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Simple Summary: Over the past decade, there has been a significant increase in the number of omics
datasets that provide unprecedented opportunities to systematically characterize the underlying
biological mechanisms involved in cancer evolution and to understand how the tumor microenviron-
ment contributes to this evolution. Novel techniques in artificial intelligence (AI) can help determine
areas of therapeutic need, enhance clinical trial interpretation, identify novel targets, and generate
accurate predictions that are impossible with traditional statistical techniques. However, a major
criticism of incorporating the highly accurate and nonlinear AI models into medical fields is the
notion that AI is essentially a “black box”. We resolved this overarching problem with explainable
artificial intelligence (XAI) to determine prognoses in patients with breast cancer and reveal valuable
information about conditions in the tumor microenvironment that are associated with enhanced
prognosis and patient survival. The benefits of using XAI in the development of new targeted
therapies would be significant.

Abstract: We investigated the data-driven relationship between immune cell composition in the
tumor microenvironment (TME) and the ≥5-year survival rates of breast cancer patients using
explainable artificial intelligence (XAI) models. We acquired TCGA breast invasive carcinoma data
from the cbioPortal and retrieved immune cell composition estimates from bulk RNA sequencing
data from TIMER2.0 based on EPIC, CIBERSORT, TIMER, and xCell computational methods. Novel
insights derived from our XAI model showed that B cells, CD8+ T cells, M0 macrophages, and
NK T cells are the most critical TME features for enhanced prognosis of breast cancer patients.
Our XAI model also revealed the inflection points of these critical TME features, above or below
which ≥5-year survival rates improve. Subsequently, we ascertained the conditional probabilities
of ≥5-year survival under specific conditions inferred from the inflection points. In particular, the
XAI models revealed that the B cell fraction (relative to all cells in a sample) exceeding 0.025, M0
macrophage fraction (relative to the total immune cell content) below 0.05, and NK T cell and CD8+

T cell fractions (based on cancer type-specific arbitrary units) above 0.075 and 0.25, respectively,
in the TME could enhance the ≥5-year survival in breast cancer patients. The findings could lead
to accurate clinical predictions and enhanced immunotherapies, and to the design of innovative
strategies to reprogram the breast TME.

Keywords: explainable artificial intelligence (XAI); machine learning; breast cancer; tumor microen-
vironment; survival analysis
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1. Introduction

Breast cancer is the most common cancer and the leading cause of cancer death in
women worldwide. The prognosis is dependent on the type of breast cancer and on the
stage of disease at detection [1,2]. Breast cancer can be divided into several subtypes, based
primarily on the expression of estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER2). Triple-negative breast cancer (TNBC)
is a heterogeneous category of breast cancer, characterized by negative ER, PR, and HER2.
TNBC is highly metastatic and aggressive, with poor prognosis, poor patient survival, and
limited therapeutic options [3].

Cancer development, progression, and treatment resistance are known to be influenced
by genetic and epigenetic alterations as well as by crosstalk between tumor cells and the
tumor microenvironment (TME) [4]. The TME involves a complex network of soluble
factors, tumor cells, and stromal cells that plays a crucial role in the initiation, development,
and progression of breast cancer. The TME in breast cancer consists of multilineage immune
cells (e.g., T and B lymphocytes, myeloid cells, and dendritic cells), cancer-associated
fibroblasts, and tumor endothelial cells [5]. These cell subtypes live in an ocean of hormones,
growth factors, and cytokines in the breast TME [6]. Adding to this complexity is a
myriad of pathways that dictate the fate of tumor, metastases, and patients’ lives. The
balance between tumor-infiltrating immune effector cells in the TME (such as CD4+ T cells
and CD8+ T cells (or cytotoxic T lymphocytes, CTLs)) regulates the immune response to
cytotoxic effects on tumor cells. In a mouse model of metastatic breast cancer, natural killer
(NK) T cell activation was shown to enhance antitumor immunity by increasing cytotoxic
responses and interferon-γ production from NK and CD8+ T cells [7]. In contrast, tumor-
infiltrating myeloid cells, such as tumor-associated macrophages, promote the expansion
and dissemination of cancer cells depending on their functional state [8]. Hypoxia in
the TME stimulates macrophages to further produce proangiogenic factors such VEGF
and suppress the T cell immune responses, hence enhancing the evasion of tumor cells
and ultimately metastasis [8]. TME crosstalk potentially promotes cancer progression
and TME plasticity. Adaptations to TME factors may be responsible for metastasis and
immune evasion.

Multiple targeted therapies have been used for TNBC but to no avail. Aberrant
signaling by VEGFR2 and cMET, as well as modifications of the immune cell population in
response to an immune-suppressive phenotype, resulted in a failure of immunotherapy for
TNBC [9]. In TNBC, multiple genomic instabilities and mutations have been associated with
immune responses [10]. A comparative study between TNBC and non-TNBC (NTNBC)
showed that TNBC is characterized by higher expression levels of functional gene sets
associated with 15 types of immune cells [11,12]. Unfortunately, innovative strategies to
reprogram the TME of breast cancer patients is challenging, in part because of conflicting
findings in the literature. For example, tumor-infiltrating B lymphocytes (B cells) have
been reported to be associated with positive, negative, or no significance in breast cancer
prediction and prognosis [13]. Other studies have reported that targeting the regulatory B
cell activity may be used to enhance immunotherapeutic outcomes [14].

Augmentation of CTL-induced antitumor immune reactions has been considered
to be an attractive therapeutic modality for lethal solid tumors due to the tumor-killing
ability of CD8+ CTL [15]. In the adaptive immune system, T-helper cells (CD4+ cells) play
a critical role in releasing cytokines and primarily help CD8+ CTL and antibody responses
to mediate antitumor immunity. However, the interplay between polyfunctional CD4+

T cells and other immune cell lineages within the context of tumor immunity is not well
understood [16]. In addition to immune cells, tumor-associated factors in the TME have
also been targeted in cancer therapies. The recognition that tumor-associated endothelial
cells and cancer-associated fibroblasts are important mediators of immune suppression
has led to the development of cell-specific targeting drugs in an attempt to enhance the
immune response [5]. Tumor-associated macrophages are able to suppress the functions of
CD8+ T and NK cells and promote tumor cell growth in the TME [17].
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Over the past decade, there has been a major increase in the number of large and
complex omics datasets [18,19], especially through large consortium projects such as
TCGA, which has sampled multiomics measurements from more than 30,000 patients and
dozens of cancer types [20]. These rich omics data provide unprecedented opportunities to
systematically characterize the underlying biological mechanisms involved in the evolution
of cancer and to understand how the TME (hosting stromal cells, immune cells, and other
types of cells) contributes to this evolution [19,21].

Novel techniques in AI can bring together diverse data types to expand novel insights
gained from the multiomics datasets. It is well acknowledged that enrichment of high-
quality data coupled with machine learning, a subset of AI, can help investigate the areas
of changing patients’ unhealthy behaviors [22], risk prediction or recurrence prediction
of chronic diseases after a surgery [23] and curative treatment [24], progression and sur-
vivability of patients with chronic diseases [25], therapeutic need, enhanced clinical trial
interpretation, and novel targets [26]. However, a major criticism of incorporating AI, par-
ticularly deep learning, into medical fields is the idea that AI is essentially a mechanistically
uninterpretable opaque “black box” [27–29], and hence may not meet the required high
level of accountability, transparency, and reliability in medical decisions [30]. The assumed
lack of interpretability of AI models has been a debated topic within the field, with models
cited that have achieved high accuracy due to factors that are not useful in prospective
predictions [27,31,32]. The crux of the problem is that linear models, although interpretable,
produce less accurate models when the datasets are complex and inherently nonlinear.
In such cases, tree-based ensemble models, which are interpretable models [24], can be
used in lieu of deep learning models that allow scientists and clinicians to understand the
underlying reasoning behind the decisions and predictions. Recently, Gu et al. [33] used
a tree-based ensemble model, called an extreme gradient boosting (XGBoost) model [34],
to predict the risk of breast cancer relapse from clinical data (e.g., age, tumor size, treat-
ment) and then use case-based reasoning—which solves new problems by constructing a
historical case base and using the results of similar historical cases—to explain the reason
for the prediction. In addition, the authors used a game theory-based Shapley additive
explanation model called SHAP [35,36] for global explainability of the results to identify
the order of importance of the clinical features considered.

In this article, we develop explainable artificial intelligence (XAI) models to establish
and investigate the data-driven relationship between TME features, which comprise a vast
variety of immune cells, and the ≥5-year survival rates of breast cancer patients. The XAI
models also determine relative influence of immune cells (e.g., T cells, B cells) and tumor-
associated cells (e.g., macrophages) in the TME on the ≥5-year survival rates of patients.
In addition, using XAI models and conditional probabilities, we identified and analyzed
the inflection points of the critical microenvironment features, above or below which
the ≥5-year survival rates could potentially improve. The resulting new perspective on
favorable or deleterious microenvironmental conditions could lead to improved prognoses
through well-informed clinical management and therapeutics, including the design of
innovative strategies to reprogram the TME of breast cancer patients.

2. Materials and Methods

We downloaded patient clinical information for TCGA breast-invasive carcinoma
cohort (BRCA) from two projects on the cbioPortal (http://www.cbioportal.org/) (accessed
on 1 February 2021) [37,38]—the PanCanAtlas [20,21]—and the Firehose Legacy (https://
gdac.broadinstitute.org/) (accessed on 1 February 2021) that provided clinical information
for 1101 patients. We found 1015 patients with primary tumor samples common to both
projects. For these 1015 primary tumors, we searched TIMER2.0 (http://timer.cistrome.
org/) (accessed on 1 February 2021) for immune infiltration estimations produced with
EPIC [39], CIBERSORT [40], TIMER [41], and xCell [42] computational methods [43].
We ended up with a cohort of 1014 breast cancer patients with clinical information and
estimates of immune cell content in tumor tissues.

http://www.cbioportal.org/
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
http://timer.cistrome.org/
http://timer.cistrome.org/
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Subsequently, we developed data-driven XAI models using XGBoost and SHAP to
enhance the explainability of the breast cancer survivability models based on TME condi-
tions (including both immune cells and tumor-associated cells), understand the underlying
reasoning, and expand our knowledge without compromising the predictive accuracy.
Moreover, in addition to the global SHAP analysis to determine the order of importance
of the TME cells on the patients’ survivability rates, we performed local SHAP analysis
to identify the inflection points for the TME cells, above or below which the survivability
rates may increase. We demonstrated that the local SHAP analysis expanded the potential
use of the interpretable AI model to investigate potential immunotherapies to increase
patients’ survivability rates with enhanced explainability and transparent reasonings.

XGBoost is a variant of a tree-based boosting algorithm. Conceptually, XGBoost learns
the functional relationship f between the features x and target y through an iterative
process in which the individual trees are sequentially trained on the residuals from the
previous tree. Mathematically, the predictions from the trees can be expressed as

ŷ = φ(x) =
1
n

n

∑
k=1

fk(x) (1)

where ŷ is the predicted outcome (overall survival and 5-year survival) in breast cancer
patients, 1 ≤ k ≤ n, and f1, f2, . . . , fn are the functions learned by n number of trees.

The following regularized objective L (φ) is minimized to learn the set of functions fk
used in the model

L (φ) = ∑
i

l(ŷ− y) + ∑
k

Ω( fk) (2)

where Ω( fk) = γT + 1
2 λ||w||2.

In Equation (2), l is the differentiable convex loss function that measures the difference
between ŷi and yi. Ω is an extra regularization term that penalizes the growth of more trees
in the model to prevent complexity, and thus reduce overfitting. γ is the complexity of each
leaf, T is the number of leaves in a tree, λ is a penalty parameter, and ||w|| is the vector of
scores on the leaves. Note that if the regularization parameter Ω is set to zero, the objective
falls back to the traditional gradient tree boosting.

SHAP, in contrast, was used to explain the AI models by investigating the relationship
and contribution of each feature to the predicted AI-based outcome (ŷ). SHAP computes
the Shapley values that signify the average marginal contribution of each feature value
across all possible combinations of features. The features with large absolute Shapley
values are deemed impactful. To evaluate the overall feature influence on the predicted
outcome, SHAP averages the absolute Shapley values for every feature across the data,
sorts them in decreasing order, and plots them. In our work, negative Shapley values
associated with the feature instances indicate better chances of ≥5-year survival.

3. Results

We developed models with the XAI pipeline, shown schematically in Figure 1, to
predict the probability of ≥5-year survival of breast cancer patients based on immune cell
composition from bulk RNA sequencing (RNA-seq) data estimated using EPIC, CIBER-
SORT, TIMER, and xCell methods. The XAI models were developed through a multistep
process shown in Figure 1, which includes: (I) data preprocessing steps, (II) hyperparameter
optimization via a three-fold cross-validation to find the best subset of hyperparameters,
(III) testing of the predictive accuracy of the final AI models after being trained with the best
subset of hyperparameters, (IV) prediction of the probability of the clinical outcomes, and
(V) explanation of the predicted outcomes with a game theory-based XAI model to reveal
the contributing factors and respective values of the TME constituents associated with
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better outcomes (≥5 years of survival) for breast cancer patients. Finally, we quantified the
conditional probability of≥5-year survival (S5) for a given certain TME condition (C) using

P(S5|C) = 100× P(S5 ∩ C)
P(C)

(3)

where P(S5 ∩ C) is the probability that both events S5 and C occur simultaneously, and
P(C) is the probability of condition (C) to occur.
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Figure 1. Schematic representation of the modeling pipeline: (I) data preprocessing steps, which include encoding categorical
features as integer arrays and data oversampling to convert from an imbalanced to a balanced dataset (i.e., the numbers
of surviving and deceased patients were made nearly equal) to avoid bias (i.e., preventing the model from ignoring
minority classes); (II) hyperparameter optimization via a 3-fold cross-validation to find the best subset of hyperparameters
(k: hyperparameter subset index number, P: number of estimators, Q: maximum depth of each estimator, R: learning
rate, S: subsample ratio, T: column sample ratio for each estimator) that improves the models’ ROC–AUC score { f (yi, ŷi)}
signifying the area under the receiver operating characteristic curve during the (432 × 3) iterations over the hyperparameter
space (i.e., to enhance the predictive accuracy of the XAI models); (III) testing of the predictive accuracy of the final
AI models after being trained with the best subset of hyperparameters; (IV) prediction of the probability of the clinical
outcomes with AI models; (V) explanation of the predicted outcomes with a game theory-based XAI model to enhance the
interpretability and explainability of the model predictions, identification of critical inflection (turning) points, above or
below which the ≥5-year survival rates increase, and assessing the conditional probability of ≥5-year survival rates from
the range of TME factors determined by the inflection points.

With any data-driven XAI model, it is imperative to ensure that the model produces
accurate predictions on testing samples that are not used during model training, and the
prediction accuracies obtained during model training and testing are comparable to avoid
overfitting or underfitting the data. We analyzed and reported the confusion matrices
(Figure 2a–d) to gain a better understanding of the models’ performance in predicting the
≥5-year survival on the testing data that constitute 25% of the original dataset randomly
sampled from the entire preprocessed dataset. These confusion matrices show that our AI
models developed with the proposed pipeline produce reliable predictions on the testing
data (Figure 2a–d). The accuracy, precision, recall, and F1 score of the proposed AI models
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on the testing data are tabularized in Table 1. These results indicate that the custom AI
models are capable of accurately predicting (over 90%) the outcome for breast cancer
patients based on the data associated with TME conditions in tumors.
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Figure 2. Predictive accuracies of our custom XAI models in terms of their ability to predict the likelihood of ≥5-year
survival of breast cancer patients based on estimated immune cell composition from bulk RNA-seq data using EPIC (a),
CIBERSORT (b), TIMER (c), and xCell (d) cell type quantification methods. The XAI indicates that the B cells (e), M0
macrophages (f), CD8+ T cells (g), and NK T cells (h) (estimated using EPIC, CIBERSORT, TIMER, and xCell methods,
respectively) are the most important immune cells in the TME features in predicting survivability of breast cancer patients.
The features on the y-axis are used in the respective models; their relative positions were determined by their relative
importance in making correct predictions. The blue dots represent lower feature values, and the red dots represent higher
feature values. In these analyses, Shapley values < 0 represent “likely to survive longer than 5 years after diagnosis” while
Shapley values > 0 represent “likely to die within 5 years” after diagnosis.
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Table 1. Statistical validation of the predictive accuracies of the AI models.

TME Immune Cell
Estimation Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

EPIC 96.4 93.6 100.0 96.7
CIBERSORT 98.8 97.8 100.0 98.9

TIMER 95.2 91.7 100.0 95.7
xCell 100.0 100.0 100.0 100.0

After evaluating the predictive ability of the models, we used XAI to interpret our
AI models’ predictions, investigate novel relationships between the TME features and the
≥5-year survival status, and identify the critical inflection points, above or below which the
≥5-year survival rates improve. We explain the custom XAI models from both global (entire
dataset) and local (individual data points) perspectives. The global explanations revealed
that the B cells, CD8+ T cells, M0 macrophages, and NK T cells are the most influential TME
factors resulting from the RNA-seq data produced by the EPIC, CIBERSORT, TIMER, and
xCell methods in determining the ≥5-year survival (Figure 2e–h). The XAI models suggest
that higher CD8+ T cell, NK T cell, and B cell counts, along with low M0 macrophage count,
lead to higher survival rates for breast cancer patients. It is worth noting that because
different TME features are estimated by the EPIC, CIBERSORT, TIMER, and xCell methods,
the relative importance of the TME features varied in the global SHAP analysis for each
XAI model in Figure 2e–h.

The EPIC-XAI analysis (Figure 2e) revealed that B cells (antibody-producing machines)
play a more critical role than other TME factors in improving the ≥5-year survival rates
for breast cancer patients. Although the role of B cells was reported to be controversial in
cancer immunotherapies [13], Figure 2e reveals that the presence and activation of larger
numbers of B cells in the TME could enhance patients’ survivability rates and the efficacy
of cancer immunotherapies. These findings are particularly important if the cancer is
not at an advanced stage, at which a patient would be at higher risk of death according
to Shapley analysis in Figure 2e–h. On the other hand, the CIBERSORT-XAI (Figure 2f)
analysis revealed that M0 macrophages are the most influential TME factor that lowers the
≥5-year survival rates when present in larger numbers. CD8+ T cells and NK T cells were
identified as the most critical tumor-suppressing immune cells by the TIMER-XAI and
xCell-XAI analyses, respectively, for the enhanced ≥5-year survivability of the patients.
We also found that the CD4+ T cells were identified by the XAI as the third most influential
immune cell type on the breast cancer prognosis. These new findings and insights indicate
an urgent need to rethink the current cancer immunotherapies that are largely focused on
harnessing the antitumor CD8+ cytotoxic T cell response [12,16].

Next, we analyzed the influence of the topmost performing TME features (i.e., B cells,
CD8+ T cells, M0 macrophages, and NK T cells) from the EPIC, CIBERSORT, TIMER, and
xCell XAI analyses on the survivability rate in breast cancer patients. In Figure 3, we
illustrate the effect of the variations in B cell, CD8+ T cell, M0 macrophage, and NK T
cell estimates on the models’ predictions to identify the critical inflection points, above
or below which the ≥5-year survival rates improve. We found that the B cell fraction
> 0.025 (Figure 3a), M0 macrophage fraction < 0.05 (Figure 3b), CD8+ T cell fraction > 0.25
(Figure 3c), and NK T cell fraction > 0.075 (Figure 3d) are ideal conditions, as characterized
by lower SHAP values on the y-axis, for enhanced ≥5-year survivability chances for breast
cancer patients.

We designed seven different TME conditions based on these inflection points:

(i) C1: B cells > 0.025,
(ii) C2: CD8+ T cells > 0.25,
(iii) C3: M0 macrophages < 0.05,
(iv) C4: NK T cells > 0.075,
(v) C5: B cells > 0.025 and M0 macrophages < 0.05,



Cancers 2021, 13, 3450 8 of 15

(vi) C6: B cells > 0.025 and CD8+ T cells > 0.25, and
(vii) C7: B cells > 0.025 and NK T cells > 0.075,

which were coupled with Equation (3) to quantify the conditional probability of ≥5-year
survival (S5) of breast cancer patients (Figure 3e). We found that the initial probability of
≥5-year survival (S5) based on the original dataset was 82.3%. In contrast, the probability
of ≥5-year survival (S5) given conditions C1 to C7, i.e., P(S5|C1) to P(S5|C7) , increased
by up to ~18% (Figure 3e). In other words, it is possible to increase the ≥5-year survival
chances by ~18% by boosting the B cell and CD8+ T cell fractions or B cell and NK T cell
fractions in the TME above their respective inflection points. The XAI-based revelation of
the critical inflection points and the statistical evaluation of certain TME conditions have
high potential in deriving novel insights that could have clinical implications for accurate
predictions and targeted clinical treatment of patients with breast cancer.
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Figure 3. XAI results based on data from breast cancer patients who survived ≥5 years and are still alive, are dead after
surviving ≥5 years, or are dead after surviving <5 years. The local SHAP analysis (a–d) reveals the interaction between B
cells (a), M0 macrophages (b), CD8+ T cells (c), and NK T cells (d) (estimated using EPIC, CIBERSORT, TIMER, and xCell
methods) with the ≥5-year survival rates, respectively. Units: i—cell fractions relative to all cells in sample, ii—immune cell
fractions relative to total immune cell content, iii and iv—cancer type-specific arbitrary units comparable between samples.
Lower SHAP values on the y-axis indicate higher chances of ≥5-year survival in breast cancer patients. The conditional
probabilities of ≥5-year survival of all breast cancer patients in various TME conditions from the clinical dataset of patients
are shown in (e).
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Furthermore, we analyzed the TCGA data to identify the individual TNBC and
non-TNBC patients who survived for less than 5 years to verify the effectiveness of the
critical TME factors identified by our XAI models on the enhanced survivability rates. We
tabulated the individual patients’ clinical data and the associated B cell, CD8+ T cell, NK
T cell, and M0 macrophage fractions (Tables 2 and 3). We found that there was only one
patient with TNBC (B6-A3ZX) and B cell fraction in the TME above the identified inflection
point who survived less than five years after diagnosis. However, this patient was a stage
IV TNBC patient, and the effect of higher B cell fraction was likely insignificant on the
patient’s survival, as the cancer stage was found in Figure 2e to be the more decisive factor
than the B cell count on the cancer prognosis. The anomaly in our identified inflection
point for B cells is ~2.8% (one in 36 TNBC and NTNBC patients who survived for less
than 5 years). Similarly, we found that the anomaly in our identified inflection point for
CD8+ T cells is ~8.3%, i.e., three in 36 TNBC and NTNBC patients (AR-A5QQ, BH-A0C1,
BH-A1EY) who survived for less than 5 years. The anomalies associated with the M0
macrophage (BH-A1EW, C8-A3M7, EW-A1P8, BH-A0C1, D8-A1Y1, E2-A14Z, LL-A73Z
(stage IV patient)) and NK T cells (A2-A0T2 (stage IV patient), AC-A2QJ, B6-A409, EW-
A1P8, BH-A18J, E2-A1LE, LL-A73Z (stage IV patient)) inflection points were relatively
higher at ~19.4%, i.e., seven in 36 TNBC and NTNBC patients who survived for less than
5 years.

Table 2. Clinical and critical immune cell composition (identified via XAI) from bulk RNA-seq data of TNBC patients that
survived for less than 5 years.

TCGA Patient ID Stage Age Months B Cell M0 Macrophage CD8+ T Cell NK T Cell

A1-A0SK II 54 31.8 0.003 0.325 0.000 0.000
A2-A0CM II 40 24.8 0.008 0.129 0.025 0.013
A2-A0T2 IV 66 8.4 0.001 0.077 0.098 0.183
A2-A3XY II 49 35.9 0.013 0.261 0.049 0.072
AC-A2QJ III 48 14.7 0.000 0.196 0.000 0.146
AR-A5QQ III 68 10.6 0.017 0.109 0.259 0.061
B6-A3ZX IV 50 37.9 0.145 0.058 0.110 0.058
B6-A409 III 44 18.8 0.002 0.052 0.000 0.096

BH-A1EW II 38 55.7 0.004 0.000 0.244 0.047
C8-A3M7 III 60 34.0 0.008 0.000 0.216 0.014
E2-A1LK III 84 8.7 0.005 0.650 0.000 0.034
EW-A1P8 III 58 7.9 0.003 0.000 0.034 0.101

Table 3. Clinical and critical immune cell composition (identified via XAI) from bulk RNA-seq data of non-TNBC patients
that survived for less than 5 years.

TCGA Patient ID Stage Age Months B cell M0 Macrophage CD8+ T Cell NK T Cell

A2-A0SV IV 63 27.1 0.000 0.173 0.016 0.038
A7-A13E II 62 20.2 0.001 0.504 0.118 0.005
A8-A08J IV 52 37.1 0.003 0.240 0.014 0.050

AC-A23H II 90 5.7 0.002 0.419 0.150 0.003
AR-A0TY II 54 55.9 0.007 0.270 0.030 0.043
BH-A0C1 III 61 46.4 0.002 0.000 0.284 0.034
BH-A18J IV 56 20.1 0.001 0.375 0.084 0.081
BH-A18P I 60 30.3 0.003 0.159 0.230 0.049
BH-A18T II 70 7.4 0.001 0.157 0.000 0.008
BH-A1EV III 45 12.0 0.001 0.310 0.087 0.053
BH-A1EX II 67 49.6 0.003 0.061 0.147 0.035
BH-A1EY II 79 17.7 0.001 0.072 0.250 0.025
BH-A1F8 III 90 25.1 0.005 0.069 0.188 0.000
BH-A1FD I 68 33.2 0.000 0.130 0.051 0.004
C8-A12Q III 78 12.7 0.007 0.264 0.177 0.038
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Table 3. Cont.

TCGA Patient ID Stage Age Months B cell M0 Macrophage CD8+ T Cell NK T Cell

D8-A1XC III 85 12.4 0.004 0.266 0.126 0.041
D8-A1Y1 III 80 9.9 0.000 0.000 0.050 0.010
D8-A73W III 79 12.7 0.002 0.290 0.000 0.072
E2-A14Z I 64 18.5 0.005 0.018 0.147 0.067
E2-A1LE III 71 28.9 0.002 0.173 0.219 0.085
E9-A1N6 II 52 22.3 0.000 0.313 0.081 0.038
E9-A1NF II 60 35.2 0.000 0.280 0.124 0.033
LL-A73Z IV 55 7.5 0.006 0.045 0.130 0.104
UU-A93S IV 63 3.8 0.001 0.275 0.038 0.069

4. Discussion

The application of AI models for diagnostic and prognostic assessments has been
widely accepted in the context of some cancers [44,45]. The ability of AI models to discover
embedded nonlinear patterns within complex multivariate datasets could potentially lead
to a better understanding of the complex mechanisms that underlie carcinogenesis and can-
cer progression [46]. However, recent research indicates that there is a trend toward blind
acceptance of black box models that lack transparency and accountability, which could
have severe consequences [47]. It is imperative to apply AI models that are inherently inter-
pretable together with XAI methods to produce accurate predictions to better understand
the underlying reasoning of the AI approach and discover new interpretable knowledge
from large datasets that would otherwise be impossible with traditional statistical tech-
niques [48]. To overcome such problems, which stem from the model’s lack of transparency,
we used XAI models comprising tree-based ensembles—which are more interpretable than
the black box-type deep learning models (e.g., artificial neural networks)—along with game
theory-based explanation models to determine prognoses in patients with breast cancer
and to disclose valuable information regarding the ideal TME conditions for improved
prognosis and treatments.

In the past, AI analysis has focused on early diagnosis of primary cancers, survival
prognosis, or risk of relapse [49,50]. Janizek et al. introduced “TreeCombo,” a gradient of
the boosted tree-based approach, in combination with Shapley analysis to predict synergy
of novel drug combinations [51]. In various cancers, the density of tumor-infiltrating
lymphocytes (e.g., B cells, T cells) correlated positively with survival prognosis [52,53].
Using AI-based analysis (through a random forest tree-based classifier) and CIBERSORT,
He et al. [54] reported that high immunity (a subset of TNBC according to the authors)
was associated with larger numbers of CD8+ T cells, CD4+ T cells, NK cells, and M1
macrophages in the TME, and hence was considered to have more favorable clinical
outcomes than other subtypes of TNBC. Similarly, with use of AI-based image analysis, He
et al. [55] reported that tumor-infiltrating lymphocyte cells were significantly reduced in
the TME in metastatic TNBC, compared with the number of these cells in primary TNBC,
and larger numbers of tumor-infiltrating lymphocytes were found to be associated with
better prognosis.

Our XAI models indicated that boosting the B cell, CD8+ T cell, and NK T cell fractions
above their inflection points and/or reducing the M0 macrophage fraction to a level below
its inflection point in the TME would be conducive for optimal collaboration of the TME
features. For example, collaboration between T and B cells to carry out eradication of
tumor cells, which may be related to CD4+ T cells (identified as the third most influential
TME features on breast cancer prognosis from the EPIC, CIBERSORT, TIMER, and xCell
XAI analyses in Figure 2) causing B cells to proliferate and their progeny to differentiate
into antibody-secreting cells [56]. NK T cells contribute to B cell maturation, antibody and
cytokine production, and antigen presentation [57]. Subsequently, the B cells mark the
tumor cells for destruction, which is carried out by cytotoxic cells such as CD8+ T cells
and NK T cells. Furthermore, this response is likely amplified by T cell receptors arming
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the cytotoxic T cells. To the best of our knowledge, the relative importance and novel
interactions between the tumor-infiltrating lymphocytes and tumor-associated cells in the
TME on the overall and ≥5-year survival prognosis of breast cancer patients have not
been previously reported, although such immune signatures could have potential clinical
implications, especially for TNBC treatment.

In previous studies, CD8+ T cells were considered to be the crucial effector cells
mediating effective antitumor immunity, resulting in better clinical outcomes, whereas
intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient out-
comes [43]. Hollern et al. reported that CD4+ T-helper follicular cells, B cells, and the
antibodies generated by those B cells play important roles in antitumor response to dual
immune checkpoint inhibitors in mouse models [58,59]. Furthermore, previous use of
rituximab to deplete B cells demonstrated no real clinical benefits for patients with solid
tumors [60,61]. NK T cells have a substantial capacity to produce extensive amounts
of cytokines upon stimulation to activate NK cells, regulatory and conventional T cells,
and B cells [62]. Antitumor efficacy of T cells was shown in vivo to be dependent on
the presence of non-T cells, in which the activated NK T cells rendered T cells resistant
to myeloid-derived suppressor cells [63]. Considering their broad cytokine profile and
potential immune enhancing and immunosuppressive roles, modulating the NK T cells
activity towards immune activation has been considered an immunotherapeutic option [64].
Tumor-associated macrophages promote tumor growth by suppressing immunocompetent
cells, including neovascularization and supporting cancer stem cells [65], and could also
help the tumor cells escape from elimination and spread to other tissues and organs [66].
Macrophages are re-engineered to modulate their regulatory role, for example, to reduce
tumor collagen deposition and promote T cell infiltration into breast tumors [67].

The novel insights derived from our XAI model shed light on the strong impacts of B
cells, CD8+ T cells, and NK T cells, along with M0 macrophages on the survival chances
of patients with breast cancer and reveal their critical inflection points for designing
innovative strategies to reprogram the TME. The main systemic therapy for metastatic
TNBC is chemotherapy, despite the poor prognosis and poor patient survival associated
with its use. In such cases, boosting the B cells, CD8+ T cells, and NK T cells in the TME as
a targeted immunotherapy could serve as a better alternative. Our findings underscore
the need to rethink the current cancer immunotherapies focused on harnessing only the
antitumor CD8+ cytotoxic T cell response. Increased awareness through use of XAI to
understand the dynamics of the TME could lead to more rational and evidence-based
therapies, leading to improved outcomes in breast cancer patients.

We recognize that one of the major TCGA data analysis results is that at least 80%
of the submitted samples must be composed of tumor cells. In the future, the use of
other techniques like radiomic analysis to predict histological outcomes, parenchymal
enhancement, and single cell proteomics may provide the data required for AI predictions
of tumor behavior and outcomes [68,69].

5. Conclusions

Our new XAI model framework with enhanced model interpretability and explain-
ability of the results may reduce the concerns about the transparency and accountability of
the use of AI models in medical decisions. Our EPIC, CIBERSORT, TIMER, and xCell XAI
analyses revealed that B cells, CD8+ T cells, NK T cells, and M0 macrophages are the most
critical TME features for breast cancer prognosis. Our XAI models further revealed that by
boosting the B cell and CD8+ T cell fractions or B cell and NK T cell fractions in the TME to
levels above their inflection points—identified by XAI analysis in this study—the survival
rate of breast cancer patients could increase by up to 18%. They could be alternative im-
munotherapies to conventional breast cancer therapeutics, although these findings require
further in vitro and in vivo testing and clinical verifications.
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