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Simple Summary: To successfully metastasize, cancer cells must complete a sequence of obligatory 

steps called the metastatic cascade. To model the metastatic cascade, we used the framework of the 

Drake equation, initially created to describe the emergence of intelligent life in the Milky way, using 

a similar logic of a sequence of obligatory steps. Then within this framework, we used simulations 

on breast cancer to investigate the contribution of each step to the metastatic cascade. We show that 

the half-life of circulating tumor cells is one of the most important parameters in the cascade, sug-

gesting that therapies reducing the survival of those cells in the vascular system could significantly 

reduce the risk of metastasis. 

Abstract: The majority of cancer-related deaths are the result of metastases (i.e., dissemination and 

establishment of tumor cells at distant sites from the origin), which develop through a multi-step 

process classically termed the metastatic cascade. The respective contributions of each step to the 

metastatic process are well described but are also currently not completely understood. Is there, for 

example, a critical phase that disproportionately affects the probability of the development of me-

tastases in individual patients? Here, we address this question using a modified Drake equation, 

initially formulated by the astrophysicist Frank Drake to estimate the probability of the emergence 

of intelligent civilizations in the Milky Way. Using simulations based on realistic parameter values 

obtained from the literature for breast cancer, we examine, under the linear progression hypothesis, 

the contribution of each component of the metastatic cascade. Simulations demonstrate that the 

most critical parameter governing the formation of clinical metastases is the survival duration of 

circulating tumor cells (CTCs). 
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1. Introduction 

Metastases, the spread of malignant cells from a primary tumor to distant organs, 

remain the leading cause of cancer morbidity and mortality [1]. Identifying effective ways 

to prevent metastases would significantly benefit cancer patients but there is currently no 

consensus on optimal strategies [2–4]. 

Citation: Dujon, A.M.; Capp, J.-P.; 

Brown, J.S.; Pujol, P.; Gatenby, R.A.; 

Ujvari, B.; Alix-Panabières, C.; 

Frédéric, T. Is There One Key Step in 

the Metastatic Cascade? Cancers 

2021, 13, 3693. https://doi.org/ 

10.3390/cancers13153693 

Academic Editor: Emilie  

Mamessier-Birnbaum and Claire  

Acquaviva 

Received: 6 June 2021 

Accepted: 19 July 2021 

Published: 22 July 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Cancers 2021, 13, 3693 2 of 13 
 

 

Decades of investigations have demonstrated that the metastatic process is a multi-

step process (termed the “metastatic cascade”) that includes a series of distinct and neces-

sary events. The cascade is usually divided into: (1) local invasion of malignant cells into 

surrounding tissue; (2) intravasation, i.e., entrance into the circulatory and lymphatic sys-

tems; (3) survival within the circulatory system; (4) extravasation, i.e., exit of circulating 

tumor cells (CTCs) from the bloodstream into adjacent normal tissue; and, (5) survival 

and then proliferation leading to colonization and macro-metastases [5–7]. Both clinical 

observations and pre-clinical experiments have demonstrated that successful completion 

of all steps in the metastatic cascade is very rare, and that the vast majority of cells leaving 

a tumor fail to colonize distant organs [8–10]. 

The precise reason(s) for this inefficiency remains unclear, but it seems likely that 

successful completion of the metastatic cascade requires selection forces to undergo mul-

tiple events (e.g., [11]) with cancer cell adaptations that are not previously experienced in 

primary cancer, each necessitating genetic and/or epigenetic alterations as well as co-op-

tion of stromal and endothelial cells [7,12] from tissues different from the primary site. 

However, because the number of cancer cells in the primary tumor is large and because 

of inherent genotypic and phenotypic heterogeneity, there is a finite probability that some 

cells will survive the events of the cascade and form colonies in distant organs [8]. 

While all steps in the previously described chain-of-events are undoubtedly im-

portant for the metastatic cascade, it remains unclear if certain steps represent a dispro-

portionately larger barrier to success. If so, treatment-related variations, even small, in one 

of these critical steps could have a major impact on the probability of metastases [13]. 

Initial experimental studies [14] have concluded the rate-limiting steps in the metastatic 

cascade are the transition of solitary cells to micrometastases and then to macroscopic tu-

mors at the metastatic site. Yet this approach has investigated only the last steps of the 

process because the cancer cells were directly injected intraportally to target the mouse 

liver. Multiscale computational models were later employed to capture the whole inva-

sion–metastasis cascade and provide insights into the mechanisms underpinning the met-

astatic process at the cellular scale [7,15]. However, these models rapidly grew in com-

plexity, requiring significant amounts of computational power, with 10′s to 100′s of nu-

merical parameters that can be difficult to interpret individually. 

Here, we therefore addressed this question using a parsimonious and original mod-

elling approach, which is relatively easy to implement and adapted from the Drake equa-

tion proposed by astrophysicists in the 1960′s to evaluate the probability of another com-

plex phenomenon occurring, the emergence of intelligent civilizations in the Milky Way 

[16]. Using numerical and sensitivity analyses calibrated from data published on invasive 

breast cancers, we explored and quantified the relative importance of the different steps 

in the metastatic cascade and showed that the most essential parameter to the success of 

metastasis, by far, is the life-expectancy of CTCs during their journey in the bloodstream. 

2. Material and Methods 

2.1. The Drake Equation 

The Drake equation is a probabilistic argument formulated by Frank Drake in 1961 

[16] and is used as a thought experiment to estimate the number � of active, communi-

cative, extra-terrestrial civilizations in the Milky Way galaxy. At its core, the equation de-

scribes the emergence of an intelligent civilization as a series of sequential steps. Those 

steps include the formation of a solar system with a planet that can support life, the emer-

gence of intelligence on this planet, and the ability for an intelligent species to develop a 

technology that releases detectable signs of their existence for a long enough period of 

time that they may be detected [16,17]. The equation is as follows: 

 � =  R∗ ∙  �� ∙  �� ∙  �1 ∙ �� ∙  �� ∙  � (1)



Cancers 2021, 13, 3693 3 of 13 
 

 

With R∗ the average rate of star formation in our galaxy (in stars per year), �� the 

fraction of those stars that have planets, �� the average number of planets that can po-

tentially support life per star that has planets, �1 the fraction of planets that could sup-

port life that actually develop life at some point, �� the fraction of planets with life that 

actually go on to develop intelligent life, �� the fraction of civilizations that develop a 

technology that release detectable signs of their existence into space, and � the length of 

time for which such civilizations release detectable signals into space (in years). While no 

intelligent extraterrestrial civilization has been discovered so far, because of its relative 

simplicity, the Drake equation has been very successful in generating discussions since its 

creation. Indeed, the logic of a sequence of obligatory steps required for a phenomenon to 

emerge (and the associated equations) which is famously illustrated by the Drake equa-

tion, can be applied to a range of topics, including cancer cell metastases. 

2.2. The Metastatic Drake Equation 

To successfully metastasize, cancer cells shedding from a primary tumor site must 

complete a sequence of obligatory steps, called the metastatic cascade, which comprises: 

detachment from the primary tumor, intravasation into the vascular system, survival 

while in transit through the circulation, extravasation, and survival and proliferation in 

the target tissue [18]. Because of the sequential nature of the metastatic cascade, we can 

reformulate the Drake equation, which we now term the “metastatic Drake equation” to 

estimate the number of cells and provide quantification for each step of the cascade. A 

very similar approach of modifying the Drake equation was recently used to estimate the 

number of mammal and bivalve species on Earth in which transmissible cancer emerged 

[19]. The metastatic Drake equation is defined as follows: 

�� =  � ∙ �� ∙  �� ∙ �� ∙  �� ∙  �  (2)

First, we estimated the number of cells �� surviving the travel to the target organ in 

the vascular system and that successfully extravasate as (Figure 1): 

 

Figure 1. Illustration of the different steps of the metastatic cascade. Each step is represented by a 

red arrow. The blue text represents the associated parameters of the metastatic Drake equation. 

With M the mass of the primary tumor in grams, �� the number of cells shed by the 

tumor in the number of cells per gram per day, �� the probability that a detached cell 

intravasates into the vascular system, �� the probability that a CTC survives in the vas-

cular system and reaches the target organ, �� the probability that a CTC that reached the 

target organ extravasates, and � is the age of the tumor in days (i.e., time since the for-

mation of the tumor). The model assumes a linear progression of cancer in which cells 

acquire full malignancy within the tumor environment before disseminating to distant 

sites [20]. The model also assumes that each step of the metastatic cascade is independent 

of the others (i.e., the model uses conditional probabilities). It also assumes that the values 



Cancers 2021, 13, 3693 4 of 13 
 

 

of all the parameters (except M and L) remain constant during the lifetime of the tumor. 

In addition, this modified equation aggregates the complex phenomenon of the metastatic 

cascade under a relatively small number of parameters that can be experimentally meas-

ured (and for which we can find values in the literature). While in this study we used 

point estimates from the literature (using a similar approach as [17]), we can assume that 

each parameter of the equation could be drawn from a given probability distribution (for 

example a Poisson distribution for M and Nc or a binomial distribution for ��, �� and �� 

in Equation (2) and �� and �� in Equations (3) and (4) below). 

After calculating ��, the number �� of cells that successfully extravasate and will 

become dormant cells can then be calculated as (Figure 1): 

�� =  �� ∙ ��  (3)

In which �� is the probability that an extravasated cell becomes dormant. 

�� =  �� ∙ �� (4)

In which �� is the probability that an extravasated cell survives extravasation and 

forms a metastasis without undergoing dormancy. 

Alternatively, more complex models can be considered in which a cell successfully 

extravasates and survives to develop into a micrometastasis but then become dormant, 

regress or simply die. 

Based on these equations, the number of dormant cells and metastases is directly de-

pendent on the number of CTCs �� that successfully extravasate in the target organ. It 

is, therefore, of key importance to estimate the effect of these parameters on the predic-

tions returned by the equation. 

2.3. Parameters Estimation from the Literature 

In order to populate the metastatic Drake equation with numerical values and esti-

mate the number �� of cells that successfully extravasate in the target organ, we screened 

the literature to identify cancer types in which experiments quantifying one or more steps 

of the metastatic cascade were conducted. After a preliminary screening, we selected 

breast cancer as a study case for which we found numerical values for most steps of the 

metastatic cascade and because breast cancer is the most common cancer, in women, 

worldwide [21]. In the metastatic Drake equation defined above, the product �� ∙

 �� which quantifies the number of cells that are shed from the primary tumor site and 

intravasate in the vascular system to become CTCs was estimated to be 3.18 × 106 or 4.05 

× 106 cells per gram of tumor per day [22]. The probability �� that a CTC survives in the 

circulating system was calculated based on the half-life of 1 and 2.5 h, estimated by [23], 

and using the following equation: 

 �� = 0.5
�
� (5)

With t, the time elapsed since a cell extravasated, and λ the half-life of CTCs (in 

hours). The probability �� that a CTC that reached the target organ extravasated was es-

timated to be 0.236 [24], 0.384 [25] and 0.56 or 0.22 [26] based on a range of in-vivo and in-

vitro extravasation experiments. 

2.4. Numerical Simulations 

We considered two-time scales, first, a period of 24 h to investigate the interaction 

between the time taken by CTCs to reach the target organ and the parameters of the met-

astatic Drake equation; and second, a six-month time scale to investigate how tumor 

growth interacts with those same parameters. 
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2.4.1. Twenty-Four-Hour Time Scale 

In the following simulations, we tested for all possible combinations of parameters 

obtained from the literature for each step of the equation. This allowed us to investigate 

which steps of the metastatic cascade had the most influence on the predicted number of 

extravasated cells and to account for the variability between estimates. This approach of 

testing for all available combinations was previously used to estimate the number of in-

telligent civilizations present in the Milky way based on the various estimates provided 

in the literature for the original Drake equation [17]. All 24-hour long simulations were 

performed assuming that the tumor remained at a constant size of 1 g. 

Because the half-life of CTCs is only a maximum of few hours, they are rapidly elim-

inated from the vascular system and after 24 h almost all cells are expected to be dead [23]. 

Therefore, the time elapsed between the intravasation in the vascular system and the ex-

travasation in the target organ is predicted to be critical to the success of the metastatic 

process. We then investigated the effect of both CTC half-life (ranging from 15 min to 6 h) 

and the time that it took CTCs to reach the target organ once they entered the vascular 

system (0 to 200 min) on the number of cells that extravasate after 24 h. The median num-

ber of extravasated cells as a function of the time CTCs take to reach the target organ was 

calculated for each half-life value. Similarly, the proportion of CTCs dying in the vascular 

system was computed for each simulation. 

Then, to investigate the effect of a potential therapy designed to reduce the half-life 

of CTCs, the median number of extravasated cells and the proportion of CTCs dying in 

the vascular system were compared in simulations for which the half-life of CTCs was 

reduced by a potential treatment (by either 15 min or 30 min) to simulations in which 

treatment was absent. 

2.4.2. Six-Month Time Scale 

To investigate how the tumor growth rate interacted with the other metastatic Drake 

equation parameters, we repeated the simulations above but allowed the tumor to grow 

over time. We first considered a case in which the number of cells that shed from the pri-

mary tumor site and intravasate in the vascular system (the product �� ∙  ��) is propor-

tional to the tumor volume. In the second case, we considered that the number of cells a 

tumor sheds is scaling with the mass of the volume (e.g., Mb) with an exponent b repre-

senting a very small fraction of the tumor volume (here 0.001). This scenario aimed to 

simulate a situation where metastases are descendants of stem-like cancer cells with stable 

population sizes due to asymmetric division. Finally, in the third case, we considered that 

the number of cells a tumor sheds scales with its surface, assuming a spherical tumor 

shape. An initial tumor weight of 1 g shedding 3.18 × 106 or 4.05 × 106 cells per day was 

assumed to have a volume of 75.7 mm3, a radius of 2.6 mm and a surface of 86.5 mm2 

(based on [27]). This equates to a number of 36,763 or 46,821 cells that intravasate in the 

vascular system per mm2 per day (according to [22]). 

For the three scenarios, the CTCs were considered to have a half-life of 1 or 2.4 h [23] 

and all the probabilities of extravasation �� in the target organs were the same as the 

ones used for the 24 h temporal scale. In addition, for the three scenarios, we defined a 

tumor volume increase of either 1.003% per day for a triple negative breast cancer, which 

is considered to be a fast growing breast cancer type or of 0.175% per day for a Luminal 

A breast cancer which is considered to be a slower growing cancer type [28]. The scenarios 

were computed for a duration of six months, starting with a tumor of 1 g (180 days, with 

a simulated tumor volume, for the triple-negative breast cancer, increasing from 75.7 mm3 

to 456.3 mm3 with a radius increasing from 2.6 mm to 4.8 mm; and, for the luminal A 

cancer, a tumor volume increasing from 75.7 mm3 to 103.7 mm3 with a radius increasing 

from 2.6 to 2.9 mm). For each day of the simulations, we computed the median number of 

cells that successfully extravasated in the target organ based on all possible parameter 

combinations for a given simulation. 
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All simulations and statistical analyses in this publication were performed using R 

software, version 4.0.2. 

3. Results 

3.1. 24-Hour Time Scale 

3.1.1. Simulating the Number of Extravasated Cells as Function of Half-life and Time to 

Reach the Target Organ 

We observed two patterns in the simulated scenarios. First, the half-life of CTCs was 

the parameter having the largest effect on the number of extravasated cells when their 

lifetime was short (half-life < 1.5 h, Figure 1), with most cells dying in the vascular system 

(Figure 2). Second, as the duration of the half-life increased (e.g., >2.4 h), leaving more 

time for the cells to reach the target organ, its importance in the equation decreased and 

at least half of the cells survived and reached the target organ. The importance of the other 

steps of the metastatic cascade in the equation, therefore, increased as evidenced by the 

increasing variability in the predicted number of extravasated cells between simulations 

(Figures 2 and 3). The simulations also indicated that the half-life of CTCs had little effect 

on their mortality if they very quickly reached the target organ (i. e. within a few minutes). 

 

Figure 2. The number of extravasated cells predicted by calculating all avalaible parameter combi-

nations obtained from the literature as function of the time CTCs take to reach the target organ 

and their half-life (ranging from 0.25 to 6 h). Each solid line corresponds to one combination of 

parameters, and the bold red line to the median number of extravasated cells over time for each 

half-life value. Values for Pe (the probability of a CTC extravasating in the target organ) were set 

to 0.236, 0.384, 0.56 or 0.22. A tumor mass M of 1 g was assumed, and the number of cells shed 

from a tumor this size was assumed as 3.18 × 106 or 4.05 × 106 cells per gram of tumor per day. 
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Figure 3. Proportion of CTCs dying in the vascular system as a function of their half-life (ranging 

from λ = 0.25 to 6 h) and the time required to reach the target organ (0 to 200 min). The values for 

M, Pe and the number of shed cells are the same as in Figure 2. 

3.1.2. Simulating the Effect of a Treatment on the Survival and Extravasation of CTCs 

Simulations investigating the effect of potential therapies showed that even small re-

ductions in the half-life of CTCs (e.g., by 15 to 30 min) can have an important effect on the 

metastatic cascade and prevent 100,000s to 1,000,000s of cells per day from reaching the 

target organ and extravasating (Figures 3 and 4). This is particularly true within the range 

of half-life values reported in the literature for breast cancer (1 to 2.4 h [23]). For CTCs 

with a relatively long half-life (which have yet to be observed in vivo), the reduction in 

survivability would need to be more substantial (a reduction in half-life by at least 4 h 

would obtain the same effect as for the shorter-lived CTCs). Using a treatment reducing 

the half-life of CTCs in the vascular system could, therefore, be an efficient strategy to 

decrease the number of cells that extravasate in the target organ (Figures 3 and 4). 

 

Figure 4. The effect of a hypothetical treatment on the proportion of CTCs dying in the vascular 

system as function of their half-life (initially ranging from 0.25 to 6 h) and the time required to reach 
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the target organ. The red lines correspond to mortality calculated from simulations in which no 

treatment was applied, the blue lines from simulation in which the half-life was reduced by 15 min 

and the green lines from simulation in which the half-life was reduced by 30 min. The values for M, 

Pe and the number of shed cells are the same as in Figure 2. Note that in the simulation with a half-

life of 0.25 h, the green line (half-life reduced by 30 min) overlaps the blue line (half-life reduced by 

15 min). 

3.2. Six-Month Time Scale 

For the two cancer types (fast-growing triple-negative and slow-growing luminal A), 

a median of 1.5 times more cells will extravasate per day if they have a half-life of 2.4 h 

and take 60 min to reach the target organ compared to those with a half-life of 1 h. This 

ratio increases to 2.25 if the time to reach the target organ is increased to 120 min, with a 

higher proportion of cells dying in the vascular system. If CTCs reach the target organ 

almost immediately (i.e., in 1 min, Figure 5) almost all parameters of the equations have 

little effect on the median number of extravasated cells per day. The predicted number of 

extravasated cells is then primarily driven by whether the number of cells is calculated as 

proportional to the volume or the surface area of the tumor with a relatively low number 

of cells shed if proportional to a very small fraction of the tumor volume. Six months after 

it reached a mass of 1 g a triple-negative breast cancer will shed a median of 2.7–4.4 times 

more cells that will extravasate per day (based on the tumor surface and volume respec-

tively) compared to a luminal A tumor because of the difference in size between the tumor 

types (451.8 mm3 compared to 103.7 mm3, Figure 5). This ratio range remains constant at 

any time between the two cancer types regardless of the half-life of CTCs or the time that 

CTCs take to reach the target organ. Those results suggest that reducing the half-life of 

CTCs early in the development of the tumor has the potential to prevent a very large 

number of CTCs to extravasate in the target organ, particularly for fast-growing tumors. 

 

Figure 5. The number of extravasated cells per day for two different breast cancer types: triple-

negative cancer which is fast growing and luminal A which is slow-growing. CTCs with half-lives 

of 1 and 2.4 h and a time for those cells to reach the target organ of 1, 60 or 120 min were considered 

in the simulation. The solid lines represent the median number of extravasated cells per day for a 

given simulation. Luminal A tumors grew by 0.175% per day while triple-negative cancer tumors 

grew by 1.003% per day. Note that the two lines for the simulations scaling to a small fraction of the 

tumor mass M (here Mb with b = 0.001) (in green and dark green) are overlapping closely on the 

plots. The values for M, Pe and the number of shed cells are the same as in Figure 2. 
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4. Discussion 

As proposed by the Drake equation, the likelihood of life on any given planet is tiny, 

but the likelihood of life on other planets becomes larger once multiplied by the vast num-

ber of planets in our galaxy [16]. For similar reasons, the logic behind the Drake equation 

applies to the steps of the metastatic cascade; the progression from a primary tumor to the 

metastatic disease represents a sequence of relatively independent and highly improbable 

events, at least for a given cancer cell [29]. Our extension of the Drake equation to metas-

tases provides insights into the rate-limiting steps and identifies bottlenecks where 

changes in certain parameters have outsized effects on the probability of occurrence and 

time to form clinically relevant metastases. For breast cancer, and by considering the linear 

progression model rather than the parallel one (see [30]), two key elements of the meta-

static cascade include the half-life of CTCs and the likelihood of a small group of cells 

successfully establishing within the tissue of extravasation. 

In breast cancer, the likelihood of any given cell from the primary tumor forming a 

metastasis is infinitesimal. However, if left untreated, metastases to the liver, bone, and/or 

lungs become almost certain. As such, it becomes a numbers game. While the rate of cell 

intravasation into the circulatory system increases with tumor size, the actual allometry 

of this relationship remains unknown. We imagine a relationship of the form NC = aMb 

where −1 < b < 0 scales this release by total tumor mass. Under such a formulation, the 

number of tumor cells released per day per gram of primary tumor, ��, declines with 

tumor mass, M, but the overall number of released cells, � ∙  ��, increases with tumor 

mass. 

Metastases do not seem to be propagule-limited in that enormous numbers of cancer 

cells will become CTCs, even when the number of cells shed is a very small fraction of the 

tumor [29]. The circulatory system acts as a sink habitat because cancer cells cannot pro-

liferate and maintain a positive population in the absence of migration from the source 

habitat (the primary tumor). Thus, the rate of change in the number of CTCs is dictated 

by the per cell immigration rate from the primary tumor, the death rate in the circulatory 

system, and the rate of extravasation into any tissue of the patient. If the number of CTCs 

equilibrates much faster than the growth of the primary tumor volume, then the number 

of CTCs will equal � ∙ �� ∙  �� divided by the sum of the death rate and extravasation 

rate. This becomes a useful relationship for estimating and validating some of the terms 

in our modified Drake Equation. For instance, CTCs can range between 1–10 per mL 

[31,32]. About 10% of a person’s body mass is comprised of blood which amounts to 4500–

5700 mL per person. At ca. 5000 mL, the number of CTCs would be 5000–10,000. For met-

astatic cancers such as breast cancer, a CTC count of 5 or more per 7.5 mL of blood is 

associated with lower progression-free survival [33,34]. If one knows the number of CTCs, 

then the rates at which cancer cells enter the bloodstream, die in the blood, or leave the 

blood are no longer completely independent variables. 

There are a number of assumptions associated with applying our version of the 

Drake equation [35]. The successfully metastasizing cell may be just a subset of the cancer 

cell subtypes found in the primary tumor. In addition to tumor size, greater tumor heter-

ogeneity, the presence of highly glycolytic phenotypes, and the presence of immunosup-

pressive phenotypes are associated with more aggressive cancers and higher rates of me-

tastases. There is also debate over whether disseminated tumor cells (DTCs) occur early 

or later in the development of the primary tumor [36], as in breast cancer there is evidence 

that DTCs occur relatively early in the history of the tumor [37,38]. If early, then these cells 

may have remained dormant or persisted as small undetectable populations for lengthy 

periods of time suggesting that outgrowth is a key limiting step in addition to colonizing 

a distant organ. Alternatively, if later, then most CTCs and DTCs perish and key steps 

remain survival in the blood and survival as a single cell or small propagule of cells in the 

following colonization. Traits such as the endothelial–mesenchymal transition (EMT) [36], 

glycolysis, immuno-evasion, motility, and the ability to survive the shear forces of the 

circulatory system all may create a weighted lottery for which cancer cells actually form 
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successful metastases. Some of these traits may facilitate multiple steps of the metastatic 

cascade or in some cases facilitate one step while inhibiting another. For our modelling 

purposes, the number of tumor cells can be triaged for those that have substantially more 

favorable values in the Drake-like equation. Alternatively, parallel equations could be 

made for the relevant subsets of cancer cell types. 

Other considerations of how cells metastasize include the mechanical phenotype, the 

role of CTCs as solitary cells or as small clumps of cells, and polyaneuploid cancer cells 

(PACC). For example, Kumar et al. [39] discussed the role of actin mechanics and mecha-

nisms for degrading and constructing extracellular matrices in inhibiting or facilitating a 

cancer cell’s chances throughout the metastatic cascade. Invadopodia facilitate intravasa-

tion, cytoskeleton plasticity may facilitate surviving shear forces in the bloodstream, and 

pseudopodia may permit extravasation via diapedesis (the ability to pass through cell–

cell junctions). CTCs as clumps of two or more cells have the disadvantage perhaps of 

lodging in capillary beds and smaller blood vessels more easily than a single cell; but 

clumps may extravasate more easily and form successful colonies by overcoming Allee 

effects and more quickly engineering a more favorable extracellular matrix at the new site 

[40–42]. Finally, multinucleated PACCs may represent a highly resistant and motile life 

history state of a cancer cell line. These have been proposed as the source of metastases 

[43,44]. They generally represent only a small fraction of the cancer cells within a tumor 

[45]. As the roles of these subsets of cells and phenotypes become known, the rates and 

probabilities associated with the metastatic cascade can be adjusted accordingly. By mod-

elling all steps of the metastatic cascade in the form of a Drake equation, one can quanti-

tatively evaluate the efficacy of therapies aimed at preventing metastases. In recognizing 

the inefficiency of the metastatic process, therapies have been proposed or even imple-

mented to target particular steps. Additional approaches have been suggested in order to 

alter tumor microenvironments, reduce heterogeneity, and alter the evolutionary trajec-

tory of cancer cells in a manner that reduces the rate of intravasation and thus the number 

of CTCs. One example is the addition of bicarbonate therapy to reduce tumor pH. This 

disfavors the more motile and glycolytic cancer cell types and favors those that are less 

motile and differentiated [46,47]. Rates of intravasation increase with transforming 

growth factor-beta signaling, possibly by accelerating EMT or activating epidermal 

growth factor receptors. Furthermore, invadopodia emerge from signaling involving 

Phosphoinositide 3-Kinase, Neural Wiskott–Aldrich Syndrome Protein, Ras homolog 

family member A, and Wiskott–Aldrich Syndrome Protein [48], and targeting these path-

ways has been shown to reduce intravasation and metastases in a mouse model [49]. 

In our model, the most effective therapies would be those that reduce the half-life of 

CTCs and that prevent extravasation and colonization. At present, targeting colonization 

has attracted the most attention [49]. A promising set of therapies involves immunother-

apies that can be tailored to target CTCs or increase immune surveillance in tissues that 

are likely recipients of CTCs shed from the primary tumor [50]. Because cytotoxic thera-

pies in the blood will likely have adverse effects and because the numbers of CTCs are 

quite small, immune activation therapies may be the only viable approach to kill CTCs 

before they extravasate [51]. 

Neoadjuvant therapies and adjuvant therapies prior to and after either surgical re-

section or radiation of the primary tumor already serve to destroy micrometastases or 

DTCs. Because establishing metastases, though undetectable, can still involve millions of 

cells, evolutionarily informed therapies may help with increasing the number and switch-

ing between drugs as has been proposed for breast cancer [52]. Furthermore, because can-

cer cells must take on some of the attributes typical of the recipient tissue, it might be 

effective to use drugs typically associated with cancers of that tissue. For instance, DTCs 

or micrometastases in the liver might be susceptible to drugs not typically used for breast 

cancer, but rather typical of primary liver cancers [53]. 

Quantifying and applying our model has value in evaluating the efficacy of combi-

nation therapies that target different steps of the metastatic cascade. Because the steps are 
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multiplicative in terms of rates and survival probabilities, the independent action of sev-

eral drugs impacting several steps will have multiplicative benefits. Thus, the action of 

one therapy increases the value of another. Further, the action of each drug need not be 

decisive by itself but become so in combination. Our sensitivity analyses permit joint con-

sideration of changing two or more parameters at a time. 

Our model assumes independent sequences of rates and probabilities, an assumption 

that is not necessarily realistic for all subsets of cancer cells. This concern can be alleviated 

by either restricting the model to the critical cell types or by running parallel equations 

for the different conditions. An alternative approach that could complement ours would 

involve working backward from successful metastases or micrometastases to identify the 

crucial subsets of cancer cell types or conditions favoring the metastatic cascade. This can 

be done through phylogenetic reconstruction that traces the cancer cells within the metas-

tasis to their ancestral cell types in the primary tumor [20]. 

Numerical estimates for the parameters of the metastatic Drake equation are only 

available in the literature for a few cancer types (with breast cancer being the most com-

plete). Due to this lack of data, it is currently difficult to apply the equation to simulate 

parallel cancer progression models, an avenue that remains to be explored. It is then of 

interest to obtain estimates for a broader range of cancers, either by conducting experi-

ments or by using more complex but also much more computationally intensive models 

that would specifically focus on a specific step of the metastatic cascade. The metastatic 

Drake equation could be then applied to those cancer types to investigate the effect of a 

range of potential therapeutic scenarios. Whether predicting forward as we do here or 

backward, modelling all of the sequential steps of the metastatic cascade as a multiplica-

tive chain allows one to better understand which steps have the highest leverage in pre-

dicting or manipulating the likelihood of metastases. 

5. Conclusions 

From a preventive point of view, our study proposes promising directions. Indeed, 

it suggests that, administrating to people in the second part of life, when most cancers 

appear, a systematic medication aimed at reducing the life expectancy of CTCs should be 

highly protective against the eventuality of metastatic cancers. To potentially reduce the 

side-effects of regular preventive therapy, future research should be performed which 

specifically targets the life expectancy of metastasis-initiator CTCs. 
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