid.

2. Materials and Methods

The evaluation of dosiomic features’ extraction from different dose distributions was
performed by several centres, which participate in the Dosiomics Team of the Radiomics
Working Group of “Alliance Against Cancer” (Alleanza Contro il Cancro, ACC), a national
oncology network founded in 2002 by the Italian Ministry of Health. Specifically, nine
centres have contributed to this analysis. Dose distributions were generated by eight out
of the nine centres involved in the study on an image dataset acquired on a dedicated
phantom (see the specific section below) shared among the centres. Each of these centres
could provide more than one dose distribution based on the availability of technologies
and delivery techniques.

2.1. Phantom

A computed tomography (CT) scan of a cylindrical heterogeneous phantom was
acquired for treatment planning and dose calculation. In particular, the ArcCheck [26]
PMMA insert (ArcCHECK MR Sun Nuclear Melbourne Florida, US) was modified by
substituting 4 PMMA rectangular sub-inserts with the following equivalent densities: lung,
bone, muscle and adipose. The planning CT (GE. Optima CT580 W HiSpeed DX/I Spiral)
had a slice thickness of 1.25 mm, 140 kV, pixel size of 1.269 mm?, as shown in Figure 1.

ft
arotid

Muscle Adipose

Figure 1. Planning CT of the phantom employed in the study and the countered Regions of Interest
(ROIs). Six different ROIs were contoured: planning target volume (PTV), left parotid, right parotid,
spinal canal, trachea and RING. Ring structure is the expansion of 3 cm from the PTV and cropped of
0.0 cm from the PTV edge.
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On the acquired planning CT, the regions of interest (ROIs) simulating the tumour
and organs at risk (OARs) of a head and neck radiotherapy treatment were contoured.
These included a planning target volume (PTV), left parotid, right parotid, spinal canal,
planning organ-at-risk volume for the spinal canal (PRYV, i.e., isotropic 4 mm expansion of
spinal canal) and trachea. Moreover, we added a RING structure defined as an expansion
of 3 cm from the PTV and cropped of 0.0 cm from the PTV edge to ensure a high dose
gradient outside the PTV. The planning CT and its ROIs were exported in DICOM format
and shared among the centres. In terms of PTV coverage and dose—volume constraints
to the OARs, two different planning protocols, including minimum and maximum dose
to the PTV and dose—volume constraints to the OARs, were followed by participants to
produce comparable dose distributions, which were used to evaluate dosiomic features
in terms of reproducibility, stability and sensitivity. Dose distribution computation was
performed from eight different centres, named A, B, C, D, E, F, G, H.

2.2. Plan and Dose Prescription: Same Techniques, Technology and TPS

To evaluate the reproducibility and stability of dosiomic features, we planned a series
of Intensity Modulated Radiation Therapy (IMRT) treatments with dose distributions as
equivalent as possible, employing the same delivery technique, a unique dose distribution
optimisation protocol and identical or similar LINACs. With reproducibility, we mean
that a result obtained by an experiment should be achieved again with a high degree of
agreement when the study is replicated with the same methodology by different researchers.
A stable measure, on the other hand, is one in which the sources of variation are consistent
over different inputs and conditions; here it is TPS and Technologies. This means that the
process does not exhibit unpredictable variation for this purpose. We chose almost similar
LINACs and the same photon energy, gantry angles, TPS and planning objectives. We
considered only IMRT 6MV FF Varian machines (Trilogy, TrueBeam, TrueBeam Edge and
Clinac) with the Eclipse-Aria TPS for this study phase. The normal tissue objective (NTO)
tool was employed with the default setting, and dose grid resolution (optimisation and
calculation) was set to 1 mm. Table 1 reports the details of the IMRT protocol.

Table 1. Details of the IMRT protocol used to study the stability of the features when derived from almost equivalent plans:
beam setup, dose prescription and constraints for organs at risk.

Collimator Dose
Gantry Angles Energy Dose Rate Anel Calculation Iteration
A gles Algorithm
Beam settings 0° 20° 80°

120°160°,200°, 6 MV FF 300MU/min 15 forall the AAA At least 700
240°, 280°, 320°

5&;’&1:11355 Upper: Vol(%) = 0, Dose(Gy) = 68, Priority = 140 Lower: Vol(%) = 100, Dose(Gy) = 66, Priority = 140

OAR Trachea Parotid L Parotid R PRV SC Spinal canal RING
s
constraints Dmean =49.5Gy  Dmean =5.0 Gy Dmean =23.0 Gy  Dmax =40.0Gy  Dmax =62.0 Gy  Dmax =39.96 Gy
Priority = 80 Priority = 50 Priority = 100 Priority = 90 Priority = 110 Priority = 90

FF = flattening filter; OARs = Organs at Risk; MU = monitor units; Dimean = mean dose; Diax = max dose; AAA = anisotropic analytical
algorithm; Vol = volume; Parotid L = left parotid; Parotid R = right parotid; PRV SC = planning organ-at-risk volume for the spinal canal.

Eight IMRT dose distributions provided by different centres were included in the
“stability” dataset. Table 2 summarises the Varian (Varian Medical Systems) Linacs used,
while all the other plan parameters, equal for all the centres, are shown in Table 1.

Figure 2 shows the eight dose distributions included in the studies. A reproducibility
study (smaller green rectangle) was conducted on the dose distribution obtained by plans
E 1,B_1,D_1and A_1 (all TrueBeam Linac), while stability study (red rectangle) includes
all eight dose distributions listed in Table 2.
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Table 2. List of centres that computed the IMRT dose distribution for the reproducibility and
stability studies.

Centre_Plan LINAC
G_1 CLinac
E_1 TrueBeam
E 2 Edge
B_1 TrueBeam
B2 Edge
D 1 TrueBeam
D2 Trilogy
Al TrueBeam

Figure 2. The four IMRT dose distributions included in the reproducibility study (within the green rectangle), and the eight

IMRT dose distributions included in the stability study (within the red rectangle).

2.3. Plan and Dose Prescription: Different Techniques, Technologies and TPSs

To evaluate the sensitivity of the dosiomic features extraction to different techniques,
technologies and TPSs, each centre planned one or more treatments using a range of
different technologies among those available to the centres involved. Sensitivity is defined
as the smallest absolute amount of change that can be detected by a measurement. The
different delivery techniques, accelerators, TPS and dose calculation algorithms considered
in this study are reported in Table 3.

Eleven dose distributions provided by different centres were included in the dataset.
Each dose distribution was calculated and optimised with two different dose grid resolu-
tions: 1 mm and 2 mm, always keeping the dose to PTV and the OARs within prescription
and constraints. No limitation was imposed in terms of beam setup and geometry. The
dose prescription simulated a theoretical head and neck mono-lateral treatment plan with
a prescribed dose to the PTV of 66 Gy and dose per fraction of 2.2 Gy. Dose prescription
and OARs constraints are summarised in Table 4. Figure 3 shows the resulting eleven dose
distributions with 1 mm dose grid resolution.
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Table 3. List of the eleven plans generated by the centres involved in the study, type of particle, beam energy, delivery
technique, kind of Linac, treatment planning system and dose calculation algorithm.

Dose
Centres_Plan  Particle Energy (MV) Technique Accelerator Devices TPS Calculation
Algorithm
A_S1 photon 6 FF VMAT TrueBeam. Varian Eclipse AAA
B_S2 photon 6 FF VMAT TrueBeam. Varian Eclipse AAA
Synchrotron .
C_S3 proton 62.3-226.9 MeV /u IMPT (CNAO) [27] RayStation MC
D_S4 photon 6 FF VMAT TrueBeam. Varian Eclipse AAA
E_S5 photon 6 FF VMAT TrueBeam. Varian Eclipse 15.6 Acuros
F_S6 photon 6 FF VMAT Synergy. Elekta Pinnacle CcC
F_S7 photon 6 FF VMAT Synergy, Elekta RayStation CcC
G_S8 photon 6 FF VMAT Clinac, Varian Eclipse AAA
Tomotherapy, Tomotherapy
H_S9 photon 6 FFF TOMO Accuray HT 216 CcC
Vero, .
H_S10 photon 6 FF DWA Brainlab-Mitsubishi Raystation 9B SP2 MC, CC
H_S11 photon 6 FF VMAT Trilogy, Varian Eclipse 15.6 AAA

DWA = dynamic wave arc; TPS = treatment planning system. FF = flattening filter; VMAT = Volumetric Modulated Arc Therapy;
IMPT = Intensity Modulated Proton Therapy; TOMO = Tomotherapy; AAA = anisotropic analytical algorithm; MC = MonteCarlo;
CC = collapsed cone.

Table 4. Dose prescription and constraints to organs at risk employed for the generation of the dose
distributions for the sensitivity study.

ROIs Dose Prescription and Constraints
PTV D98% > 95% V105% < 10%
Spinal canal Dmax <45 Gy
PRV spinal canal Dmax <45 Gy
Trachea Dmean < 50 Gy
Parotids Dmean <25 Gy
RING Dmax <95% = 62.7 Gy

PTV = Planning Target Volume; PRV SC = planning organ-at-risk volume for the spinal canal; Dyean = mean dose;
Dmax = maximum dose; D98% = minimum dose to the 98% of the volume; V105% = percent of volume receiving
at least 105% of the prescribed dose.

Figure 3. The eleven dose distributions obtained by different techniques, technologies and treatment planning systems,
with 1 mm dose grid resolutions.
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2.4. Extraction of Dosiomic Features

The extraction of dosiomic features was centralised and carried out by a specific
routine in the MODDICOM library, a free software package developed in R language
optimised for automatic loading of DICOM images and radiomic analysis [28]. A spe-
cific routine for dose distribution texture analysis was realised for the purpose of this
study, loading and processing the required DICOM dataset (planning CT, RT-Structure and
RT-Dose). The features definition, nomenclature and extraction methodology following
the one used for radiomic studies based on medical images, as accurately described by
Zwanenburg et al. [29]. In dosiomics, the “image” is constituted by voxels with their grey
level corresponding to the absolute dose in Gy. The absolute dose levels were binned in
100 discrete levels from zero to max dose before performing feature extraction. A total of
212 dosiomics features defined in the Image Biomarker Standardisation Initiative (IBSI) [29]
were extracted from the selected ROIs (PTV, left parotid, right parotid, spinal canal, trachea
and RING) belonging to the following families: 17 intensity-based statistics (STAT), 100 fea-
tures from grey level co-occurrence matrix (GLCM), 63 from grey level run length matrix
(GLRLM) and 32 from grey level size zone matrix (GLSZM). Morphological features were
not included in this study since not considered relevant for dosiomic analysis.

2.5. Data Analysis

The analysis mirrored the two main goals of the study: to assess (a) the stability of
dosiomic features to dose calculation settings and (b) the sensitivity to a change in dose
distribution, that is, the ability of dosiomic features in distinguishing dose distributions
generated with different radiation therapy devices.

As a preliminary test, we evaluated the software reproducibility for the computation
of dosiomic features by extracting them in two different centres, both employing the MOD-
DICOM library. We considered the complete set of 212 dosiomic features extracted from the
same dose distribution (from centres A) computed with 1 mm and 2 mm calculation grid
resolution and from all the contoured ROIs for this check. Differences in values for single
features were then analysed. The expected differences are zero since dosiomic features
extraction should not depend on the same software employed in different centres.

We used the coefficient of variation (CV) to evaluate the stability of the dosiomic fea-
tures to dose calculation settings, i.e., when dosiomic features are derived from equivalent
plans (“IMRT-Linac reproducibility”). The CV is a standardised measure of the dispersion
of a distribution leading to the degree of intra-features variability. It is defined as the ratio
of the standard deviation o concerning the mean value p (or to its absolute value |ul). CV,
to respect to standard deviation, is recommended when datasets with different units or
widely different means were considered.

For assessing reproducibility, we computed the CV for the dosiomic features extracted
by four IMRT dose distributions with the same technique, technology, TPS and Linac
version (Varian, TrueBeam, Eclipse, AAA). This analysis investigates reproducibility as
the features are extracted after the experiment (here, dose calculation) was replicated with
the same methodology (here, same plan, same TPS, same LINAC) by different researchers
(here, different centres). All ROIs were considered individually.

In the stability analysis, we still computed CV among the dosiomic features extracted
by the entire set of eight IMRT dose distributions derived from the same technique, technol-
ogy and TPS version. In this case, we considered different Linac Technologies (see Table 4).
This analysis investigates stability as features are considered for their possible variation
over different inputs and conditions (here, different TPSs and LINACs) to prove that the
process does not exhibit unpredictable variation. Awareness and quantification of these
variations should always be taken into account to avoid misinterpretation of results from
studies, including dosiomic features.

The sensitivity of dosiomic features to dose distributions generated with different
radiation therapy devices, TPSs and algorithms was also evaluated in terms of CV (see
Table 5). In this case, CV describes how a dosiomic feature can change due to different dose
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distributions due to different techniques, technologies, TPSs, dose calculation algorithms,
energies and beam quality.

Table 5. List of the percentage of common dosiomic features among different studies and different CV thresholds.

Repr. (CVtH < 0.3) Sens. 1 mm (CVtyg > 1) Stab. (TH < 0.3) Stab. (CVty < 0.3)
ROIs N n N n
Stab. (CVty < 0.3) Sens. 2 mm (CVty > 1) Sens. T mm (TH > 1) Sens. 2 mm (CVty > 1)
PTV 63.2% 5.7% 9.4% 1.9%
Left parotid 49.5% 14.2% 2.4% 1.4%
Right parotid 46.2% 5.7% 9.0% 2.8%
Spinal canal 68.9% 12.7% 3.3% 2.8%
Trachea 58.5% 16.5% 2.8% 2.8%
RING 82.5% 1.4% 0.0% 0.5%

Repr. = Reproducibility (green), Stab. = Stability (red), Sens. 1 mm= Sensitivity 1 mm (light blue), Sens. 2 mm= Sensitivity 2 mm (dark blue).

We adopted a common guideline of thresholding CV value as a strategy to select
stable, reproducible and sensitive features. With a view to future multicentric studies
concerning tumour control and/or OARs toxicity, it is crucial to select dosiomic features
with a small CV, for example, with a CV < 0.3, when dose distributions are expected to be
stable and reproducible. Simultaneously, it would also be desirable to identify dosiomic
features able to recognise true differences in the dose distributions, so with a large CV,
e.g., with a CV > 1, which classifies the sensitivity of the dosiomic features to the dose
distribution variation. Since the proposed threshold values are a completely arbitrary
choice, the CV > 0.8 threshold was also employed to investigate further and evaluate the
variation in the dosiomic feature’s sensitivity on the selected threshold. Dosiomic features
that are both stable (CV < 0.3) and sensitive (CV > 1 or CV > 0.8), i.e., that constitute an
optimum set for modelling purposes, were described through Venn diagrams.

3. Results

We extracted a total amount of 38,160 dosiomic features from 30 different dose distri-
butions from six ROIs, grouped by four features’ families. In terms of reproducibility of
dosiomic features extraction using the same software, two centres extracted 212 dosiomic
features for each calculation grid resolution size (1 mm and 2 mm), resulting in a compari-
son of 424 features between the centres. Single feature value differences, both for 1 mm and
2 mm calculation grid resolutions, were found to be equal to zero for all the considered
dosiomic features. This result confirms the reproducibility of the dosiomic features when
extracted using the MODDICOM software package (version 0.52).

We evaluated 5088 and 10,176 dosiomic features to assess the reproducibility and
stability of the extracted dosiomic features, respectively. Tables S1 and S2 show the CV
values grouped by ROIs and features’ family for reproducibility and stability studies,
respectively.

Concerning the sensitivity study, we extracted 27,984 dosiomic features from the entire
set of 11 dose distributions and six ROIs. Tables S3 and S4 depict the CV values grouped
by ROIs and feature’ family, respectively, for the 1 mm and 2 mm dose grid calculation
sensitivity studies.

Results are also summarised in Figures 4 and 5 in terms of box plots for the left parotid
and PTV, respectively. The black horizontal line within the box display for each box the
median CV value. All the other ROIs (right parotid, spinal canal, trachea and RING) are
reported in Figures S1-54 in the Supplementary Materials. Additionally, Table S5 lists the
mean CV values for all the studies, ROIs and family’s features.
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Figure 4. Box plots of the CV values for the sensitivity (1 mm and 2 mm), stability and reproducibility studies, grouped for
the four different features’ families (STAT, CM, RLM and GSZ) for the left parotid.
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Figure 5. Box plots of the CV values for the sensitivity (1 mm and 2 mm), stability and reproducibility studies grouped for
the four different features’ families (STAT, CM, RLM and GSZ) for the PTV.

The Venn diagrams in Figure 6 highlight the features that are both stable and sensitive
after the choice of specific CV threshold (CV1y) values. For example, results for the set of
stable AND sensitive features for the ROIs PTV and left parotid are given in Figure 3 for
two different CVry values for the sensitivity, CV > 1 and CV > 0.8, while the CV threshold
for stability is kept to 0.3.
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Figure 6. Venn diagrams showing the dosiomic features that are both stable and sensitive between the stability and

sensitivity study for the PTV and left parotid. The sensitivity CV threshold was set to two different values: CVry > 1 and

CVty > 0.8 for the PTV.

The Supplementary Materials (Tables S6-510) report Venn diagrams highlighting
dosiomic features that are both stable and sensitive for the other ROIs considered in this
analysis. Table 5 summarises the percentage of features that are both stable and sensitive
(CV threshold =1 and different resolution of the grid for dose calculation, 1 mm vs. 2 mm)
across all the ROIs, and the details are shown in Tables S6-511 in the Supplementary Materials.

4. Discussion

Dosiomic is increasingly used in clinical studies aiming to improve the prediction of
clinical outcomes, e.g., locoregional recurrence after IMRT for head and neck cancer [23] or
local control after carbon-ion radiotherapy in skull-base chordoma [21]. Dosiomic features
were analysed by machine learning for the prediction of acute-phase weight loss in lung
cancer patients treated with radiotherapy [30]. Among preliminary multicentre experiences,
Adachi et al. [24] aimed at predicting radiation pneumonitis after lung stereotactic body
radiation therapy using dosiomics. In both single and, especially, multicentre studies,
consistent reporting of dose distribution to provide a robust setting for the study is a key
point to ensure stronger validation of the use of dosiomic features in the clinical routine.

The presented study provided the first assessment of the variation in dosiomic features
to dose calculation environments in a multicentre setting and the sensitivity of dosiomic
features in distinguishing dose distributions generated with different radiation ther-
apy devices.

If considered reproducibility and stability studies, dosiomic features’ families with
higher mean CV are always SZM apart from the RING and left parotid ROIs where
STAT family shows the higher CV mean value. In terms of capability in describing and
evaluating 3D dose distribution to a higher level than DVHs and employing dosiomic
features in predictive modelling, CV mean values could not provide any useful information.
Nevertheless, this study can describe a peculiar behaviour of the single dosiomic features
(listed in Tables S1-5S4) and families that could be representative for further studies.

The box plots in Figures 1 and 2 and Figures S1-54, highlight how dosiomic features
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depend on dose distribution, ROIs and feature families. As expected, larger CV variations
were observed in the sensitivity studies (with a dose calculation grid of 1 mm and 2 mm).
It is difficult to generalise these results due to the dose distribution dependency, but, in
terms of ROIs, it is visible that ROIs that lay in the gradient region (RING and right parotid)
show lower CV values on average (Table S5). Concerning the dosiomic features’ families,
GLCM has almost always the lowest value for all the studies and all the ROIs except for
the right parotid in the sensitivity study using a dose calculation grid of 1 mm, PTV and
spinal canal in the sensitivity study using a dose calculation grid of 2 mm. Even though
the mean value of a single feature is considered, these results highlight how the GLCM
features families show the lowest variation in terms of CV. Dosiomic features’ families with
higher mean CVs in the sensitivity studies (both with1 dose calculation grid of 1 mm and
2 mm) are RLM and SZM in the 87.5% of the cases for the RING, left parotid, right parotid
and PTV ROIs, while STAT for spinal canal and trachea.

Of note, reproducibility and stability of features can also be evaluated in terms of
intraclass correlation coefficient (ICC), as is customary in most studies in which radiomic
and dosiomic characteristics are evaluated. ICC is defined as the ratio of the subject variance
by the sum of the subject variance, the rater variance and the residual, where a lower rater
variance implies a reliable scale. ICC expresses how strongly the components in the same
group resemble each other [10]. The peculiar analysis presented in this study forces the
TPSs/Linacs/RT techniques/RT Technologies to be the “raters” of the dose distributions,
while the different ROIs would be the “subjects”. Nevertheless, the ROIs present with very
different dose distributions (high doses vs. low doses, almost uniform dose distribution vs.
high gradient dose distribution), which means high variation between-subjects (possibly
larger than variation among raters) that could lead to biases in ICC calculations. For
these reasons, we chose to stick to the coefficient of variation that does not require an
evaluation across different “subjects” and only needs evaluation across different “raters”.
Nevertheless, an example of ICC evaluation is reported in the Supplementary Materials
(Figure S5) considering the STAT dosiomic features’ family and the three possible ROIs
groups: all ROIs, high dose region ROIs and low dose region ROIs.

The main aim of this study was to provide suggestions on a set of dosiomic features
that are at the same time reproducible, stable and sensitive, i.e., robust across variations that
are not related to true differences in the dose distribution and able to pick up even subtle
true differences in the dose distributions. To achieve this result, a specific guideline of
thresholding CV values was defined to filter out reproducible, stable and sensitive features.

The choice of CV thresholds, i.e., CV < 0.3 to define reproducibility and stability and
CV > 1, or CV > 0.8, to define sensitivity, is somehow arbitrary. To date, there are no
specific and shared reference threshold values; our choice was driven by some statistical
considerations. A CV < 0.3 means that the standard deviation of the value distribution
for the single feature is less than 30% of the mean value of the same distribution, which
means a reasonably low variation across the distribution, with 68% of values in the interval
“mean value +30%"”. A CV > 1 (or > 0.8) means that the standard deviation of the value
distribution for the single feature is (almost) the same “size” as the mean value, which
entails a high possibility that values sampled from such a distribution can be identified as
significantly different after a statistical test, which would be desired in outcome modelling.

This approach allowed identification of dosiomic features that are both stable and
sensitive, as depicted in Figure 3 for PTV and left parotid, summarised in Table 1 for
all the ROIs and dosiomic features’ families and detailed in Tables S6-S11 for all the
dosiomic features. As an example, identifying features that overlap between sensitivity
study with 1 mm and 2 mm dose calculation grid is potential information that could
be useful retrospective multicentre studies where different dose grid resolutions were
employed, or for prospective studies to evaluate the possible need of guidelines on the
dose calculation grid settings.

We would like to emphasise once more that the CV threshold values selected to
filter out and define reproducible, stable and sensitive dosiomic features are not absolute
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suggested values to take as completely “a priori” reference in future dosiomics studies.
Our choice was grounded on some statistical considerations, and results are possibly
associated with the peculiar nature of our study;, i.e., a phantom study, fixed centralised
contouring of ROIs, common dose calculation protocol including fixed-dose prescription,
planning objectives and OARs constraints. Other thresholds on CVs could be selected for
other studies considering different features distributions, e.g., a possible clear bimodal
distribution which derives from “merging” of two separated distributions for patients
with/without a selected clinical outcome.

The employment of dosiomic in clinical practice could represent a powerful tool to
handle better the 3D dose spatial and statistical information if compared with conventional
tools, such as DVH and DVH metrics. Potentially, the granularity and quantity of the infor-
mation provided by the dosiomic features, and above all the usability of such information,
could better support the clinical decision than standard parameters, such as DVH, DVH
metrics and visually assessment of the 3D dose distribution. Obviously, what is still needed
is a clinical translation of the meaning of each dosiomic feature both within the use of full
3D dose distribution as a new metric to better assess plan quality during the optimisation
phase as well as during the plan evaluation, but also to finally include dosiomics in the pre-
dictive models. Dosiomic features could represent additional parameters to be employed
in the predictive models: this could lead to identifying some disomic features that, both
during the plan optimisation and evaluation, could be considered to prevent or limit acute
toxicities, as well as to improve local control.

Additionally, to exploit the full benefits of big data, machine and deep learning,
multicentre trials are needed [31]. Multicentre studies (both retrospective and prospective)
are strongly based on the quality of the selected parameters. How do we best use the
parameters we have been using so far? Are there any other parameters that could support
future studies? Dosiomics features could be one of these, being potentially much more
sensitive to dose distribution variation. Moreover, in a multicentre trial, a priori selection of
the optimal dosiomic features to be employed in the study would lead to more robust and
unbiased studies. According to the present analysis, it is essential to highlight how even
just the variation in different dosiomic features underlines a possible use of the dosiomics
to select dose distribution within multicentric studies to avoid bias during the further
clinical outcome correlation analysis.

The first limitation of the present study is related to the pool of the considered radio-
therapy techniques and technologies. They are pretty diverse and representative but do not
describe all the possible techniques and technologies available in clinical practice. Despite
this, we believe that the employed number of radiotherapy techniques and technologies
used by the eight centres are enough to support the message that a substantial number of
dosiomic features are stable, and at the same time, they can distinguish or recognise dose
distributions generated with different radiation therapy devices.

A second possible limitation is related to the number of considered features. We
considered 212 dosiomic features, other dosiomic features of the second-order could indeed
have been considered. Nevertheless, the selected features represent a robust dataset,
internationally validated in the radiomics setting [29], available to proceed in the clinical
implementation of the dosiomics, both in clinical outcome predictive models and in the 3D
dose distribution description, optimisation and evaluation processes.

As a further study, dosiomic feature extraction analysis on different software [32]
should also be considered to evaluate the possibility of employing different software to
extract dosiomic features in multi-institutional studies.

5. Conclusions

The present study has assessed the stability of dosiomic features and their capability
in distinguishing dose distributions generated with different radiation therapy devices
in a multicentre setting. These results suggest that being dosiomic features sensitive to
changes in dose calculation parameters, a consistent reporting of the TPS, dose calculation
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algorithms and pixel spacing used to calculate dose distributions is required. Harmoni-
sation strategies to account for a possible variation in the dose distribution due to these
confounding factors should be adopted when investigating a correlation between dosiomic
features and clinical outcomes in multicentre studies.
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