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Oncolytic viruses (OVs) were originally developed as direct cytotoxic agents but have
been increasingly recognised as a form of immunotherapy. Oncolytic viruses have now
reached the stage of significant widespread clinical testing, with more than 40 OVs currently
being evaluated for the treatment of various tumour entities [1]. The majority of past and
ongoing clinical trials have been phase I studies evaluating the safety of the treatment as
the primary (and most of the time only) end-point. Very few OVs entered more advance
stages in the clinical development pipeline, and only one agent has been FDA- and EMA-
approved, talimogene laherperepvec (T-VEC, an HSV encoding GMCSF), for intratumoural
administration in advanced melanoma [2]. Whilst there is a wealth of encouraging early
trial data confirming the safety of OVs across a number of viruses, tumour types and
administration routes [1], more recent data from emerging larger, randomised studies have
not been so encouraging. The last (and only) positive randomised phase 3 trial of an OV,
testing T-VEC against subcutaneous granulocyte—-macrophage colony-stimulating factor
in melanoma, was published back in 2015 [2], and that study predated immunotherapy,
which is now standard of clinical care in this disease. The next logical steps with T-VEC,
combining the virus with checkpoint blockade, were initially encouraging with ipilimumab
(an anti-CTLA4 antibody) [3], but the recent discontinuation of the randomised phase 3 of
pembrolizumab (an anti-PD1) +/— T-Vec due to futility (Thousand Oaks, Calif., accessed
on 2 February 2021 https:/ /investors.amgen.com/news-releases/news-release-details/
amgen-reports-fourth-quarter-and-full-year-2020-financial) has raised significant concerns
about the long-term potential for the OV field in the clinic.

There have been other disappointing large, randomised trials. Vocimagene amiretrorepvec
(TOCA 511) is a replicating retrovirus encoding a transgene for cytosine deaminase, which
converts the prodrug 5-fluorocytosine into 5-fluorouracil. This failed in a study of over
400 patients, where viral injection into the resection cavity on first or second resection
for high-grade glioma was randomised against standard of care treatment [4]. Then, pex-
astimogene devacirepvec (Pexa-Vec), a vaccinia virus again encoding GM-CSF, was also
unsuccessful when tested after [5] or first line in combination with sorafenib in hepatocel-
lular carcinoma.

Whilst there is no hiding from the disappointments of these studies, rather than
abandoning the field, now is the time to reconsider and regroup. There are many drugs
that fail on progression from early to randomised studies, but OVs represent an immune
strategy rather than a single therapeutic, and so should not be abandoned en masse.
Their greatest promise lies in ‘heating up” an immunologically ‘cold” tumour to prime for
checkpoint blockade, and there are good translational clinical data that suggest that this can
happen in patients [6,7]. There are a number of reasons why the large studies to date have
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been unsuccessful, including wrong choice of tumour type (for Pexa-Vec, advanced liver
cancer patients’ often poor performance status makes altering the course of the disease
notoriously difficult), clinical stage targeting (single agent pembrolizumab is too effective a
single agent in limited metastatic melanoma for the addition of T-VEC to make a significant
difference), and common problems seen on transitioning from early to later phase testing
(in the TOCAD511 study, patients had fewer cycles of treatment than in earlier trials). The
key to further progress now is to better understand the immunobiology of OVs in patients
via in-depth translational studies and to use this knowledge to inform careful development
and progression of clinical trials in the most appropriate patient context.

We are proud and pleased to present this Special Issue of Cancers, “Oncolytic Virus
immunotherapy” which includes 16 reviews written by many of the top oncolytic virus
experts. There is a common message that comes across reading this issue, and it is one of jus-
tified optimism. The efficacy of OVs can be further improved, and the “second-generation”
OV-based therapies once in the clinic may become a game changer in the history of can-
cer therapies for, e.g., pancreatic carcinoma, glioblastoma or lung cancer that still await
effective treatment options. As our knowledge of the tumour cell, its microenvironment
and components improves, the ideal of a “one size fits all” OV-based therapy becomes less
real or attainable. Different individuals or cancers will need different approaches. Genetic
engineering and arming of OVs and development of optimal combinatorial treatments
must be carefully evaluated, taking into consideration the intra/inter patient heterogeneity
of cancer and the complex interactions that cancer cells have with other components of
the tumour microenvironment (resident and infiltrating non-transformed cells, secreted
factors and extracellular matrix proteins). This complexity needs to be understood for
every tumour entity and the (epi)genetic characteristics that distinguish it.

Oncolytic viruses are a very diverse group of “living drugs”, comprising viruses
with very different biology and unique features. Every OV platform has strengths and
weaknesses. Developing them further will exploit their positive aspects and mitigate
the negative ones, considering the type and stage of cancer patients, route, schedule of
administration, and the insurgence of neutralising antiviral immune responses that can
reduce efficacy. To this end, it is also crucial to identify predictive biomarkers of response
that suggest the most opportune OV treatment for each patient.

This Special Issue shows that while a real champion among OVs has not yet emerged,
there are many great advances in the field that could lead to an improvement in therapeutic
outcomes in the near future. A new wave of OV platforms are being developed thanks
to the advances in genetic engineering and our improved understanding of the tumour
ecosystem, which is allowing for the rational combination of OVs with other anti-cancer
therapies. The importance of developing combination strategies that synergise against the
tumour without leading to unwanted off-tumour effects is a common theme across the
reviews. Miiller et al. describe the community efforts for reovirus [8]; Burman et al. for
Newcastle disease virus [9]; Engeland and Ungerechts for measles virus [10]; Angelova
et al. for parvovirus [11]; and Malin and Kiihnel [12] and Cunliffe et al. [13] for the
adenovirus platforms. In addition to being “lysing machines”, OVs are “vehicles” that
can deliver and express transgenes in the tumour ecosystem. Examples are given for the
HSV platform by Vannini et al. [14]; for the adenovirus platform by Cunliffe et al. [13]; and,
more generally, for the treatment of solid tumours by Jin et al. [15]. It is clear now that one
avenue for improving the success of virotherapy resides in maximising the ability of OVs
to harness the immune system to act against cancer, for example, through combination
with other immunotherapies—especially immunocheckpoint blockers and adoptive cell
therapy—or through the insertion of immunomodulatory transgenes into the virus genome.
Combinatorial therapies of OVs and other treatment modalities are an active area of
development, and, herein, Evgin and Vile [16], Kuryk et al. [17], Holbrook et al. [18] and
Spiesschaert et al. [19] review the recent advances in this exciting field of research. Recent
advances in genetic profiling of tumours are changing the way that we treat cancer patients.
The latter is also impacting the way that we foresee the use of OVs in the near future. Both
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Fisher et al. [20] and Enrilich and Bacharach [21] describe the importance of understanding
the tumour and its microenvironment for selecting the right OV platform for each cancer
patient. Similarly, Stavrakaki et al. [22] discuss the importance of finding biomarkers to
“personalise OVs” based on the tumour-specific characteristics. Finally, Kock et al. provide
us with a comprehensive summary of oncolytic HSV-1 in its journey through the clinical
arena [23].

We hope that the readers enjoy this Special Issue and that the OV scientific commu-
nity continues working together towards the development of virotherapeutics that could
positively impact the life of people living with cancer.
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