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Simple Summary: An increased risk of relapse and death from minimally invasive radical hysterec-
tomy has been reported in some patients with early cervical cancer. Thus, the development of an
intuitive and precise decision-aid tool, which estimates recurrence and mortality rates by surgical
approach, is necessary. To develop models predicting survival outcomes according to the surgical
approach, we collected clinicopathologic and survival data of patients with 2009 FIGO stage IB
cervical cancer who underwent a radical hysterectomy. Using only variables that could be obtained
preoperatively, we developed various models predicting the probability of 5-year progression-free
survival and overall survival. Among them, hybrid ensemble models, combined with logistic re-
gression and multiple machine learning models, achieved the best predictive performance. The
developed models are expected to help physicians’ and patients’ decision making related to the
surgical approach for primary radical hysterectomy.

Abstract: We purposed to develop machine learning models predicting survival outcomes according
to the surgical approach for radical hysterectomy (RH) in early cervical cancer. In total, 1056 patients
with 2009 FIGO stage IB cervical cancer who underwent primary type C RH by either open or
laparoscopic surgery were included in this multicenter retrospective study. The whole dataset
consisting of patients’ clinicopathologic data was split into training and test sets with a 4:1 ratio. Using
the training set, we developed models predicting the probability of 5-year progression-free survival
(PFS) and overall survival (OS) with tenfold cross validation. The developed models were validated
in the test set. In terms of predictive performance, we measured the area under the receiver operating
characteristic curve (AUC) values. The logistic regression models comprised of preoperative variables
yielded AUCs of 0.679 and 0.715 for predicting 5-year PFS and OS rates, respectively. Combining both
logistic regression and multiple machine learning models, we constructed hybrid ensemble models,
and these models showed much improved predictive performance, with 0.741 and 0.759 AUCs for
predicting 5-year PFS and OS rates, respectively. We successfully developed models predicting disease
recurrence and mortality after primary RH in patients with early cervical cancer. As the predicted
value is calculated based on the preoperative factors, such as the surgical approach, these ensemble
models would be useful for making decisions when choosing between open or laparoscopic RH.
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1. Introduction

Cervical cancer is the fourth most common female cancer for both incidence and
mortality, with an estimated 604,127 new cases and 341,831 cancer deaths worldwide in
2020 [1]. There are significant geographical variations in cervical cancer incidence and
mortality rates. In Korea, despite a gradual decrease in incidence [2], the proportion of
annual cervical cancer among newly diagnosed female cancers remains higher, compared
to the United States (2.5% vs. 1.6%) [3,4]. The presence of early symptoms and effective
screening tools have led to more than a third of cervical cancer cases being diagnosed
at an early stage [4]. For early cervical cancer, primary radical hysterectomy (RH) is
recommended [5,6].

RH has been commonly performed via minimally invasive surgery (MIS) [7,8]. How-
ever, this approach declined in popularity after the publication of “Laparoscopic Approach
to Carcinoma of the Cervix (LACC)”, a phase III randomized controlled trial (RCT), in
2018 [9]. This trial reported an increased risk of relapse and death in MIS RH versus con-
ventional open RH (ORH) in patients with the 2009 International Federation of Gynecology
and Obstetrics (FIGO) stage IA1 (lymphovascular invasion [LVSI]) to IB1 lesions [9]. Sub-
sequent retrospective studies from different study groups also reported inferior survival
outcomes with MIS RH [10–17].

Before abandoning MIS RH in all patients with early cervical cancer, there was an
effort to find a specific population that can safely undergo MIS RH without compromising
survival outcomes. Previously, our research team suggested patients with 2009 FIGO stage
IB1 and cervical mass size ≤ 2 cm on preoperative magnetic resonance imaging (MRI)
were safe candidates as laparoscopic RH (LRH) did not influence disease recurrence in this
subgroup [13,14]. This subgroup also had a similar recurrence rate, regardless of surgical
approach in the SUCCOR study, a European retrospective cohort study [11].

Further well-designed confirmatory prospective studies are warranted to identify
optimal candidates for MIS RH. Until then, physicians must discuss with their early
cervical cancer patients regarding surgical approach plans for RH [18]. It would thus be
a great help if an intuitive and precise decision-aid tool, which estimates recurrence and
mortality rates by surgical approach, is developed. Recently, machine learning methods
have found popular applications in clinical cancer research, especially for predicting
cancer prognosis [19]. However, solo use of machine learning models might not be much
more beneficial than traditional logistic regression [20,21]. Therefore, we believe that a
combination of both logistic regression and machine learning models is required to achieve
higher predictive capabilities.

Thus, this study aimed to develop hybrid ensemble models predicting the risk of
disease recurrence and mortality according to the surgical approach in FIGO stage IB
cervical cancer patients. Focusing on clinical utility, we only used factors or variables,
which could be identified preoperatively.

2. Materials and Methods
2.1. Study Population

Inclusion criteria for the study population were as follows: (1) patients with 2009 FIGO
stage IB cervical cancer; (2) either primary laparoscopic or open Type C RH procedures,
as defined in the Querleu and Morrow classification [22] at the three included hospitals
between 2000 and 2018; (3) preoperative MRI scans were available. We excluded patients
with any of the following conditions: (1) received chemotherapy or radiation preoperatively;
(2) histologic types other than squamous cell carcinoma, usual type adenocarcinoma, and
adenosquamous carcinoma; (3) insufficient clinicopathologic data.
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From the cervical cancer cohorts of the three institutions in Korea, a total of 1138 patients
who met these inclusion and exclusion criteria were identified. Among them, we further
selected patients by assessing treatment adequacy to develop more accurate predictive
models. We excluded 82 patients who did not receive adjuvant radiation although they
belonged to either pathologic high-risk group (at least one of the three pathologic findings,
positive resection margin, parametrial [PM] invasion, and lymph node (LN) metastasis) or
intermediate-risk group (according to the Sedlis criteria [23]).

2.2. Data Collection

During the study period, all surgical procedures were performed by faculty who had
completed their gynecologic oncology fellowship training. Before the LACC trial reports,
no internal policies existed for selecting an optimal surgical approach for primary RH
in patients with early cervical cancer. From the medical records and pathologic reports
review, we collected information about clinicopathologic characteristics, such as age, stage,
preoperative conization, surgical procedures, pathologic findings, and adjuvant treatments.

In addition to preoperative MRI, patients frequently underwent computed tomogra-
phy (CT) scans and/or positron emission tomography (PET) to evaluate nodal and distant
site metastasis. We reviewed imaging studies taken within one month prior to surgery and
assessed the following: First, we measured the cervical mass size on preoperative MRI,
as MRI has been shown to be the most accurate imaging modality for this [24]. Second,
patients suspected of PM invasion were identified using preoperative MRI, as MRI is the
best modality to evaluate the local extent of cervical cancer [25–28]. Third, all the available
imaging modalities for assessing pelvic and para-aortic LN status were evaluated.

After primary treatment, surveillance methods were the same among the three institu-
tions. Regardless of surgical approach, routine CT scans were conducted every 3–4 months
for the first two years, every half year for the next two years, and then, every year or when
the patients were suspected of recurrence by symptoms or abnormal examination findings.
We determined disease progression according to the Response Evaluation Criteria in Solid
Tumors version 1.1 [29]. For survival data, progression-free survival (PFS) was calculated
from the date of RH to the date of disease progression, while overall survival (OS) was
calculated from the date of RH to the date of cancer-related death or last follow-up.

2.3. Dataset Preprocessing

Statistical analyses were performed using IBM SPSS statistics software (version 25.0;
IBM Corp., Armonk, NY, USA) and R statistical software (version 4.0.2; R Foundation for
Statistical Computing, Vienna, Austria). Unless otherwise stated, a p value less than 0.05
was considered statistically significant.

We set the outcomes of the predictive models as the probabilities of 5-year PFS and
OS. Thus, we filtered the study population by the following: patients without recurrence
and with <60 months follow-up were excluded from PFS set, while those who were alive
with <60 months follow-up were excluded from the OS set (Figure 1A).

As shown in Figure 1B, the whole process consisted of three steps: variable selection,
model development, and model evaluation. PFS and OS sets were separated into training
and test sets with a 4:1 ratio. Variable selection and model development were conducted in
the training set, and the developed models were validated in the test set. We imputed all
missing data using a multiple imputation approach, using R package mice (version 3.13.0).

2.4. Variable Selection

The following 13 preoperative variables were initially included: institution, age,
surgical approach, 2009 FIGO stage, histologic type, preoperative conization, serum levels
of three tumor markers (CEA, SCC, and CA-125), cervical mass size measured by MRI,
suspicious for PM invasion evaluated by MRI, and LN status evaluated by pretreatment
imaging studies, and LVSI. To minimize selection bias, we did not apply any constraints
during the variable selection step. From the distributions of serum CEA, SCC, and CA-
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125 levels, their log-transformed values were also considered as candidate predictors.
In addition, tumor size was binarized using 20 mm as the cutoff value to compensate
predictor’s quantitative effect. We set 0.1 as the significance level of the statistical analyses
to incorporate more putative predictors into the model development process.
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We evaluated three scenarios of variable selection to minimize overfitting and multi-
collinearity: (1) exhaustive variable selection; (2) machine-learning-based variable selection;
(3) LASSO-based resampling methods. In exhaustive variable selection, all possible combi-
nations of four to eight variables were investigated to identify the model whose predictors
had individual statistical significance. For the machine-learning-based approach, we mea-
sured the importance value for each available predictor that quantified the method-specific
contribution of the predictor to the prediction model using R package caret (version 6.0-86).
The variable selection was achieved by summing the importance values from four different
machine learning methods (random forest, decision tree, neural network, and support vec-
tor machine) and prioritizing them. Lastly, LASSO-based variable selection was performed
by selecting the variables whose selection probability was more than 50% in the resampled
replicates of the original dataset.

2.5. Model Development and Validation

We constructed multiple predictive models using the selected predictors from each
strategy. We considered three different methods for building the predictive models: (1)
logistic regression methods; (2) machine learning methods with a multitude of different
approaches; (3) ensemble methods that integrated the aforementioned two methods. In
this step, a total of eight machine learning approaches were used (Table S1). Prediction
performance evaluation was carried out using the area under the receiver-operating char-
acteristic curve (AUC) values, and statistical significance was evaluated using DeLong’s
test that compared two AUCs from a dataset under the null hypothesis that two AUCs
were the same.

To minimize bias, the developed predictive models were validated using two schemes:
tenfold cross validation (CV) and augmented internal validation (IV). The augmented IV
performed repeated evaluation using an identical scheme in the model development step.
Trained models were applied to the test set to measure the predictive performance. To
further reduce putative bias, such as overfitting or confounders, both CV and IV were
stratified by an institution and surgical approach.

For the development of the hybrid ensemble model, machine learning methods, which
were individually trained using the training set, were combined with the logistic regression
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model to identify an optimal combination of the predictive models. Up to four models
were combined with weights w (w = 0, 0.1, . . . , 0.9, 1, Σw = 1). We tested all four-way
combinations for the nine models (logistic regression and eight machine learning models)
with all possible combinations of weights.

3. Results
3.1. Patient Characteristics

Table S2 depicts patient clinicopathologic characteristics (n = 1056). Among the study
population, 369, 168, and 519 were included from Seoul National University Hospital,
Seoul National University Bundang Hospital, and Samsung Medical Center, respectively.
Preoperative conization was administered in 32.9% of patients. The median cervical mass
size on preoperative MRI was 22.0 mm. By preoperative imaging studies, 24.4% and 14.6%
were suspected of PM invasion and LN metastasis, respectively. The median length of
observation was 57.9 months during which 136 (12.9%) experienced disease recurrence and
75 (7.1%) died (Figure 2).
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Patient clinicopathologic characteristics in the PFS set (n = 523) and OS set (n = 526)
are presented in Table 1. Among patients in the PFS set, those who underwent LRH
showed significantly worse PFS, compared to those who underwent ORH (5-year PFS
rate, 67.5% vs. 79.9%; p = 0.002). However, in the OS set, no significant difference was
observed regarding OS between the LRH and ORH groups (p = 0.710) (Figure 3).

3.2. Variable Selection

The exhaustive variable selection methods yielded the following six variables for
predicting five-year PFS rate: surgical approach, serum levels of CEA and SCC, preoper-
ative conization, 2009 FIGO stage, and LN status on imaging studies. For predicting the
five-year OS rate, the following six variables were identified: serum levels of CEA, SCC,
and CA-125, LN status on imaging studies, cervical mass size by MRI, and histologic type.
The log-transformed variables were not selected (Table 2). The machine learning methods
tended to select continuous variables (e.g., log(SCC) and cervical mass size by MRI) or
qualitative variables (e.g., histologic type), instead of binary or the binarized variables
(Figure S1). The LASSO-based resampling method with 1000 resampled replicates selected
eight variables (age, surgical approach, log(SCC), LVSI, preoperative conization, 2009 FIGO
stage, cervical mass size by MRI, and histologic type) for predicting both 5-year PFS and
OS rates, but the individual significance for each predictor was insufficient. Consequently,
we decided to use the variables selected by the exhaustive variable selection method in the
subsequent analyses.
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Table 1. Clinicopathologic characteristics of PFS and OS sets.

Characteristics PFS Set (n = 523, %) OS Set (n = 526, %)

Age, years 47.6 (24.6–78.1) 48.0 (24.6–78.1)

Surgical approach
Open surgery 329 (62.9) 352 (66.9)
Laparoscopy 194 (37.1) 174 (33.1)

2009 FIGO stage
IB1 442 (84.5) 452 (85.9)
IB2 81 (15.5) 74 (14.1)

Histologic type
Squamous cell carcinoma 377 (72.1) 393 (74.7)

Adenocarcinoma 116 (22.2) 105 (20.0)
Adenosquamous carcinoma 30 (5.7) 28 (5.3)

Preoperative conization
No 364 (69.6) 355 (67.5)
Yes 159 (30.4) 171 (32.5)

Preoperative tumor markers
CEA, ng/mL 1.3 (0.1–210.0) a 1.3 (0.1–210.0) d

SCC, ng/mL 1.0 (0.1–118.7) b 1.0 (0.1–118.7) e

CA-125, IU/mL 12.1 (0.9–271.5) c 12.0 (0.9–273.0) f

Cervical mass size by MRI, mm 22.0 (0–82.0) 20.5 (0–82.0)
No residual tumor 134 (25.6) 148 (28.1)

<20 83 (15.9) 86 (16.3)
≥20 and <40 200 (38.2) 195 (37.1)

≥40 106 (20.3) 97 (18.4)

PM invasion on imaging *
No 438 (83.7) 449 (85.4)

Suspicious 85 (16.3) 77 (14.6)

LN metastasis on imaging †

No 387 (74.0) 393 (74.7)
Suspicious 136 (26.0) 133 (25.3)

Pelvic lymphadenectomy
No 1 (0.2) § 1 (0.2) §

Yes 522 (99.8) 525 (99.8)

Para-aortic lymphadenectomy
No 405 (77.4) 414 (78.7)

Sampling/Dissection 118 (22.6) 112 (21.3)

Pathologic cervical mass size, mm ‡ 28.0 (0–110.0) 26.0 (0–110.0)
No residual tumor 64 (12.2) 73 (13.9)

<20 114 (21.8) 120 (22.8)
≥20 and <40 206 (39.4) 200 (38.0)

≥40 139 (26.6) 133 (25.3)

Pathologic risk factors
PM invasion 89 (17.0) 83 (15.8)

LN metastasis 137 (26.2) 123 (23.4)
Resection margin involvement 16 (3.1) 12 (2.3)

LVSI 227 (43.4) 209 (39.7)
Invasion depth ≥ 1/2 300 (57.4) 289 (54.9)
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Table 1. Cont.

Characteristics PFS Set (n = 523, %) OS Set (n = 526, %)

Adjuvant treatment
No 229 (43.8) 247 (47.0)

Radiation only 86 (16.4) 83 (15.8)
CCRT 208 (39.8) 196 (37.3)

Presented with n (%) or median (range). Abbreviations: CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; CCRT, concurrent
chemoradiation therapy; CT, computed tomography; FIGO, International Federation of Gynecology and Obstetrics; LN, lymph node; LVSI,
lymphovascular space invasion; MRI, magnetic resonance imaging; PET, positron emission tomography; PM, parametrial; SCC, squamous
cell carcinoma antigen. * Measured by preoperative MRI; † Evaluated by MRI, CT, or PET/CT; ‡ Measured on the uterine specimen; § These
two patients received conization and had no residual tumor without any suspicious LNs on preoperative imaging. Missing data: a 87; b 46;
c 323; d 67; e 41; f 343.
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Table 2. Summary of the selected variables using exhaustive variable selection methods.

Variables
PFS Set (n = 523) OS Set (n = 526)

OR 90% CI OR 90% CI

Surgical approach: Laparosocpy vs. Open 0.856 0.805–0.911
CEA, ng/mL 0.994 0.991–0.997 0.997 0.995–0.999
SCC, ng/mL 0.995 0.992–0.997 0.995 0.993–0.997

Preoperative conization: Yes vs. No 1.091 1.022–1.166
2009 FIGO stage, IB2 vs. IB1 0.908 0.832–0.991

LN metastasis on imaging *: Suspicious vs. No 0.924 0.862–0.991 0.919 0.872–0.969
CA-125, IU/mL 0.999 0.998–1.000

Cervical mass size by MRI: ≥20 mm vs. <20 mm 0.942 0.899–0.986
Histologic type: Squamous vs. Non-squamous 1.073 1.021–1.127

Only variables with p < 0.1 are presented. Abbreviations: CA-125, cancer antigen 125; CEA, carcinoembryonic
antigen; CI, confidence interval; CT, computed tomography; FIGO, International Federation of Gynecology
and Obstetrics; LN, lymph node; MRI, magnetic resonance imaging; OR, odd ratio; PET, positron emission
tomography; SCC, squamous cell carcinoma antigen. * Evaluated by MRI, CT, or PET/CT.

3.3. Model Development and Validation

The logistic regression models showed 0.703 and 0.755 for AUCs in tenfold CV for
predicting probabilities of 5-year PFS and OS, respectively (Figure 4). We also performed
augmented IV using the test set. As regards the results, the predictive performance of the
logistic regression models decreased slightly (AUCs, 0.679 and 0.715 for 5-year PFS and OS,
respectively) but showed no significant differences regarding AUCs (DeLong’s test p > 0.05),
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suggesting stability of the predictive models. The developed logistic-regression-based
nomograms for the prediction of 5-year PFS and OS rates are shown in Figure 5.

The machine learning models showed questionable predictive performance. Even in
the best scenario, prediction powers were bounded to 0.58 and 0.61 in AUCs for predicting
5-year PFS and OS rates, respectively, with statistically significant differences (DeLong’s
test p < 0.01).

The hybrid ensemble models were developed by putting logistic regression and ma-
chine learning models together. The ensemble models showed much improved predictive
performance (AUCs, 0.741 and 0.759 for predicting probabilities of 5-year PFS and OS,
respectively) (Figure 4). For the 5-year PFS rate, the best model consisted of naïve Bayes
and gradient boosting machine learning models with weights of 0.8 and 0.2, respectively.
For the 5-year OS rate, the best model consisted of logistic regression, naïve Bayes, and
neural network models with weights of 0.6, 0.3, and 0.1, respectively. We also measured
the effect of imputation to assess whether the imputation process affected the prediction
powers. For 5-year PFS and OS rates, the ensemble models were evaluated in 110 and
101 complete patients, respectively. Consequently, they showed 0.776 and 0.767 regarding
AUCs for 5-year PFS and OS, respectively.

Cancers 2021, 13, x 8 of 13 
 

 

3.3. Model Development and Validation 
The logistic regression models showed 0.703 and 0.755 for AUCs in tenfold CV for 

predicting probabilities of 5-year PFS and OS, respectively (Figure 4). We also performed 
augmented IV using the test set. As regards the results, the predictive performance of the 
logistic regression models decreased slightly (AUCs, 0.679 and 0.715 for 5-year PFS and 
OS, respectively) but showed no significant differences regarding AUCs (DeLong’s test p 
> 0.05), suggesting stability of the predictive models. The developed logistic-regression-
based nomograms for the prediction of 5-year PFS and OS rates are shown in Figure 5. 

Figure 4. Predictive performance of the developed models. The logistic regression models underwent tenfold cross validation (pre-
sented as line) and internal validation with 20% of predivided test set (presented as dash). The ensemble models also underwent 
internal validation with 20% of predivided test set (presented as dots): (A) ROC curves with the AUC values for 5-year PFS; (B) ROC 
curves with the AUC values for 5-year OS. 

Figure 5. Logistic-regression-based nomograms predicting probabilities of (A) 5-year PFS and (B) 5-year OS. 

Figure 4. Predictive performance of the developed models. The logistic regression models underwent tenfold cross
validation (presented as line) and internal validation with 20% of predivided test set (presented as dash). The ensemble
models also underwent internal validation with 20% of predivided test set (presented as dots): (A) ROC curves with the
AUC values for 5-year PFS; (B) ROC curves with the AUC values for 5-year OS.



Cancers 2021, 13, 3709 9 of 13

Cancers 2021, 13, x 8 of 13 
 

 

3.3. Model Development and Validation 
The logistic regression models showed 0.703 and 0.755 for AUCs in tenfold CV for 

predicting probabilities of 5-year PFS and OS, respectively (Figure 4). We also performed 
augmented IV using the test set. As regards the results, the predictive performance of the 
logistic regression models decreased slightly (AUCs, 0.679 and 0.715 for 5-year PFS and 
OS, respectively) but showed no significant differences regarding AUCs (DeLong’s test p 
> 0.05), suggesting stability of the predictive models. The developed logistic-regression-
based nomograms for the prediction of 5-year PFS and OS rates are shown in Figure 5. 

Figure 4. Predictive performance of the developed models. The logistic regression models underwent tenfold cross validation (pre-
sented as line) and internal validation with 20% of predivided test set (presented as dash). The ensemble models also underwent 
internal validation with 20% of predivided test set (presented as dots): (A) ROC curves with the AUC values for 5-year PFS; (B) ROC 
curves with the AUC values for 5-year OS. 

Figure 5. Logistic-regression-based nomograms predicting probabilities of (A) 5-year PFS and (B) 5-year OS. Figure 5. Logistic-regression-based nomograms predicting probabilities of (A) 5-year PFS and
(B) 5-year OS.

Lastly, we set up a website (http://lsy.io/nomogramECC, accessed on 1 June 2021) im-
plementing logistic-regression-based nomograms and hybrid ensemble models to facilitate
clinical use. Users can input nine risk factors using the web interface and see the processes
of calculating with 5-year PFS and 5-year OS nomograms. The calculated prediction values
from the logistic-regression-based and hybrid ensemble models are presented in parallel.

4. Discussion

Herein, more than a thousand patients with FIGO stage IB cervical cancer who re-
ceived RH by either laparoscopic approach or conventional open surgery at three tertiary
institutional hospitals were reviewed. Using multidimensional variables, encompassing
both clinicopathologic factors and serum tumor markers and imaging studies, we suc-
cessfully developed preoperative models predicting survival outcomes according to the
surgical approach. The hybrid ensemble models combining logistic regression and multiple
machine learning models showed better performance in predicting 5-year PFS and OS rates
than the logistic regression models.

In line with previous observational studies after the LACC trial [10–17], we also
demonstrated that LRH was associated with worse PFS, compared to ORH. Selected as a
prognostic factor for disease recurrence, the surgical approach for RH was incorporated
in the developed models and nomograms predicting the probability of 5-year PFS. Inter-
estingly, preoperative conization was selected as a favorable prognostic factor for PFS.
As we discussed previously, conization might reduce the primary cervical mass size and
subsequent potential for tumor spillage [13].

In contrast, LRH and ORH showed similar OS in this study. Consistently, the surgical
approach was not selected as a prognostic factor for OS by exhaustive variable selection
methods. We recognize that the LACC trial [9], retrospective cohort studies from Melamed
et al. [10] and other research groups [11,12], and a recent meta-analysis study [30] commonly
reported that MIS RH was associated with worse OS in patients with early cervical cancer.
However, similar to this study, retrospective cohort studies from our research group [13,14]

http://lsy.io/nomogramECC
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and others [15–17] reported that MIS RH did not increase the risk of death, compared
with ORH.

Since counseling with regard to the surgical approach is usually conducted before
surgery, only preoperative variables were used in this study. However, the number of
available preoperative variables was initially limited; thus, we also collected data from
imaging studies (cervical mass size, PM invasion, and LN status). Similar to our previous
study results [13,14], the study population herein was divided based on MRI-determined
cervical mass 2 cm, which was also reflected in our developed models and nomograms.
For assessing LN metastasis, MRI, CT, and PET/CT perform similarly, with high specificity
but low sensitivity [28]. Nevertheless, LN status on preoperative imaging studies was
incorporated in our developed models predicting probabilities of 5-year PFS and 5-year
OS. Nowadays, imaging studies have become essential for the pretreatment assessment of
cervical cancer, as embodied in the 2018 FIGO staging system [31].

Among the study population, PM invasion and LN metastasis were pathologically
confirmed in 14.4% and 20.9%, respectively. According to the results of ABRAX, an interna-
tional retrospective cohort study, the completion of RH after intraoperative confirmation
of LN metastasis did not improve PFS and OS in patients with 2009 FIGO stage IA-IIB
cervical cancer [32]. Therefore, for early cervical cancer patients suspected of LN metastasis
on preoperative imaging studies, checking intraoperative LN assessment first, and then,
according to the results, considering abandoning the RH procedure might be one of the
reasonable therapeutic options. However, such a strategy was not considered in the current
study; instead, all patients underwent RH universally.

In the era of precision cancer medicine, precise prediction of prognosis after a certain
treatment is a very important issue. Learning from a large amount and variety of data,
machine learning techniques enable detecting hard-to-discern patterns from large, noisy,
or complex data sets [33]. As the quality of the data is important in the development of
machine learning models, we excluded patients who were out of the guidelines and treated
improperly. Nevertheless, the predictive performance of the machine learning models was
inferior, compared to those of logistic regression models. Such inferiority might originate
from an insufficient sample size for developing predictive models and a considerable
number of missing values for some variables, such as preoperative serum tumor markers.
To solve the latter, we had no choice but to impute all the missing data.

In this study, the hybrid ensemble models combining logistic regression and multiple
machine learning models showed better predictive performance than the machine learning
models and logistic regression models alone. This suggests two considerations: First, the
ensemble models achieved predictive superiority by averaging the predictive performance
of both logistic and machine learning models and by reflecting both linear and nonlinear
relationships across multiple identified predictors. Second, more preoperative variables
should be discovered and incorporated into existing models for better prediction of survival
outcomes. For example, expressions of Ki-67 and other proteins, and microRNA expression
signatures of tissue, obtained from biopsy or conization, might serve as powerful prognostic
biomarkers in patients with early cervical cancer [34]. If these molecular biomarkers
are combined with macroscale clinicopathologic data, the robustness and accuracy of
prognostication might improve considerably.

For the clinical use of our developed models, we implemented a web-based system. We
recognize that there are some differences between variables, predicting 5-year PFS and OS
rates. For example, the surgical approach for RH was incorporated in the developed models
predicting the probability of 5-year PFS but not for 5-year OS. However, PFS and OS cannot
be considered separately during patient counseling. In this aspect, users are asked to input
nine risk factors: surgical approach, serum levels of CEA, SCC, and CA-125, preoperative
conization, 2009 FIGO stage, LN status on imaging studies, cervical mass size by MRI,
and histologic type. And then they obtain the four prediction values simultaneously:
the probabilities of 5-year PFS and OS calculated by logistic-regression-based and hybrid
ensemble models. As it shows these results on one screen, this system would be an
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individualized, useful source for consultation between physicians and patients. Users
can also estimate how much specific variable or factor in the logistic regression models
affects the 5-year PFS and OS rates: in particular, our web-based nomograms visualize this
intuitively. Thus, we believe that it will help physicians’ and patients’ decision making
when choosing between LRH and ORH. In contrast, although hybrid ensemble models
showed better predictive performance than the logistic-regression-based models, it is
difficult to know precisely each variable’s contribution to the prognosis owing to the
machine learning components.

The current study had several limitations. First, inter-institutional heterogeneity might
exist (e.g., differences in patients’ characteristics and detailed procedures of surgery). Sec-
ond, we did not investigate intracorporeal colpotomy and the use of uterine manipulators,
both known to be associated with risk factors for disease recurrence in MIS RH [35]. Third,
surgery-related complications or quality of life issues, fertility-sparing surgery, and less
radical surgery concepts were not considered in this study. Lastly, robot-assisted RH cases
were excluded, as robotic RH remains uncommon due to its high costs in Korea.

5. Conclusions

In conclusion, we successfully developed logistic-regression-based and hybrid ensem-
ble models predicting disease recurrence and mortality after primary RH in patients with
2009 FIGO stage IB cervical cancer, according to the surgical approach. As the developed
predictive models consisted of only variables that could be obtained preoperatively and
implemented in a website with a user-friendly interface, they would be helpful to patients
and physicians for making decisions related to the surgical approach for primary RH.
Further external validation studies with larger samples are warranted.
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