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Simple Summary: Cancer cells with a stem-like phenotype that are thought to be highly tumor-
igenic are commonly described in glioblastoma, the most common primary adult brain cancer. This 
phenotype comprises high self-renewal capacity and resistance against chemotherapy and radiation 
therapy, thereby promoting tumor progression and disease relapse. Here, we show that calcitriol, 
the hormonally active form of the “sun hormone” vitamin D3, effectively suppresses stemness prop-
erties in glioblastoma stem-like cells (GSCs), supporting the hypothesis that calcitriol sensitizes 
them to additional chemotherapy. Indeed, a physiological organotypic brain slice model was used 
to monitor tumor growth of GSCs, and the effectiveness of combined treatment with temozolomide, 
the current standard-of-care, and calcitriol was proven. These findings indicate that further research 
on applying calcitriol, a well-known and safe drug, as a potential adjuvant therapy for glioblastoma 
is both justified and necessary. 

Abstract: Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with 
a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evi-
dence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is 
likely responsible for disease recurrence, treatment resistance and potentially even for the infiltra-
tive growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-
hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of 
the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we 
hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their dif-
ferentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, 
quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that ther-
apeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying 
extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of respond-
ing GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to com-
pletely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an 
adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-
up studies. 
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1. Introduction 
Gliomas are tumors of the central nervous system, of which the highest grade, glio-

blastoma (GBM, WHO grade IV glioma), is the most common and the most aggressive 
form [1]. These tumors are particularly resistant towards conventional chemotherapy, cur-
rently consisting of Temozolomide (TMZ)-based radiochemotherapy, with the recent ad-
dition of tumor-treating fields (TTF) [2–5]. The sensitivity of patients towards a TMZ-
based therapy is dependent on the presence or absence of the enzyme O6-methylguanine 
(O6-MeG)-DNA methyltransferase (MGMT), and many GBMs have a methylated MGMT-
promoter-region and therefore do not express this enzyme [6]. The MGMT enzyme can 
repair the DNA damages induced by TMZ. A surgical resection of GBM is often not en-
tirely possible due to highly infiltrative and diffuse growth of these tumors, which rou-
tinely leaves some undetectable tumor cells that cause frequent recurrences. All of those 
factors cause a devastatingly low 5-year survival-rate of less than 5% and a median sur-
vival of 15 months after diagnosis [7]. One mechanism by which treatment resistance and 
tumor recurrence is facilitated is the presence of a sub-population of cancer cells with a 
stem-like phenotype (GSCs, glioma stem-like cells; reviewed in [8]), which may be in-
duced by several cues such as hypoxia [9], perivascular niches [10] or treatment borders, 
such as the resection margin [11]. Key characteristics of the cells are that they have a higher 
differentiation potential, express various marker proteins associated with stemness such 
as SOX2, SOX9, OLIG2 and are considered more tumorigenic upon transplantation into 
rodents compared to their differentiated counterparts (reviewed in [8]). 

Vitamin D3 (VitD3) is a steroidal hormone that is synthesized in the skin upon UV-B 
irradiation, which can alternatively be obtained through dietary sources, such as fatty fish 
or certain mushrooms [12]. In order to be activated, VitD3 has to pass through two hy-
droxylation steps. The first hydroxylation occurs mainly in the liver to form 25-hydroxy 
vitamin D3 (25(OH)D3). This step is mediated by a 25-hydroxylase, CYP2R1. CYP2R1 is 
the main 25-hydroxylase and it promotes VitD3 conversion in the liver, other enzymes 
with 25-hydroxylase activity, such as CYP27A1, exist in various other organs and can al-
low for local conversion [13]. The second hydroxylation occurs in the kidney and is medi-
ated by 1α-hydroxylase (encoded by the gene CYP27B1) to form the hormonally active 
form 1α,25(OH)2 vitamin D3 (1α,25(OH)2D3), also known as calcitriol. Similarly, calcitriol 
synthesis can occur in multiple extra-renal sites, including the brain [13]. 25(OH)D3 is the 
major circulating form of VitD3 and is frequently employed as a surrogate marker for the 
VitD3 status. The degradation of 25(OH)D3 and calcitriol is catalyzed by the 24-hydrox-
ylase (encoded by the gene CYP24A1); the amount of calcitriol is therefore limited by both 
calcitriol catabolism and decreased amounts of 25(OH)D3 available for calcitriol synthesis 
[14,15]. Calcitriol acts by binding to the vitamin D receptor (VDR), which regulates target 
gene expression upon translocation to the nucleus. VDR signaling inhibits the expression 
of genes for calcitriol synthesis (e.g., CYP27B1) and activates VDR expression, as well as 
the expression of genes responsible for calcitriol metabolism such as CYP24A1 (reviewed 
in [15]). The activation of genomic VDR signaling also induces anti-tumorigenic effects, 
such as inhibition of proliferation, stimulation of differentiation processes and apoptosis 
[16]. In fact, the anti-tumorigenic effects of VitD3 are well established, and low 25(OH)D3 
serum levels are associated with increased cancer risk and mortality, indicating a tumor-
preventive function of VDR signaling [15]. Interestingly a recent report demonstrated that 
acidosis, i.e., the acidic environment around tumors, enhances the stem-like state and mi-
tochondrial respiration of GSCs, which was mediated by a reduction in VitD3 via 24-hy-
droxylase-mediated degradation, which was induced by the low pH [17]. 

It was recently shown that serum levels of 25(OH)D3 and the risk of GBM have an 
inverse relationship [18], indicating that patients with low 25(OH)D3 have a higher risk of 
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developing GBM. Similarly, Zigmont et al. observed that low prediagnostic 25(OH)D3 lev-
els are associated with increased risk of glioma in men [19]. In addition, VDR-expression 
was found to be associated with improved overall survival [20]. Accordingly, calcitriol 
and/or VitD3 have been proposed as potential therapeutics for brain cancers [21,22]. Pre-
clinical studies using differentiated GBM cell lines employed VitD3-loaded nanoparticles 
to induce cytotoxicity in rat glioma cells [23] and combined VitD3 with Temozolomide, 
leading to synergistic cytotoxicity via enhancement of autophagy [24]. Mechanistically, it 
was shown that calcitriol induces senescence in conventional, FCS-grown glioma cell lines 
[25]. Importantly, a synthetic derivative of calcitriol, alfacalcidol, has already been tested 
in a small patient cohort in France as an adjuvant therapy, and it was reported that, among 
11 patients analyzed (10 GBMs, 1 Anaplastic Astrocytoma [AA]), 3 patients showed con-
tinuous improvement and, finally, complete regression of the tumor (2 GBM, 1 AA); the 
median survival of all patients was 21 months, with the two GBM responders still alive 
after 4 years of follow-up [26]. 

Taken together, these findings lead us to hypothesize that GSCs might be particularly 
vulnerable for a calcitriol-based therapy. As such, calcitriol should be able to induce dif-
ferentiation and render GSCs more susceptible to conventional chemotherapeutics, in-
cluding TMZ. 

2. Results 
2.1. Calcitriol Reduces Stemness in GSCs In Vitro 

To analyze the potential for a calcitriol-based therapy, we made use of three previ-
ously described cell models: NCH644 [27]), GS-5 [28] and the primary culture 17/02 [29]. 
Using these three cell lines, we performed limiting dilution assays (LDA), as described 
previously [29,30], and analyzed them using the Web-App ELDA [31]. In principle, the 
cells were treated using 10, 25 or 50 nM of calcitriol or solvent (Ethanol, EtOH) immedi-
ately after seeding. After 7 days, each well was evaluated for the presence of at least one 
sphere larger than eight cells per well. We observed that calcitriol (Figure 1A–C) signifi-
cantly reduced the sphere-forming potential (“stem-cell frequency”) of NCH644 (Figure 
1A) very strongly and significantly, with a change in the stem-cell frequency from 1 in 
23.3 after solvent treatment to 1:81.6 and 1:119.1 after treatment with 10 and 25 nM of 
calcitriol, respectively. The highest concentration of 50 nM of calctriol induced an almost 
10-fold reduction of 1:219.9. The effects on GS-5 (Figure 1B) and 17/02 (Figure 1C) were 
less pronounced. As such, the stem-cell frequency of GS-5 decreased from 1:188 (EtOH) 
to 1:206 (10 nM), 1:264 (25 nM) and 1:318 (50 nM), respectively. Only the ~two-fold reduc-
tion after treatment with 50 nM calcitriol reached statistical significance. Lastly, the stem-
cell frequency of the primary line 17/02 changed from 1:153 after solvent treatment to 1:152 
(10 nM), 1:159 (25 nM) to 1:198 (50 nM), and neither was statistically different. 

Next, we wondered whether a more clinically applicable drug that is less calcemic 
than calcitriol, calcipotriol [32], could exert similar effects. Therefore, we also performed 
LDAs and found, for all three cell lines (Figure 1D–F), similar albeit less intense effects 
after treatment with 100 nM, 500 nM and 1000 nM of calcipotriol or solvent. Specifically, 
calcipotriol led to a dose-dependent decrease in the stem-cell frequency of NCH644 cells 
(Figure 1D) from 1:50.6 (DMSO) to 1:80.5 (100 nM) and 1:104 (500 nM) to 1:129.5 (1000 
nM). Only the treatment with 500 nM and 1000 nM led to a statistically significant de-
crease. For GS-5 (Figure 1E) and the primary line 17/02 (Figure 1F), only the highest con-
centrations led to a statistically significant decrease in stem-cell frequency. Accordingly, 
the stem-cell frequency of GS-5 cells decreased from 1:190 (DMSO) to 1:241 (100 nM) to 
1:232 (500 nM) and 1:310 (1000 nM), while it changed from 1:158 (DMSO) to 1:192 (100 
nM) and 1:209 (500 nM) to 1:232 (1000 nM) in 17/02. The ratios and the respective p-values 
are summarized in Table 1. From these experiments, we drew the conclusion that the syn-
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thetic derivative of calcitriol, i.e., calcipotriol, is less potent. In order to describe the ther-
apeutic effects evoked by VitD3-signaling, we decided to perform all subsequent experi-
ments with calcitriol only. 

 
Figure 1. Calcitriol exerts differential activity among GSCs: (A–F) A log-fraction plot of the limited dilution model of data 
from (A,D) NCH644, (B,E) GS-5 and (C,F) 17/02 GSCs. The cells were treated with solvent (ethanol, EtOH; black) or (A–
C) 10 (red), 25 (green) or 50 nM of calcitriol (blue) or (D,F) 100 (red), 500 (green) or 1000 nM of calcipotriol for 7 days after 
seeding the cell in a dilution series from 1024 to 8 cells and analyzing the data using ELDA software [31]. The estimated 
stem-cell frequency is presented under each plot. The data are the summary of at least three experiments performed with 
12 replicates per cell number and 8 different cell numbers seeded. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; chi-
square-test from ELDA Web-App [31]. 
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Table 1. Calculated stem-cell frequencies, as determined using ELDA [31], of the GSCs NCH644, 
GS-5 and 17/02, 7 days after treatment with calcitriol, calcipotriol or solvent (EtOH, DMSO, respec-
tively), as indicated. 

Cell line Calcitriol 
[nM] 

Stem-cell 
frequency 

[1/X] 

p-Value 
(Chi2) 

Calcipotriol 
[nM] 

Stem-cell 
frequency 

[1/X] 

p-value 
(Chi2) 

NCH644 EtOH 23.3  DMSO 50.6  
 10 81.6 1.46 × 10−15 100 80.5 0.00314 
 25 119.1 3.01 ×10−25 500 104 5.05 × 10−6 
 50 219.9 1.12 × 10−43 1000 129.5 4.58 × 10−9 

GS-5 EtOH 188  DMSO 190  
 10 206 0.525 100 241 0.0861 
 25 264 0.0245 500 232 0.140 
 50 318 0.00061 1000 310 0.000556 

17/02 EtOH 153  DMSO 159  
 10 152 0.97 100 192 0.191 
 25 159 0.81 500 209 0.0627 
 50 198 0.101 1000 232 0.0109 

During microscopic evaluation of the LDAs, we observed, especially for the well-
responding GSC line NCH644-, not only the formation of fewer spheres but the fact that 
those that did form were markedly smaller. This is exemplified in Figure 2, showing that, 
compared to solvent treatment (Figure 2A), 10 nM of calcitriol (Figure 2B) and 50 nM of 
calcitriol (Figure 2C) dose-dependently reduced the amount and size of spheres. This in-
dicates that the analyses using ELDA rather understates the true effect size of calcitriol 
treatment. 

 
Figure 2. Calcitriol reduces NCH644 sphere size and number. Photomicrographs of NCH644 GSCs 7 days after treatment 
with (A) solvent (ethanol, EtOH), (B) 10 nM of calcitriol (Cal) or (C) 50 nM of Cal. Pictures were taken with a Tecan Spark 
plate-reader and images were cropped using FIJI (v1.52p) [33]. 

These findings prompted us to analyze the response of the GSCs in more detail. We 
therefore developed a semi-automatic FIJI-macro to analyze sphere area and number (Fig-
ure 3). For NCH644, this approach showed that increasing doses of calcitriol from 10 to 25 
and 50 nM significantly reduced the mean sphere number per well (Figure 3A), as well as 
the median sphere area (Figure 3B). Specifically, the average sphere number and median 
area of solvent treated cells were 41 and 656 µm2, respectively. Treatment with 10 nM, 
25 nM or 50 nM reduced these numbers to 24 spheres, with a median size of 510 µm2, 
27 spheres and with a median size of 506 µm2 and 15 spheres with 427 µm2, respectively. 
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For GS-5, only the highest dose of 50 nM of calcitriol significantly reduced the number of 
spheres per well (Figure 3C) compared to solvent treated cells. As such, the mean number 
of spheres per well was reduced from 71, after solvent treatment, to 58, 71 and 51 after 
treatment with 10 nM, 25 nM and 50 nM, respectively. The median sphere size (Figure 3D) 
was 343 µm2 after solvent treatment and remained at 329 µm2 after treatment with 50 nM 
of calcitriol. Lastly, the primary culture 17/02 showed neither a reduction in sphere num-
ber (Figure 3E) nor a reduction in sphere area (Figure 3F), with an average sphere number 
and median size of 33 spheres and 420 µm2 after solvent treatment and 32 spheres and 414 
µm2 after 50 nM of calcitriol, respectively. 

 
Figure 3. Calcitriol reduces sphere number and sizes of NCH644 and, to a lesser extent, in GS-5 
GSCs: (A,B) Point-plots of NCH644 GSCs 7 days after treatment with solvent (ethanol, EtOH), 
10 nM of calcitriol (Cal, light blue), 25 nM of Cal (blue) or 50 nM of Cal (dark blue) after seeding of 
512 cells after analyses using a self-made FIJI-macro to measure (A) sphere number, (B) median 
sphere size. (C,D) Point-plots of GS-5 GSCs 7 days after seeding of 1024 and treatment as in (A). 
(E,F) Point-plots of 17/02 primary GSCs 7 days after seeding of 512 cells as in (A). * p < 0.05; **** p < 
0.0001; one-way ANOVA Dunnett’s multiple comparisons test. 
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2.2. Differential Activity of Calcitriol 
The fact that we observed such pronounced differences between the three GSC lines 

argued for cell line-/tumor-specific therapeutic effects of calcitriol and prompted us to 
further expand our cell panel. We therefore analyzed additional 7 GSC lines, including 
four locally established primary lines. The additional four primary lines are MNOF1244, 
which has not been described previously (see Materials and Methods), 17/01 [29], 
MNOF1300 [34] and the primary gliosarcoma line MNOF168 [35]. In addition, we also 
included the cell lines established and described in the literature, GS-73 [36], NCH421k 
[27] and NCH481 [37]. We analyzed the sensitivity of the cells using LDAs after treatment 
with 50 nM of calcitriol for 7 days and calculated the fold-change in stem-cell frequency 
to better compare the results from the different cell lines. This analysis (Figure 4A) re-
vealed that 6 out of 10 lines (60%) showed a significant reduction in stem-cell frequency 
after calcitriol treatment (vertical cut-off line in Figure 4A). Importantly, two GSC cultures 
(NCH644 and NCH421k) show an exceptionally strong response to calcitriol with a more 
than nine- and seven-fold reduction in stem-cell frequency. Next, we hypothesized that 
differences in calcitriol-sensitivity might be, at least partially, due to differences in VDR 
expression, and analyzed VDR mRNA expression via qRT-PCR and plotted it against the 
calcitriol response (Figure 4B). This approach revealed, on the one hand, that profound 
differences in VDR expression occurred between the cell lines, ranging over almost three 
magnitudes from 0.00177 (GS-73) to 1.63088 (NCH644). On the other hand, we determined 
that a very strong correlation (Pearson R: 0.9828, p-value < 0.0001) existed between calcit-
riol-sensitivity and receptor expression. 

 
Figure 4. Differential sensitivity to calcitriol strongly correlates with VDR expression: (A) Point-plot of the relative fold-
change in stem-cell frequency after performing a limiting dilution assay after treatment with 50 nM calcitriol or solvent 
for 7 days after seeding of 1024 to 8 cell per well. The stem-cell frequency was determined using ELDA [31] and the change 
in stem-cell frequency was calculated and plotted against the −log p-value (Chi2) of the ELDA-analysis. A p-value smaller 
than 0.05 was considered as statistically significant is marked by the asterisk (*) on the x-axis and the dotted, vertical line. 
(B) Point-plot of the relative fold-change in stem-cell frequency as in (A) plotted against the relative VDR expression and 
Pearson correlation (black line + 95 % confidence interval; dotted line). Locally established primary cultures are depicted 
with blue dots, non-primary cultures are depicted with green dots. GSCs with a significant reduction in stem-cell fre-
quency (right from the dotted line in A) are labeled and marked by red outlines in both sub-figures. 

2.3. Calcitriol Reduces Stemness-Associated Marker Genes 
Hereafter, we were interested in the gene expression changes that were induced by 

calcitriol treatment. Therefore, we treated the cells for 24 and 48 h with 10 and 50 nM of 
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calcitriol, and analyzed target gene expression (Figure 5). Using this approach, we can 
show that, expectedly, CYP24A1 expression (Figure 5A) is strongly induced after both 24 
and 48 h. Additionally, we analyzed GLI1 (Figure 5B) as a marker for Hedgehog pathway 
activity, because this pathway is described to be important for GSC stemness [38], and 
there is evidence, including from our own previous studies [39,40], that calcitriol is a direct 
inhibitor of this pathway. Nonetheless, only a small, non-significant tendency towards 
inhibition can be observed after calcitriol treatment. The analyses of the three stemness 
marker genes (Figure 5C–E) OLIG2, SOX2 and SOX9 showed that, after 24 h, OLIG2 (Fig-
ure 5C) expression is significantly reduced after 50 nM of calcitriol treatment and, after 48 
h, both 10 and 50 nM treatment. SOX2 (Figure 5D) is significantly reduced 24 h after treat-
ment with 10 and 50 nM of calcitriol, whereas, after 48 h of treatment, only the 50 nM 
treatment still elicits a significant reduction. SOX9 (Figure 5E) only shows a slight ten-
dency towards inhibition after 24 h of treatment, but no change after 48 h. Analyses of the 
differentiation marker GFAP (Figure 5F) showed a pronounced increase after 24 h, yet 
only the 10 nM treatment was statistically significant. Moreover, 48 h after treatment, 
GFAP-expression was further increased and statistically significant after treatment with 
50 nM of calcitriol. Lastly, we measured BCL2-expression (Figure 5G) and CCND1 (encod-
ing for Cyclin D1) (Figure 5H), which are known to be negatively regulated by active VDR 
signaling [15]; however, no significant changes were observed, although a slight tendency 
was apparent for BCL2-expression 48 h after treatment with 50 nM of calcitriol. 
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Figure 5. Calcitriol-induced changes in gene expression are indicative of reduced stemness. (A–H) Point-plots of Taqman-
based gene expression of NCH644 GSCs after treatment with solvent (ethanol, EtOH), 10 (light blue) or 50 (dark blue) nM 
of calcitriol (Cal) for 24 or 48 h and measurement of (A) CYP24A1, (B) GLI1, (C) OLIG2, (D) SOX2, (E) SOX9, (F) GFAP, 
(G) BCL2 and (H) CCND1 expression. The data are the summary of three experiments performed in triplicates. * p < 0.05; 
** p < 0.01; *** p < 0.001; **** p < 0.0001; one-way ANOVA with Dunnett’s multiple comparisons test. 

Using immunofluorescent stainings (Figure 6), we confirmed reductions in SOX2 
(Figure 6A,D) and OLIG2 (Figure 6B,E) and an increase in GFAP expression (Figure 6C,F) 
72 h after treatment with 50 nM of calcitriol. A quantification (Figure 6D–F) using FIJI 
showed that the relative signal intensity of SOX2 and OLIG2 decreased to 52% and 53%, 
respectively, relative to solvent-treated cells (100%). In contrast, GFAP expression in-
creased to 226% compared to solvent, while it should be noted that several cells exhibited 
a pronounced increase of more than 300%. 
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Figure 6. Calcitriol reduces SOX2 and OLIG2 stemness marker expression and increases GFAP differentiation marker 
expression: (A–C) representative immunofluorescence pictures of NCH644 GSCs 72 h after treatment with 50 nM of cal-
citriol (Cal) or solvent (EtOH) and (D-F) violin plots of the quantification of 50 cells from at least three random vision 
fields taken at 20× magnification of three independent experiments after staining against (A,D) SOX2, (B,E) OLIG2 and 
(C,F) GFAP. The solid horizontal line marks the median and the dashed lines separate the quartiles. **** p < 0.0001; two-
tailed t-test. Scale bar: 50 µm. 

2.4. Alterations in Global Proteomic Profiles after Calcitriol Treatment 
To characterize the effects on global protein levels and to gain a more detailed un-

derstanding of the calcitriol effects, we performed quantitative LC-MS/MS. Hierarchal Eu-
clidean clustering analysis showed that replicates of 50 nM of calcitriol treatment (48 h) 
distinctly differed from solvent and, therefore, they were clustered together (Figure 7A). 
Then, to determine which proteins were affected the most, we calculated fold differences 
and significances by two-sided, unpaired Student’s t-tests of each protein. Stemness mark-
ers such as OLIG2 and SOX2 were significantly reduced, which supports our finding in 
qPCR and immunofluorescence analysis of these two markers in protein level. It was also 
determined that most of Ca2+-related and VitD3-target proteins were significantly upreg-
ulated upon calcitriol treatment for 48 h (Figure 7B). Then, we indicated the findings of 
these proteins with cluster analysis on heatmaps. With the sole exception of AHNAK2, all 
the altered Ca2+-related proteins found, i.e., CAPN5, ANXA2, ANXA5, RCAN1 and 
S100A6, were increased, suggesting that calcitriol might activate Ca2+-related pathways 
(Figure 7C). CYP24A1 protein levels were significantly elevated (nearly 25-fold), a finding 
that was strongly correlated with CYP24A1 mRNA levels, as well as other VitD3-target 
proteins; G6PD, LPGAT1, CLMN, ASAP2 and S100A6 were also increased, along with 
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CYP24A1 (Figure 7D). Furthermore, our proteomic analysis showed an elevation in ac-
tin/microtubule-related proteins CCT6B, PALLD, ARPC1B, MREG, PACSIN3, AFAP1L2 
and TACC2 upon 48 h of calcitriol treatment. 

 
Figure 7. The effect of 48 h of calcitriol treatment on global protein levels: (A) hierarchal Euclidean clustered whole prote-
ome indicates calcitriol similarly grouped and distinct profile of proteins. (B) Volcano plot showing fold-changes in cal-
citriol versus solvent for all quantified proteins. The stemness markers, Ca2+-related and vitamin D3-target proteins are 
also indicated and color coded on the plot. The heatmap represents Ca2+-related (C), vitamin D3-target (D) and actin/mi-
crotubules-related proteins (E). 

2.5. Calcitriol Reduces Tumor Growth Ex Vivo and Synergizes with TMZ 
Based on the data obtained so far, we hypothesized that calcitriol has potential as a 

“differentiation therapy”. This, in turn, would imply that calcitriol-treated cells are more 
sensitive towards conventional chemotherapy, such as TMZ. To test this hypothesis, we 
first generated GFP-expressing NCH644 (NCH644 GFP+) and NCH421k (NCH421k GFP+) 
cells and applied them in an ex vivo tumor growth assay using organotypic tissue culture 
(OTC), as described recently [29,41]. For this purpose, the OTCs were prepared and, one 
day after tumor transplantation (termed d0), they were treated three times per week using 
solvent (DMSO for TMZ; EtOH for calcitriol), TMZ, calcitriol or a combination of both. 
For NCH644 (Figure 8), images were taken at days 3, 5, 7 and 10 to measure tumor sizes, 
with representative images being depicted in Figure 8A. To better compare the dynamics 
of tumor growth/regression, we normalized the sizes of each tumor to its size at d0. This 
approach showed that, over time (Figure 8B), solvent-treated tumors (black points/lines) 
grew continuously. TMZ alone only mildly and non-significantly reduced the tumor ar-
eas, which is in line with the concept that GSCs are largely resistant to conventional ther-
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apy. In contrast, calcitriol single treatment effectively halted tumor growth of most tu-
mors. Furthermore, other tumors even show complete remission after single-agent calcit-
riol treatment (8 of 24, 33.33%). Both cases are detailed in Figure 8A. Finally, the combina-
tion treatment synergistically and statistically significantly reduces tumor sizes and also 
leads to the disappearance of several tumors (7 of 27, 25.93%). Specifically, solvent-treated 
tumors grew to 3.7, 6.0 and 9.8-fold of their initial size after 5 (Figure 8C), 7 (Figure 8D) 
and 10 days (Figure 8E), while TMZ alone slowed growth non-significantly by 2.8, 3.0 and 
5.9-fold. Calcitriol-treated tumors were, on average, 1.1, 1.4 and 2.2-fold larger than their 
initial size, and the difference was statistically significant for each time point. Importantly, 
the combination treatment resulted, on average, in 0.8, 0.9 and 1-fold tumor growth com-
pared to initial sizes. This difference was highly significant against solvent and TMZ for 
all timepoints, as well as against calcitriol-single-treatment after 10 days of treatment, sug-
gesting a potential synergism. 



Cancers 2021, 13, 3577 13 of 25 
 

 

 
Figure 8. Calcitriol halts tumor growth and synergizes with TMZ in ex vivo organotypic tissue culture tumor growth 
kinetics: (A) representative microphotographs of NCH644 GFP+ tumors transplanted onto adult murine brain organotypic 
tissue culture slices after treatment with solvent (DMSO for TMZ; EtOH for calcitriol), 500 µM of TMZ, 100 nM of calcitriol 
(Cal) or a combination of both for the times indicated; scale bar: 500 µm. (B) Growth curves of the NCH644 GFP+ tumors 
normalized to the size of tumor d0 after treatment as in (A) depicted as the mean +/- SEM. (C–E) Point-plot of the data 
summarized in (B) after treatment for (C) 5 days, (D), 7 days and (E) 10 days, as in (A). * p < 0.05; ** p < 0.01; *** p < 0.001; 
**** p < 0.0001; two-way ANOVA with Tukey’s multiple comparisons test. 
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Similar results have been observed for NCH421k GFP+ (Figure 9), although these tu-
mors appear to be more sensitive towards TMZ. As such, solvent-treated tumors contin-
uously grew and reached 2.9-, 9.1- and 17.1-fold of their initial size, on average, at day 5 
(Figure 9C), day 12 (Figure 9D) and day 16 (Figure 9E), respectively. Treatment with TMZ 
reduced the growth of the tumors continuously, leading to an average tumor size that was 
2.1-(day 5), 0.9-(day 12) and finally 0.4-fold (day 16) compared to the initial tumor. The 
difference between solvent- and TMZ-treated tumors reached statistical significance after 
12 and 16 days. Calcitriol treatment already blocked tumor growth to 0.6-fold after 5 days. 
This could be further decreased to 0.3-fold (day 12) and finally 0.1-fold (day 16) of the 
initial tumor, while achieving statistical significance at day 12 and day 16. The combina-
tion of both was also highly effective but it did not differ significantly from either treat-
ment. The average tumor size after combination treatment was 1.1-fold (day 5), 0.4-fold 
(day 12) and 0.3-fold (day 16) compared to initial size. Thus, no synergism can be inferred 
for NCH421k tumors. 



Cancers 2021, 13, 3577 15 of 25 
 

 

 
Figure 9. Calcitriol and TMZ prevent tumor growth in ex vivo organotypic tissue culture tumor growth kinetics: (A) rep-
resentative microphotographs of NCH421k GFP+ tumors transplanted onto adult murine brain organotypic tissue culture 
slices after treatment with solvent (DMSO for TMZ; EtOH for calcitriol), 500 µM of TMZ, 100 nM of calcitriol (Cal) or a 
combination of both for the times indicated; scale bar: 250 µm. (B) Growth curves of the NCH421k GFP+ tumors normal-
ized to the size of tumor d0 after treatment as in (A) depicted as the mean ± SEM. (C–E) Point-plot of the data summarized 
in (B) after treatment for (C) 5 days, (D), 12 days and (E) 16 days, as in (A). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; 
two-way ANOVA with Tukey’s multiple comparisons test. 
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3. Discussion 
Cancer recurrence generally leads to more aggressive and treatment resistant disease, 

which finally culminates in the death of patients. Due to highly infiltrative tumor growth, 
it is impossible to achieve complete microscopic resection in patients with GBM, and it is 
proposed that the remaining cells can obtain and harbor a stem-like phenotype that is 
crucial for replenishing the tumor [42,43]. It has been further hypothesized that these 
GSCs reside in either hypoxic niches [9], perivascular niches [10] or at treatment borders, 
such as the resection margin [11]. Accordingly, many attempts are being made at specifi-
cally targeting this phenotype [44–48]. The anti-cancer and differentiation-promoting ac-
tivity of VitD3 and calcitriol has been known for some time, and it has been shown in 
numerous studies that intake of VitD3, a safe and well-studied drug, can prevent cancer 
occurrence [15,22,49]. 

Based on these two paradigms, i.e., its known ability to target the cancer stem-like 
phenotype and its anti-tumorigenic activity, we decided to apply therapeutic doses of cal-
citriol, the hormonally active form of VitD3, in an aim to reduce the stem-like phenotype 
of GSCs and thereby increase its sensitivity to chemotherapy. Accordingly, our studies 
revealed, for the first time, that treatment with 10, 25 and 50 nM of calcitriol decreases 
stemness in three GSC lines. Notably, the treatment efficiency varied between the cell 
lines. Some GSCs, for example NCH644, seemed to be more sensitive to calcitriol treat-
ment than GS-5, which showed a moderate response, and 17/02, which barely showed any 
response at all. Importantly, these findings are in line with previous results obtained in 
the clinical setting by Trouillas et al. [26]. The authors of this study gave the synthetic 
VitD3-derivative alfacalcidol as an adjuvant therapy to 11 patients (10 GBM, 1 Anaplastic 
Astrocytoma (AA, grade III glioma)). Of those eleven patients, three (2/11 GBMs, 1/1 AA) 
experienced continuous improvement and, finally, a complete tumor regression. Accord-
ingly, the median survival of this study cohort was 21 months, which is considerably 
higher than the reported ~13 months found in the recent literature. The two GBM respond-
ers were still alive after 4 years of follow-up [26]. One possible hypothesis derived from 
these preliminary observations is that a certain sub-population (~20%) of patients may 
show increased sensitivity towards a VitD3-based therapy. This hypothesis is consistent 
with our analyses of an extended cell panel of 10 GSC cultures. Among those, 60% showed 
a significant response, whereas 20% (NCH644 and NCH421k) responded strongly to cal-
citriol both in vitro and ex vivo, providing a solid starting point to experimentally deter-
mine molecular factors mediating calcitriol sensitivity in GBM. 

Another pertinent question concerns the most effective drug for a VitD3-based ther-
apy. Here, we compared the effect obtained by calcitriol to that of its synthetic, less-calce-
mic [32] derivative, calcipotriol. We observed similar effects in both compounds, although 
the intensity was comparatively weaker after treatment with calcipotriol, which prompted 
us to focus our studies on the effects of calcitriol. Another group reported the usage of 
calcipotriol in T98G serum-grown GBM cells [50]. Similar to our approach, the authors 
compared calcipotriol to calcitriol and another derivative, tacalcitol, and found that cal-
citriol is the most effective drug, although they applied very high doses of calcitriol (up to 
10 µM). Despite the fact that several studies can be found which employ various VitD3-
derivatives, such as calcipotriol in pancreatic cancer cells [51,52], comparative approaches 
are scarce. Using breast cancer cell lines a comparison between calcitriol, calcipotriol and 
EB1089, another VitD3-derivative, was conducted by performing combination treatment 
with the chemotherapeutic gefitinib [53]. The authors observed synergy of all compounds 
with the chemotherapy, but no discernable difference was observed between calcitriol and 
its analogues. Similarly, Colston et al., have shown that both calcitriol and calcipotriol 
reduce proliferation of MCF-7 breast cancer cells [54]. These findings point towards can-
cer-type-specific sensitivities. 

Based on the functional inhibition of the stem-like phenotype, we next performed 
gene expression analyses and confirmatory immunofluorescence staining, showing that, 
aside from the strong and expected [15,55] increase in CYP24A1-expression, we observed 
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a highly significant and concentration-dependent reduction in the stemness markers 
SOX2, OLIG2, with a concomitant increase in the differentiation marker GFAP. These find-
ings indicate that calcitriol indeed reduces the stem-like phenotype of GSCs. This is fur-
ther corroborated by the lack of changes in CCND1-expression, which indicates that the 
reduced sphere formation, as shown using the LDAs, is not due to inhibition of prolifera-
tion of calcitriol, but rather due to prevention of sphere formation via blockage of the 
stem-like phenotype. We further reasoned that, due to the reduction in stemness, the GSCs 
might be more prone to conventional chemotherapy, and we therefore wanted to put our 
hypothesis to test using an advanced, physiological ex vivo approach. Although, we only 
observed a very moderate trend in the reduction in BCL2 expression using qPCR, the ex 
vivo tumor growth assay of NCH644 GSCs showed that TMZ and calcitriol effectively 
synergized, which could even result in the complete elimination of some tumors. Simi-
larly, Bak et al. observed prolonged survival in TMZ- and VitD3-treated rats after ortho-
topic transplantation, and attributed some of the combined effects to combined, or rather 
enhanced, activation of autophagy [24], with no changes in apoptosis induction compared 
to TMZ alone. A sensitization against conventional chemotherapeutics using VitD3 or its 
analogs has also been observed in a variety of in vivo tumor models, such as colorectal 
cancer [56] or prostate cancer [57]. Conversely, the ex vivo tumor growth assay with 
NCH421k GSCs showed stronger effects of TMZ alone, and therefore no synergism with 
calcitriol. NCH644 cells are known to have an unmethylated MGMT promoter with a high 
IC50 of TMZ in vitro (272 mM) [58]; thus, they are rather resistant to TMZ. In contrast, 
NCH421ks have a methylated MGMT promoter and a lower IC50 of TMZ in vitro 
(200 µM) [58], and are therefore sensitive to TMZ. Thus, these experiments indicate that 
MGMT-expressing GSCs are particularly amenable to calcitriol-based differentiation ther-
apy, although a larger cohort of GSCs is necessary to foster this hypothesis. 

Lastly, we performed a global proteomic analysis of NCH644 GSCs after treatment 
with calcitriol and could again confirm the reduction in the stemness marker proteins 
OLIG2 and SOX2, further validating our data and supporting the conclusion that calcitriol 
induces differentiation of GSCs. In addition, we could confirm that 5 of the 50 upregulated 
proteins are known VitD3-targets, according to Wikipathways (https://www.wikipath-
ways.org/index.php/Pathway:WP2877, [59], accessed on 22 April 2021). Surprisingly, an 
additional five upregulated proteins are related to Ca2+ signaling, indicating an involve-
ment of Ca2+ in mediating the calcitriol response. In fact, it is well known that calcitriol 
can also induce non-genomic responses that involve the release of Ca2+ into the cytosol 
[13,15,60]. One of the upregulated Ca2+-related proteins is RCAN1, whose expression is 
known to be induced via calmodulin–calcineurin-dependent Ca2+-signaling [61,62], and 
VitD3 has also been shown to involve calmodulin-dependent signaling [63,64]. These data 
further indicate that at least a part of the calcitriol-effect is mediated via Ca2+ signaling. 
Following this line-of-thought has been shown that Ca2+ is central to the maintenance of 
neural stem cells, and it is often aberrantly regulated in GSCs [65]. Recently, the term cal-
cium toolbox was proposed for the summary of all Ca2+-related proteins in a cell, and it 
was shown that GBM cells have a different composition of this toolbox compared to 
healthy brain tissue [66]. In a study by Leclerc et al. [67], the authors compared GSCs 
grown under stemness conditions to GSCs grown in serum-containing medium for 7 and 
30 days, and termed these conditions differentiated and senescent, respectively; they also 
applied the calcium toolbox created by Robil et al. for a cluster analysis [66]. Interestingly, 
they found that two of the five Ca2+-related proteins from our dataset (ANXA2 and 
S100A6) were associated with differentiated cells. These findings further corroborate our 
conclusion that calcitriol induces differentiation and provides a first mechanistic clue 
through changes in Ca2+-signaling or binding proteins. This could also provide a mecha-
nism for the decreases in effectiveness of the less calcemic compound calcipotriol, which 
only induces genomic VitD3-signaling but not the non-genomic axis. 
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In summary, we provide the first evidence that calcitriol can specifically reduce the 
stem-like phenotype of a subset of GSCs and potentially synergize with TMZ in MGMT-
expressing cells. 

4. Materials and Methods 
4.1. Cells and Cell Culture 

For the experiments, the following GSC lines were employed: 17/01 [29], 17/02 [29], 
GS-5 [28], GS-73 [36], the gliosarcoma line MNOF168 [35], MNOF1244 (see below, section 
4.1.), MNOF1300 [34], NCH421k [27], NCH481 [37] and NCH644 [27]. All cell lines, except 
MNOF168, MNFO1244 and MNOF1300, were used and cultured in Neurobasal medium 
(Gibco, Darmstadt, Germany). The medium was supplemented with 1 × B27, 100 U/mL 
Penicillin 100 µg/mL Streptomycin (P/S, Gibco), 1 × GlutaMAX (Gibco), 20 ng/mL epider-
mal growth factor (EGF, Peprotech, Hamburg, Germany) 20 ng/mL and fibroblast growth 
factor (FGF, Peprotech). The GSCs MNOF168, MNOF1244 and MNOF1300 were grown in 
DMEM/F12 medium (Lonza, Basel, Switzerland) containing 20 ng/mL each of EGF and 
FGF, 20% BIT admixture supplement (Pelo Biotech, Planegg/Martinsried, Germany) and 
P/S. Moreover, 17/01 was a primary cell line derived from a 51-year-old female patient 
[29]; 17/02 was a primary cell line obtained from a 60-year-old patient after obtaining in-
formed consent and ethics approval [29]. The tumor relapsed after percutaneous radio-
therapy (60 Gy), and chemotherapy with TMZ also was performed. The cell line was pre-
pared after a second fractionated irradiation was performed, followed by subtotal resec-
tion [29]. GS-5 and GS-73 were gifted by Katrin Lamszus (UKE, Hamburg, Germany). 
MNOF168 and MNOF1300 were primary cultures provided by Stefan Momma and Julia 
Tichy (University Hospital Frankfurt, Germany) [34,35]. MNOF1244 was a primary cell 
culture obtained from a 69-year-old female patient after obtaining informed consent and 
ethics approval (ethics committee at the University Hospital Frankfurt; reference number 
04/09-SNO 01/11). Tumor tissue from the initial surgery prior to radiochemotherapy was 
dissociated and cultivated under serum-free culture conditions. Christel Herold-Mende 
(University Hospital Heidelberg, Germany) provided NCH421k, NCH481 and NCH644. 
HEK293T (ATCC #CRL-3216) was cultured in Dulbecco’s modified Eagle’s medium 
(DMEM GlutaMAX) supplied with heat-inactivated 10% FBS and P/S (all from Gibco). 
GFP-positive NCH644 and NCH421k were created by lentiviral transduction (see section 
4.7.), as described previously [68]. 

4.2. Compounds 
1,25(OH)2D3 was purchased from Cayman Chemical. Using ethanol (Sigma Aldrich, 

Taufkirchen, Germany), a stock solution was prepared and stored at −20 °C. Calcipotriol 
and TMZ were purchased from Sigma-Aldrich. Stock solutions were prepared with 
DMSO (Carl Roth GmbH) and stored at −20 °C. 

4.3. Limiting Dilution Assay 
The limiting dilution assay was performed as described previously [29,30]. Briefly, 

96-well plates were used to seed the cells in 200 µL culture medium. By performing a row-
wise descending dilution, cell concentrations of 8, 16, 32, 64, 128, 256, 512 and 1024 
cells/well were reached for each cell line, while treatment was performed with calcit-
riol/calcipotriol, as indicated in the respective figures. The cells were treated immediately 
after treatment to ensure that single cells are treated and incubated for 7 days. Stem-cell 
frequencies were assessed 7 days after seeding using extreme limiting dilution analysis 
(ELDA) software using the standard settings (http://bioinf.wehi.edu.au/software/elda; 
[31]; last access on 07 May 2021). After microscopic evaluation, the first two rows per plate 
were photographed using a Tecan Spark plate reader (Tecan, Grödig, Austria) and used 
for subsequent analyses. The number and median size of spheres ≥ 250 µm were analyzed 
by FIJI (v1.52p) [33] using a self-developed macro. 
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For NCH644 and 17/02, the wells after seeding 512 cells; for GS-5, the wells after 
seeding 1024 cells were employed for the analysis. 

4.4. Tagman-Based qRT-PCR 
In total, 300.000 cells/well were seeded into 6-well plates and, the following day, were 

treated with 50 nM calcitriol for 24 h or 48 h. Experiments were performed using 3 biolog-
ical replicates for each treatment condition, while the experiment was repeated three 
times. RNA was isolated using the ExtractMe Total RNA Kit (Blirt S.A., Gdanks, Poland), 
while 1–2 µg RNA was used for cDNA synthesis. SuperScript III System (Life technolo-
gies, Darmstadt, Germany) allowed the synthesis of cDNA, whereas 100 U per sample 
was sufficient. The quantitative Real-Time PCR (qRT-PCR) was performed using Taqman 
probes (Applied Biosystems, Darmstadt, Geramany), Fast-Start Universal Probe Master 
Mix (Roche) on a StepOne Plus System (Applied Biosystems) in a 20 µL reaction volume. 
Ct values were normalized to TATA box-binding protein (TBP). Fold-change in gene ex-
pression was determined by 2−∆∆Ct method, except for VDR-expression, whereas the ex-
pression was determined using the 2−∆Ct method. 

The following Taqman-probes were used: BLC2 (Hs00608023_m1), CCND1 
(Hs00765553_m1), CYP24A1 (Hs00167999_m1), GFAP (Hs00909233_m1), GLI1 
(Hs00171790_m1), OLIG2 (Hs00300164_s1), SOX2 (Hs01053049_s1), SOX9 
(Hs00165814_m1), TBP (Hs00427620_m1), TNC (Hs01115665_m1), VDR (Hs00172113_m1) 

4.5. Immunofluorescence Staining 
8000 cells/well were seeded in 8-well chamber slides and, the following day, were 

treated for 24, 48, or 72 h with 50 nM calcitriol or solvent. Slides were fixated using 4% 
PFA before staining with the following primary antibodies: OLIG2 (R&D Systems, Min-
neapolis, MN, USA), GFAP (Dako Cytomation, Glostrup, Denmark) SOX2 (R&D Systems, 
Minneapolis, MN, USA) over night. Subsequently, slides were stained with a species-cor-
responding secondary antibody (goat anti-mouse (Alexa Fluor 594 F(ab’)2 fragment IgG 
(H+L)); (goat anti-rabbit (Alexa Fluor 488 F(ab’)2 fragment goat anti-rabbit IgG (H+L)); 
donkey anti-goat (Alexa Fluor 488 IgG (H+L))). Pictures were taken using a Nikon Eclipse 
TE2000-S fluorescent microscope operated by NIS elements software and adjusted using 
FIJI. Quantification was performed in Fiji by measuring the integrated density of the flu-
orescent signal (mean intensity of measured cell multiplied with the measured cell area) 
of 50 cells per condition using at least three pictures. The area was selected using the free-
hand selection tool, ensuring an exact and individual measurement for each cell. Violin 
plots were generated using GraphPad Prism 9. 

4.6. Proteomic Sample Preparation and Data Analyses 
4.6.1. Sample Preparation for LC-MS2 

For protein extraction, NCH644 GSCs were treated with 50 nM calcitriol one day after 
seeding. After 48 h, the cells were lysed in 2% SDS, 50 mM Tris-HCl pH8, 150 mM NaCl, 
10 mM TCEP, 40 mM chloracetamide, protease inhibitor cocktail tablet (Sigma-Aldrich, 
Darmstadt, Germany) and “PhosStop” Phosphatase inhibitor tablet (Roche, Grenzach-
Wyhlen, Germany), followed by sonication (1 ON/OFF, 30 s, 40%). Proteins were precipi-
tated using methanol-chloroform extraction [69]. Proteins were digested with LysC (Wako 
Chemicals) and Trypsin (Promega, V5113), with a final ratio of 1:100, and digestion was 
performed overnight at 37°C and stopped by trifluoroaceticacid (TFA). The peptides were 
purified using SepPak C18 columns (Waters, WAT054955). Eluates were dried and labeled 
with TMT reagents (ThermoFisher Scientific, 90061, TH266884) in a 1:2 (w/w) ratio in 50 
mM TEAB (SIGMA, 86600) with 20% acetonitrile. The reaction was quenched with hy-
droxylamine to a final concentration of 0.5% at RT and samples were pooled in equimolar 
ratio. Finally, the peptides were fractionated using a High pH Reversed phase fractiona-
tion kit (ThermoFisher Scientific), according to the manufacturer’s instructions. 
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4.6.2. Mass Spectrometry 
Peptides were resuspended in 3% acetonitrile and 0.1% formic acid and separated on 

an Easy nLC 1200 (ThermoFisher Scientific) and a 22 cm long, 75 μm ID fused-silica col-
umn, which had been packed in house with 1.9 μm C18 particles (ReproSil-Pur, Dr. 
Maisch) and kept at 45 °C using an integrated column oven (Sonation). Peptides were 
eluted by a non-linear gradient from 5 to 60% acetonitrile over 155 min and directly 
sprayed into an Orbitrap Fusion Lumos mass spectrometer equipped with a nanoFlex ion 
source (ThermoFisher Scientific) at a spray voltage of 2.3 kV [70,71]. For analysis, 1/10 of 
each fraction was loaded onto the column. Each analysis used the Multi-Notch MS3-based 
TMT method [72] to reduce ion interference compared to MS2 quantification [73]. The 
scan sequence began with an MS1 spectrum (Orbitrap analysis; resolution 120,000 at 200 
Th; mass range, 350–1400 m/z; automatic gain control (AGC) target, 400,000; normalized 
AGC target, 100%; maximum injection time, 100 ms). Precursors for MS2 analysis were 
selected using 10 ms activation time method. MS2 analysis consisted of collision-induced 
dissociation (quadrupole ion trap analysis; turbo scan rate; AGC 15,000; normalized AGC 
target, 150%; isolation window, 0.7 Th; normalized collision energy (NCE), 35; maximum 
injection time, 50 ms). Monoisotopic peak assignment was used, and previously interro-
gated precursors were excluded using a dynamic window (150 s ± 7 ppm); dependent 
scans were performed on a single charge state per precursor. Following acquisition of each 
MS2 spectrum, a synchronous-precursor-selection (SPS) MS3 scan was collected on the 
top 10 most intense ions in the MS2 spectrum [72]. MS3 precursors were fragmented by 
high energy collision-induced dissociation (HCD) and analyzed using the Orbitrap (NCE, 
65; AGC, 100,000; normalized AGC target, 200%; maximum injection time, 150 ms; reso-
lution was 15,000 at 200 Th). 

4.6.3. Data Analysis 
Raw data were analyzed with Proteome Discoverer (PD) 2.4 (ThermoFisher Scien-

tific), and SequenceHT node was selected for database searches. Human trypsin digested 
proteome (Homo sapiens SwissProt database (TaxID:9606, version 12 March 2020)) was 
used for protein identifications. Contaminants (MaxQuant “contamination.fasta”) were 
determined for quality control. TMT6 (+229.163) at the N-terminus, TMT6 (K, +229.163) at 
lysine and carbamidomethyl (+57.021), and cysteine residues were set as fixed modifica-
tions. Methionine oxidation (M, +15.995) and acetylation (+42.011) at the protein N-termi-
nus were set for dynamic modifications. Precursor mass tolerance was set to 7 ppm and 
fragment mass tolerance was set to 0.5 Da. Default percolator settings in PD were used to 
filter perfect spectrum matches (PSMs). Reporter ion quantification was achieved with 
default settings in consensus workflow. Protein file from PD was then exported to Excel 
for further processing. Normalized abundances from protein file were used for statistical 
analysis after contaminations and complete empty values were removed. Significantly al-
tered proteins were determined by a two-sided, unpaired Student’s t-tests (p-value < 0.05), 
adding minimum fold-change cut-off (≥0.5) with R version 4.0.2 [74] in RStudio [75]. 
Gplots version 3.1.1 [76] was used to visualize heatmaps, and EnhancedVolcano version 
1.6.0 [77] was used for volcano plot. Figures were later edited with Adobe Illustrator CS5. 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE [78] partner repository with the dataset identifier PXD026789  

4.7. Lentiviral Transduction of GSCs 
GFP-positive NCH644 cells were created by using pLV[Exp]-EGFP/Puro-

CMV>Stuffer300 (Vectorbuilder GmbH, Neu-Isenburg, Germany). In total, 150,000 
HEK293T cells were seeded in 6-well plates and allowed to incubate overnight. For trans-
fection, 2 μg plasmid DNA (pLV(Exp)), 1.5 μg gag/pol plasmid (psPAX2, addgene #12260) 
and 0.5 µg VSV-G envelope plasmid (pMD2.G, addgene #12259) were used in 57 µL Opti-
MEM and 6 µL FuGENE HD (Promega, Fitchburg, WI, USA) transfection reagent. Six 
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hours later, the medium was changed, while the viral supernatant was collected after 16h 
and 40, respectively, and later pooled, as well as filtered through a 0.45 µm filter. The viral 
supernatant was diluted 1:1 with medium and 8 µg/mL protamine sulfate in PBS was 
added (Sigma-Aldrich). In total, 30,000 freshly dissociated cells were incubated for at least 
48 h in virus-containing medium. Selection of positively transduced cells was ensured by 
adding 2 µg/mL or 1 µg/mL puromycin to culture medium for NCH644 and NCH421k, 
respectively. Transduction efficiency was determined by FACS measurement and was 
91,6% for NCH644 GFP-positive cells (NCH644 GFP+) and 81.91% for GFP-positive 
NCH421k cells (NCH421k GFP+). psPAX2 was a gift from Didier Trono (Addgene plasmid 
# 12260; http://n2t.net/addgene:12260; RRID:Addgene_12260; accessed on 22 March 2021). 
pMD2.G was a gift from Didier Trono (Addgene plasmid # 12259; 
http://n2t.net/addgene:12259; RRID:Addgene_12259; accessed on 22 March 2021) 

4.8. Adult Organotypic Slice Cultures and Ex Vivo Tumor Growth Assay 
Adult organotypic tissue slice culture (OTC) was carried out based on the method 

described previously [29,41]. Mouse brains were dissected and dura mater was removed. 
Subsequently, mouse brains were placed in warm (35–40 °C) 2% low-melting agarose 
(Carl Roth). A Vibratome VT1000 (Leica, Wetzlar, Germany) was used to create evenly 
sized 150 µm transverse sections. The sections were placed on Millicell cell culture inserts 
(Merck KGaA, Darmstadt, Germany) and cultured in 6-well plates using FCS-free me-
dium consisting of DMEM/F12 supplied with 1 × B27, 1 × N2 supplement and P/S (all from 
Gibco). One day later, multiple spheres were placed on the mouse brain slices. Adequate 
spheres were prepared by seeding 3000 NCH644 GFP-positive cells/well in u-shaped 96-
well plates using 200 µL medium. Spheres were allowed to grow for 3 days. One day after 
sphere transplantation, pictures were taken (day 0) and the treatment was started, which 
was refreshed 3 times per week. Tumor growth was evaluated using FIJI, after pictures 
were taken regularly by a Nikon SMZ25 stereomicroscope equipped with a P2-SHR Plan 
Apo 2 × objective operated by NIS elements software. As the tumor size was normalized 
to the size on day 0, growth curves were created. 

4.9. Statistics 
Statistical analyses involved one-way and two-way ANOVA using GraphPad Prism 

7 (GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA)), with the respective post 
hoc test, as indicated. For LDA, the statistical evaluation was taken from ELDA software, 
which calculated statistical significance based on a chi2-square test [31]. 

5. Conclusions 
Here, we show that therapeutic doses of the hormonally active form of VitD3, calcit-

riol, carry potential as a means of anti-glioblastoma therapy. We demonstrated that calcit-
riol reduces the sphere-forming potential of GSCs in vitro, which was accompanied by 
reduced stemness marker gene expression and increased differentiation marker expres-
sion. Most importantly, using adult OTCs as a physiological and complex model system, 
we show that calcitriol not only hinders tumor growth as a single agent but also potently 
synergizes with the current standard-of-care TMZ. These promising findings emphasize 
that future research should be focused on further delineating the effects of calcitriol, a safe 
and well-known drug, and its application as an adjuvant therapy for GBM. 
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