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Simple Summary: Chemical inhibition of central DNA damage repair (DDR) proteins has become
a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated
proteins constitute important targets for developing DNA repair inhibiting drugs. This review
provides relevant insights on DDR biology and pharmacology, aiming to boost the development of
more effective DDR targeted therapies.

Abstract: Precision medicine aims to identify specific molecular alterations, such as driver mutations,
allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi)
are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA
damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly
in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects
that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has
been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways
that may compensate for each other. Hence, the search for additional effective agents targeting DNA
damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role
in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an
in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting
the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in
precision cancer medicine. It also affords an overview about what we have achieved and a reflection
on how much remains to be done in this field, further addressing encouraging clues for the advance
of DDR targeted therapy.
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1. Introduction

Cancer is a major burden of disease and one of the leading barriers to improve life
expectancy worldwide [1]. Despite many efforts to maximize cancer prevention, diagnosis
and treatment, the incidence and mortality rates have been steadily increasing [1,2].

As a highly heterogeneous disease, cancer displays unique genomic and epigenetic
variations among patients. As such, the success of conventional chemotherapeutics has
been limited by the heterogeneity of patients’ response, development of resistance and
severity of side effects [3,4]. Conversely, targeted therapies take advantage of specific
alterations in cancer cells, having emerged as a hopeful strategy to overcome these limita-
tions [5–8].

There is a large amount of evidence that dysfunctional DNA damage repair (DDR) pro-
cesses are frequently observed in cancer and are associated with genomic instability [5,7,9].
In fact, although cells own an equipped machinery to repair DNA toxic lesions, it may fail,
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predisposing them to accumulate DNA damage. The survival and proliferation of unre-
paired DNA defective cells lead to the accumulation of mutations and genomic instability,
strongly contributing to cancer development [5,10]. Nevertheless, cancer-associated DDR
defects can also give rise to vulnerabilities that can be therapeutically exploited [5]. Indeed,
DDR-deficient cells are frequently associated with hypersensitivity to DNA-damaging
agents [11–15]. This evidence highlights the importance of the DDR regulatory molecules
in targeted anticancer therapy.

Breast cancer susceptibility gene 1 (BRCA1) is a tumour suppressor gene extensively
involved in maintaining genomic integrity through multiple functions in DDR, transcrip-
tional regulation, cell cycle checkpoint and protein ubiquitination [16–18]. BRCA1 is
frequently dysfunctional in human breast, ovarian, pancreatic, among other cancers, con-
tributing to the accumulation of genomic defects. Also, BRCA1 germline mutations account
for most known heritable forms of cancer such as hereditary breast and ovarian cancer
(HBOC) syndrome [19]. Despite the increased risk conferred by BRCA1 mutations to cancer
onset, pre-clinical and clinical data have ascertained that BRCA1 impairment is commonly
associated with chemosensitivity in cancer cells [13,16]. BRCA1 has therefore become an
important predictive and therapeutic molecule for developing targeted anticancer strate-
gies. Other players involved in DDR can also be found defective in cancer, including breast
cancer susceptibility gene 2 (BRCA2), RAD51, RAD52, partner and localizer of BRCA2
(PALB2), ataxia-telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related
(ATR), constituting additional encouraging targets for cancer treatment [6,20].

This review aims to emphasize the potentiality of the DDR pathways, particularly of
BRCA1 and interconnected molecules, in precision cancer therapy.

2. DNA Damage Repair Pathways

DDR is activated in response to different endogenous and exogenous stresses [5,21]
(Figure 1). When aberrantly repaired, DNA damage might be associated with clinical
outcomes such as neurodegeneration, infertility, and genomic instability, being a key
contributing factor to neoplastic transformation and tumour development [8] (Figure 1).
Due to the complexity underneath detection and repair of DNA damage, cells evolved an
intricate DDR network that, together with cell cycle regulation, promotes the maintenance
of genomic stability and cellular viability [22] (Figure 1).

Cells harbouring defects on a particular DDR pathway may compensate by becoming
reliant on another repair pathway. In fact, despite showing partially overlapping functions,
DDR pathways still exhibit different functionalities depending on multiple damage sensors,
signalling factors (activators of cell cycle checkpoints) and effector DDR proteins (Figure 1).
In Figure 1, the main pathways responsible for processing a distinct DNA damage, such as
single-strand breaks (SSBs) and double-strand breaks (DSBs), are represented [5,8,21–24].
DSBs are among the most deleterious DNA lesions, leading to apoptosis when unrepaired.
Conversely, misrepaired DSBs may generate mutations or chromosome rearrangements
that may lead to a malignant condition [23]. Three main mechanisms are required for DSBs
repair: (i) damage detection, (ii) ability to control cell cycle and transcriptional programs,
and (iii) mechanisms for catalysing the repair of the lesion [23].

Accumulated data have shown the involvement of DDR proteins in different stages of
cancer development. Early stages of tumorigenesis have been associated with activation
of DDR proteins due to the induction of replication stress and DNA damage, acting as
a barrier to the proliferation of aberrant cells [22]. However, most of pre-malignant cells
are able to escape this barrier by loss or aberrations in specific proteins associated with
DDR and cell cycle regulation, such as BRCA1, BRCA2, ATM, RAD51, Fanconi anemia
group A protein (FANCA) and p53, allowing these cells to evolve to malignant carcinomas
(Figure 1). In more advanced stages, when the tumour is already established, (re)activation
and overexpression of DDR factors support cells to evade the lethal effect of the therapeutic
agents, eliciting resistance [22].
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Figure 1. DNA damage agents and cellular repair pathways. DNA damage repair (DDR) pathways are activated in re-
sponse to endogenous stresses (e.g., base depurination, deamination and reactive by-products of cellular metabolism) or 
exogenous exposure to different types of radiation or genotoxic agents. DDR comprises a network of proteins that are 
either DNA damage sensors, signalling mediators or effector proteins that execute DNA repair. The base excision repair 
(BER) pathway for single-strand breaks (SSBs), repairs minor DNA changes originated from oxidized or alkylated bases 
and small base adducts, with poly(ADP)-ribose polymerase (PARP) being the major player. The nucleotide base excision 
repair (NER) pathway deals with modified nucleotides that change the double helix structure, such as those induced by 
ultraviolet (UV) light. The mismatch repair (MMR) pathway deals with DNA damage that disturb the DNA helical struc-
ture and replication errors as substitution, insertions and deletions. Four different DDR mechanisms are described for 
double-strand breaks (DSBs) repair: homologous recombination (HR), non-homologous end joining (NHEJ), alternative 
NHEJ and single-strand annealing (SSA) pathways. Loss or aberrations in DDR proteins allows cell cycle proliferation and 
evasion of apoptotic events, resulting in increased genomic instability and cancer development. Radiotherapy (Rtx); Apu-
rinic/apyrimidinic endonuclease 1 (APE1); MRE11/RAD50/NSB1 (MRN); Xeroderma pigmentosum, complementation 
group C (XPC); DNA damage-binding protein 2 (DDB2); Cockayne syndrome group A (CSA); MutS homolog 2, 3 and 6 
(MSH2, MSH3 and MSH6); MutL homolog 1 (MLH1); Ataxia-telangiectasia mutated (ATM); Ataxia telangiectasia and 
Rad3-related (ATR); Mitogen-activated protein kinase-2 (MK2); C-terminal-binding interacting protein (CtIP); Breast can-
cer susceptibility 1 and 2 (BRCA1 and BRCA2); BRCA1-associated RING domain (BARD1); Partner and localizer of BRCA2 
(PALB2); Replication protein A (RPA); DNA-dependent protein kinase (DNA-PK); X-Ray repair cross complementing 1 
and 4 (XRCC1 and XRCC4); Polynucleotide kinase 3’-phosphatase (PNKP); DNA polymerase beta (POLB); Flap structure-
specific endonuclease 1 (FEN1); DNA ligase 1, 3A and 4 (LIG1, LIG3A and LIG4); DNA topoisomerase 1 and 3 (TOP1 and 
TOPOIII); Essential meiotic structure-specific endonuclease 1 (EME1); Regulator of telomere elongation helicase 1 
(RTEL1); Bloom syndrome protein (BLM); DNA polymerase theta (POLQ); PCNA-associated recombination inhibitor pro-
tein (PARI); RecQ like helicase 5 (RECQL5); BRCA1-associated C-terminal helicase (BACH1); XRCC4-like factor (XLF); 
Aprataxin and PNKP like factor (APLF); Werner syndrome helicase (WRN); Xeroderma pigmentosum group G (XPG); 
Excision repair cross-complementation group 1 (ERCC1); DNA polymerase epsilon (POLE); DNA polymerase Delta 1 
(POLD1); Exonuclease 1 (EXO1); DNA polymerase delta 1 (POLD). 

Figure 1. DNA damage agents and cellular repair pathways. DNA damage repair (DDR) pathways are activated in response
to endogenous stresses (e.g., base depurination, deamination and reactive by-products of cellular metabolism) or exogenous
exposure to different types of radiation or genotoxic agents. DDR comprises a network of proteins that are either DNA
damage sensors, signalling mediators or effector proteins that execute DNA repair. The base excision repair (BER) pathway
for single-strand breaks (SSBs), repairs minor DNA changes originated from oxidized or alkylated bases and small base
adducts, with poly(ADP)-ribose polymerase (PARP) being the major player. The nucleotide base excision repair (NER)
pathway deals with modified nucleotides that change the double helix structure, such as those induced by ultraviolet (UV)
light. The mismatch repair (MMR) pathway deals with DNA damage that disturb the DNA helical structure and replication
errors as substitution, insertions and deletions. Four different DDR mechanisms are described for double-strand breaks
(DSBs) repair: homologous recombination (HR), non-homologous end joining (NHEJ), alternative NHEJ and single-strand
annealing (SSA) pathways. Loss or aberrations in DDR proteins allows cell cycle proliferation and evasion of apoptotic
events, resulting in increased genomic instability and cancer development. Radiotherapy (Rtx); Apurinic/apyrimidinic
endonuclease 1 (APE1); MRE11/RAD50/NSB1 (MRN); Xeroderma pigmentosum, complementation group C (XPC); DNA
damage-binding protein 2 (DDB2); Cockayne syndrome group A (CSA); MutS homolog 2, 3 and 6 (MSH2, MSH3 and
MSH6); MutL homolog 1 (MLH1); Ataxia-telangiectasia mutated (ATM); Ataxia telangiectasia and Rad3-related (ATR);
Mitogen-activated protein kinase-2 (MK2); C-terminal-binding interacting protein (CtIP); Breast cancer susceptibility 1 and
2 (BRCA1 and BRCA2); BRCA1-associated RING domain (BARD1); Partner and localizer of BRCA2 (PALB2); Replication
protein A (RPA); DNA-dependent protein kinase (DNA-PK); X-Ray repair cross complementing 1 and 4 (XRCC1 and
XRCC4); Polynucleotide kinase 3’-phosphatase (PNKP); DNA polymerase beta (POLB); Flap structure-specific endonuclease
1 (FEN1); DNA ligase 1, 3A and 4 (LIG1, LIG3A and LIG4); DNA topoisomerase 1 and 3 (TOP1 and TOPOIII); Essential
meiotic structure-specific endonuclease 1 (EME1); Regulator of telomere elongation helicase 1 (RTEL1); Bloom syndrome
protein (BLM); DNA polymerase theta (POLQ); PCNA-associated recombination inhibitor protein (PARI); RecQ like helicase
5 (RECQL5); BRCA1-associated C-terminal helicase (BACH1); XRCC4-like factor (XLF); Aprataxin and PNKP like factor
(APLF); Werner syndrome helicase (WRN); Xeroderma pigmentosum group G (XPG); Excision repair cross-complementation
group 1 (ERCC1); DNA polymerase epsilon (POLE); DNA polymerase Delta 1 (POLD1); Exonuclease 1 (EXO1); DNA
polymerase delta 1 (POLD).
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3. Role of BRCA1 in DSBs Repair

In 1990, BRCA1 (located on chromosome 17) was identified as a classical tumour
suppressor gene (TSG) due to the loss of a wild-type (wt) allele during tumorigenesis,
being the first TSG associated with hereditary and sporadic cases of basal-like breast
cancer [25,26].

Despite being a multifunctional protein, the BRCA1 tumour suppressive function is
mainly ensured by its ability to maintain genomic integrity through regulation of diverse
cellular processes, including DDR, cell cycle checkpoint, apoptosis, chromosome instability,
among others [16,17]. The BRCA1 effect on DDR seems to mainly occur through regulation
of homologous recombination (HR) [17] (Figure 1). In fact, most mutant BRCA1 (BRCA1Mut)
forms are defective in HR activity, although in varying grades depending on the location
of the mutation [27]. Although poorly understood, BRCA1 may also participate in non-
homologous end joining (NHEJ), alternative NHEJ, and single-strand annealing (SSA)
repair pathways [8,28]. Upon DNA damage, the opposite roles played by p53-binding
protein 1 (53BP1) and BRCA1 seem to support cells in the switch between NHEJ and
HR [28]. However, this mechanism is not completely understood [28]. Studies have also
revealed that BRCA1 interacts with Ku80 (a crucial protein in NHEJ), being recruited to
DSBs sites in a Ku80-dependent manner [29]. In fact, DNA repair pathways compete to
select which mechanism should be employed. This choice is based on several factors,
including cell cycle phase. Somatic cells use error-prone NHEJ as a major DSBs repair
mechanism throughout all cell cycle stages, but particularly occurring in G1 phase, while
HR is employed predominantly in S to G2 phases [30].

The BRCA1 gene has 24 exons, two of them untranslated, and encodes a large 1863-
amino acid phosphoprotein that harbours multiple functional domains, including the
highly conserved N-terminal zinc-finger Really Interesting New Gene (RING) and two
tandem BRCA1 C-terminus (BRCT) domains, in which mutations develop a tumorigenic
potential [16,31] (Figure 2). BRCA1 nuclear-cytoplasmic shuttling is facilitated by nuclear
localization (NLS) and nuclear export (NES) signals [16] (Figure 2). Over 60% of the
BRCA1 gene is composed by a centrally located exon 11, which encodes two NLS and
binding sites for several proteins [32,33] (Figure 2). This is one of the largest human exons
(encoding 1142 amino acids) that partially contributes to BRCA1 nuclear localization and
activity on cell cycle regulation and DNA repair, being highly required for a functional
HR [34,35]. Together with exons 12 and 13, exon 11 encodes a coiled-coil domain that
mediates interactions with PALB2 and a serine cluster domain (SCD) that is phosphorylated
by ATM and ATR [32,33]. Pathogenic mutations in exons 11-13 are frequently detected in
breast and ovarian cancer patients, which reinforces the relevance of these exons in tumour
suppression [32,33].

The BRCA1 N-terminal RING domain dimerizes with BRCA1-associated RING do-
main (BARD1), forming stable heterodimers that enhance E3 ubiquitin-ligase activity
and DDR [27,36–40] (Figure 3). BARD1 also plays a critical role in BRCA1 localization
(Figure 3), since the BRCA1-BARD1 interaction masks NES of both proteins, resulting in
BRCA1 nuclear translocation and retention [41–44]. In addition, BRCA1 can undergo pro-
teolytic degradation upon disruption of the BRCA1-BARD1 heterodimer [45,46] (Figure 3).
The specific function of the BRCA1-BARD1 heterodimer, its dissociation and interaction
with other proteins might be regulated by post-translational modifications as phosphory-
lation and ubiquitination [36] (Figure 3). Thus, the BRCA1-BARD1 heterodimer plays a
crucial role in tumour suppression, interacting with proteins involved in cell cycle, DNA
repair, chromosome stability, chromatin modulation, replication fork stability, transcrip-
tion, among others [47,48] (Figure 3). Although mutations in BARD1 do not affect the E3
ubiquitin ligase of the heterodimer [27,36,48], BRCA1 RING mutations affect its interaction
with BARD1 and E3 ubiquitin ligase activity [18].
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Figure 2. Structural organization of BRCA1 with respective interacting proteins and most prevalent 
mutations. Full length BRCA1 contains two conserved domains at its termini: N-terminus contain-
ing a really interesting new gene (RING) domain (exons 2–8) and tandem BRCA1 C-terminus 
(BRCT) repeats (exons 16–24). The BRCA1 RING domain interacts with BRCA1-associated RING 
domain (BARD1), mutS homolog 2 (MSH2) and the ubiquitin hydrolase BRCA1-associated protein 
1 (BAP1). The BRCT domains form a phospho-binding module, recognizing a phospho-SPxF motif 
that allow BRCA1 A complex subunit (ABRAXAS), BRCA1-associated C-terminal helicase (BACH1) 
and C-terminal-binding interacting protein (CtIP) to physically interact with BRCA1. A number of 
other proteins may also bind to BRCA1 C-terminus, as p53, p300, receptor-associated protein 80 
(RAP80), retinoblastoma (Rb), RNA polymerase II and histone deacetylases (HDAC1/2). Several 
proteins bind to exon 11, as Rb, E2F transcription factor 1 (E2F1), growth arrest and DNA damage-
inducible 45 (GADD45), p53, checkpoint kinase 2 (Chk2), RAD51, SWItch/Sucrose non-fermentable 
(SWI/SNF), among others. The interaction of BRCA1 with partner and localizer of BRCA2 (PALB2) 
and BRCA2 is mediated by the coiled-coil domain. The serine cluster domain (SCD) contains mul-
tiple ataxia-telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR) 
phosphorylation sites. BRCA1 contains two nuclear localization signals (NLS) and two nuclear ex-
port signals (NES). In the upper representation, the location and frequency of reported cases with 
BRCA1 pathogenic mutations are shown, including the most frequent C61G, 185delAG and 
5382insC. (*) Phosphorylated proteins. 

The BRCA1 BRCT domain functions as phosphopeptide recognition modules that 
enables the BRCA1 binding to phosphorylated partners as BRCA1 A complex subunit 
(ABRAXAS/ABRA1/CCDC98), BRCA1-associated C-terminal helicase 1 (BACH1/FANCJ/ 
BRIP1) and C-terminal binding interacting protein (CtIP/RBBP8) [16] (Figures 2 and 3). 
Upon DNA damage, BRCA1 phosphorylation by ATM and ATR leads to post-transla-
tional modifications of BRCA1-binding proteins and to the subsequent activation of sev-
eral associated proteins, including checkpoint kinases 1/2 (Chk1/2) and p53, which regu-
late cell cycle checkpoints [49] (Figure 3). Conversely, BRCA1 represses cell division con-
trol protein 25 A/C (Cdc25A/C) and c-Myc transcriptional activity and inhibits the expres-
sion levels of endogenous Estrogen Receptor (ER)α and vascular endothelial growth fac-
tor (VEGF) [50–52] (Figure 3). BRCA1 also regulates chromatin structure through acetyla-
tion and deacetylation of histone proteins by interaction with multiple histone deacety-
lases (HDAC1 and HDAC2) [50] (Figure 3). The BRCA1 interaction with RNA helicase A 
(RHA) also supports its role in the transcriptional machinery [53] (Figure 3). Thus, due to 
its rich functional domains, BRCA1 interacts with several transcriptional factors and nu-
merous proteins encoded by tumour suppressors, oncogenes, DNA repair genes, cell cycle 
regulators, ubiquitin hydrolases and ligases, signalling transducers and chromatin modi-
fying proteins (Figure 2), supporting the complex network involving BRCA1 [54,55]. 

Figure 2. Structural organization of BRCA1 with respective interacting proteins and most prevalent
mutations. Full length BRCA1 contains two conserved domains at its termini: N-terminus con-
taining a really interesting new gene (RING) domain (exons 2–8) and tandem BRCA1 C-terminus
(BRCT) repeats (exons 16–24). The BRCA1 RING domain interacts with BRCA1-associated RING
domain (BARD1), mutS homolog 2 (MSH2) and the ubiquitin hydrolase BRCA1-associated protein 1
(BAP1). The BRCT domains form a phospho-binding module, recognizing a phospho-SPxF motif
that allow BRCA1 A complex subunit (ABRAXAS), BRCA1-associated C-terminal helicase (BACH1)
and C-terminal-binding interacting protein (CtIP) to physically interact with BRCA1. A number
of other proteins may also bind to BRCA1 C-terminus, as p53, p300, receptor-associated protein 80
(RAP80), retinoblastoma (Rb), RNA polymerase II and histone deacetylases (HDAC1/2). Several
proteins bind to exon 11, as Rb, E2F transcription factor 1 (E2F1), growth arrest and DNA damage-
inducible 45 (GADD45), p53, checkpoint kinase 2 (Chk2), RAD51, SWItch/Sucrose non-fermentable
(SWI/SNF), among others. The interaction of BRCA1 with partner and localizer of BRCA2 (PALB2)
and BRCA2 is mediated by the coiled-coil domain. The serine cluster domain (SCD) contains multi-
ple ataxia-telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR)
phosphorylation sites. BRCA1 contains two nuclear localization signals (NLS) and two nuclear
export signals (NES). In the upper representation, the location and frequency of reported cases with
BRCA1 pathogenic mutations are shown, including the most frequent C61G, 185delAG and 5382insC.
(*) Phosphorylated proteins.

The BRCA1 BRCT domain functions as phosphopeptide recognition modules that
enables the BRCA1 binding to phosphorylated partners as BRCA1 A complex subunit
(ABRAXAS/ABRA1/CCDC98), BRCA1-associated C-terminal helicase 1 (BACH1/FANCJ/
BRIP1) and C-terminal binding interacting protein (CtIP/RBBP8) [16] (Figures 2 and 3).
Upon DNA damage, BRCA1 phosphorylation by ATM and ATR leads to post-translational
modifications of BRCA1-binding proteins and to the subsequent activation of several
associated proteins, including checkpoint kinases 1/2 (Chk1/2) and p53, which regulate
cell cycle checkpoints [49] (Figure 3). Conversely, BRCA1 represses cell division control
protein 25 A/C (Cdc25A/C) and c-Myc transcriptional activity and inhibits the expression
levels of endogenous Estrogen Receptor (ER)α and vascular endothelial growth factor
(VEGF) [50–52] (Figure 3). BRCA1 also regulates chromatin structure through acetylation
and deacetylation of histone proteins by interaction with multiple histone deacetylases
(HDAC1 and HDAC2) [50] (Figure 3). The BRCA1 interaction with RNA helicase A
(RHA) also supports its role in the transcriptional machinery [53] (Figure 3). Thus, due
to its rich functional domains, BRCA1 interacts with several transcriptional factors and
numerous proteins encoded by tumour suppressors, oncogenes, DNA repair genes, cell
cycle regulators, ubiquitin hydrolases and ligases, signalling transducers and chromatin
modifying proteins (Figure 2), supporting the complex network involving BRCA1 [54,55].
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Figure 3. BRCA1 localization and molecular functions upon DNA damage. DNA damage activates the MRN complex 
(consisting of MRE11, meiotic recombination 11 homolog A; NBS1, Nijmegen breakage syndrome 1; and RAD50), which 
phosphorylates and recruits ataxia-telangiectasia mutated (ATM). Ataxia telangiectasia and Rad3-related (ATR) is also 
recruited to damaged sites during replication stress. DNA damage can also directly activate ATM/ATR, which can phos-
phorylate/activate several proteins as checkpoint kinases 1 and 2 (Chk1/2), histone H2AX (γH2AX) and BRCA1. Phos-
phorylated BRCA1 concentrates in focal areas of DNA damage. At nuclear foci, the BRCA1/BRCA1-associated RING do-
main (BARD1) heterodimer participates in several molecular mechanisms as DNA repair, cell cycle regulation and tran-
scriptional activation, in association with protein binding partners as MRN complex proteins, C-terminal-binding inter-
acting protein (CtIP), BRCA2/Partner and localizer of BRCA2 (PALB2), RAD51, BRCA1-associated C-terminal helicase 
(BACH1), BRCA1 A complex subunit (ABRAXAS), receptor-associated protein 80 (RAP80), histone deacetylases (HDACs), 
RNA helicase A (RHA), among others. The BRCA1-BARD1 heterodimer ubiquitinates several proteins, including BRCA1 
and BARD1 although with no degradation by auto-ubiquitination, resulting in increased BRCA1 E3 ubiquitin ligase ac-
tivity. BARD1 phosphorylation abolishes the heterodimer E3 ligase activity. BRCA1-BARD1 hetero-dimerization results 
in BRCA1 nuclear translocation and retention, while disruption of this complex leads to BRCA1 shuttling to cytoplasm, 
where BRCA1 influences apoptosis, chemosensitivity and centrosome regulation. Phosphorylation (P); Ubiquitination 
(Ub); Acetylation (A); Deacetylation (D); Cell division control protein 25 A/C (Cdc25A/C); Estrogen receptor (ER); Vascular 
endothelial growth factor (VEGF); Fanconi anemia group D2 (FANCD2); Cyclin-dependent kinase 1 and 2 (cdk1/2); Reti-
noblastoma (Rb). 

3.1. BRCA1 as a Major Regulator of HR 
In DSBs repair by HR, BRCA1 participates as a central component of macromolecular 

protein complexes, each one composed of unique protein binding partners, as phosphor-
ylated ABRAXAS, BACH1 and CtIP [8,28,56,57] (Figure 4). These complexes, called 
BRCA1 A, B, C and D helped to recognize the multiple functions of BRCA1 not only in 
DDR, but also in the transcriptional regulation of genes involved in other cellular pro-
cesses [56,58]. Interestingly, in all complexes, BRCA1 exists as a heterodimer with BARD1 

Figure 3. BRCA1 localization and molecular functions upon DNA damage. DNA damage activates the MRN complex
(consisting of MRE11, meiotic recombination 11 homolog A; NBS1, Nijmegen breakage syndrome 1; and RAD50), which
phosphorylates and recruits ataxia-telangiectasia mutated (ATM). Ataxia telangiectasia and Rad3-related (ATR) is also
recruited to damaged sites during replication stress. DNA damage can also directly activate ATM/ATR, which can
phosphorylate/activate several proteins as checkpoint kinases 1 and 2 (Chk1/2), histone H2AX (γH2AX) and BRCA1.
Phosphorylated BRCA1 concentrates in focal areas of DNA damage. At nuclear foci, the BRCA1/BRCA1-associated RING
domain (BARD1) heterodimer participates in several molecular mechanisms as DNA repair, cell cycle regulation and
transcriptional activation, in association with protein binding partners as MRN complex proteins, C-terminal-binding
interacting protein (CtIP), BRCA2/Partner and localizer of BRCA2 (PALB2), RAD51, BRCA1-associated C-terminal helicase
(BACH1), BRCA1 A complex subunit (ABRAXAS), receptor-associated protein 80 (RAP80), histone deacetylases (HDACs),
RNA helicase A (RHA), among others. The BRCA1-BARD1 heterodimer ubiquitinates several proteins, including BRCA1
and BARD1 although with no degradation by auto-ubiquitination, resulting in increased BRCA1 E3 ubiquitin ligase
activity. BARD1 phosphorylation abolishes the heterodimer E3 ligase activity. BRCA1-BARD1 hetero-dimerization results
in BRCA1 nuclear translocation and retention, while disruption of this complex leads to BRCA1 shuttling to cytoplasm,
where BRCA1 influences apoptosis, chemosensitivity and centrosome regulation. Phosphorylation (P); Ubiquitination (Ub);
Acetylation (A); Deacetylation (D); Cell division control protein 25 A/C (Cdc25A/C); Estrogen receptor (ER); Vascular
endothelial growth factor (VEGF); Fanconi anemia group D2 (FANCD2); Cyclin-dependent kinase 1 and 2 (cdk1/2);
Retinoblastoma (Rb).

3.1. BRCA1 as a Major Regulator of HR

In DSBs repair by HR, BRCA1 participates as a central component of macromolecular
protein complexes, each one composed of unique protein binding partners, as phosphory-
lated ABRAXAS, BACH1 and CtIP [8,28,56,57] (Figure 4). These complexes, called BRCA1
A, B, C and D helped to recognize the multiple functions of BRCA1 not only in DDR, but
also in the transcriptional regulation of genes involved in other cellular processes [56,58].
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Interestingly, in all complexes, BRCA1 exists as a heterodimer with BARD1 (Figure 4), with
distinct and sometimes overlapping roles for maintenance of genomic stability [56].

The repair of replication forks or DSBs is initiated by DNA strand resection to generate
a 3′-tailed single stranded DNA (ssDNA) that will allow assembly of all HR machin-
ery [59,60]. The MRE11/RAD50/NSB1 (MRN) complex is the primary sensor and co-
activator of DSBs-induced cell cycle checkpoint signalling. It also functions as a repair effec-
tor of DSBs in both HR and NHEJ pathways [23] (Figure 4). In HR, the MRN complex forms
a physical bridge, spanning the DSBs end to recruit/retain ATM at DSBs sites. This leads
to its activation and autophosphorylation, along with phosphorylation of MRN complex
by ATM [23,61,62] (Figure 4). ATM phosphorylates histone H2AX (γH2AX), which recruits
the mediator of DNA damage checkpoint 1 (MDC1), enhancing ATM phosphorylation and
promoting recruitment of MRN and BRCA1 A complexes to damage sites [62]. Chk2 is also
phosphorylated by ATM to promote DNA end resection [63] (Figure 4). In the initial phase
of HR, CtIP physically interacts with MRN complex (Figure 4), facilitating 5′ end-resection
of DSBs. CtIP recruitment for DSBs ends and its phosphorylation is MRN-dependent, but
still relies on ATM and cyclin-dependent kinase 2 (CDK2) phosphorylation, as well as
ubiquitination by BRCA1 [58,62]. Although controversial, some studies have indicated
that BRCA1-CtIP interaction may be dispensable for DNA mediated-resection. However,
CtIP resection speed and length significantly decrease after disruption of the BRCA1-CtIP
interaction [64,65]. Thus, BRCA1 C complex promotes DNA end-resection by regulation
of MRE11–RAD50–NBS1–CtIP resection of nuclease complex, resulting in error-free HR
events [32,33,47]. Subsequently, exonuclease 1 (Exo1) and DNA helicase/endonuclease 2
(DNA2) help BRCA1 C complex in DNA end-resection to generate stretches of 3′-ssDNA
tails from the damaged DNA, which will be recognized/coated by the replication protein
A (RPA) complex [62] (Figure 4).

Precluding the formation of secondary structures at the ssDNA, RPA occupies the 3′-
tailed ssDNA derived from DNA end resection, protecting DNA tail from nucleolytic attack
and removing the secondary structure [66]. Thus, in the pre-synaptic phase, RPA binds to
the ssDNA tails activating ATR. Among its many functions, ATR activates Chk1 and Chk2
(leading to cell cycle delay to repair the damage) and BRCA1 [67] (Figure 4). Additionally,
CDK1 and CDK2 appear to be associated with ATR recruitment and RPA phosphorylation.
Despite not completely elucidated, this phosphorylation seems to promote the recruitment
of DDR factors, as BRCA2/PALB2 and RAD51/RAD52, to the ssDNA [63]. To exchange
RPA and facilitate RAD51 loading onto DNA, some mediators, like BRCA2 and PALB2,
participate in RAD51-mediated pre-synaptic filament formation, a key intermediate that
catalyses homologous pairing and initiates DNA strand invasion [24,33,47,66]. Meanwhile,
BRCA2/PALB2 complex promotes RPA-RAD51 exchange on ssDNA and regulates RAD51
recombinase [61]. The BRCA1-BARD1 heterodimer helps RAD51-coated ssDNA to invade
double stranded DNA (dsDNA) with homologous sequences, enhancing its ability to form
a displacement loop structure (D-loop) [28,47]. BRCA1 and BRCA2 also interact during
RAD51 recruitment to DSBs by PALB2 binding to BRCA1 coiled coil domain [68,69]. Some
studies have shown that BRCA1 and BARD1 can also interact with RAD51, suggesting
that these interactions are indispensable for HR and chromosome damage repair [47].
Accordingly, BARD1 mutations or deletions at residues 758–1,064 of BRCA1 (harbouring
the RAD51-interaction domain) abolish the BRCA1-BARD1 ability to promote D-loop
and synaptic complex formation [33,47], compromising HR activity and RAD51 nuclear
localization [36,70].
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Figure 4. Double-strand breaks (DSBs) repair by homologous recombination (HR). DNA end resection occurs in the primary
steps, a process that leads to nucleolytic degradation of DSBs 5′-ending strands to generate a 3′-end single stranded DNA
(ssDNA). MRE11/RAD50/NSB1 (MRN) complex is the first to be recruited to DSBs sites, competing with Ku70/80 from
non-homologous end joining (NHEJ) pathway. MRN complex phosphorylates ataxia-telangiectasia mutated (ATM) and
recruits it to DSBs sites, leading to its auto-phosphorylation and phosphorylation of MRN complex. ATM phosphorylates
checkpoint kinase 2 (Chk2) and the histone H2AX (γH2AX), recruiting the mediator of DNA damage checkpoint 1
(MDC1), which enhances ATM phosphorylation and promotes MRN and BRCA1 A complexes recruitment to damage
sites. p53-binding protein 1 (53BP1) antagonizes BRCA1 in DSBs resection. Together with C-terminal-binding interacting
protein (CtIP) (phosphorylated by MRN, ATM, cyclin-dependent kinase 2 (CDK2) and ubiquitinated by BRCA1), the MRN
complex initiates DSBs resection to expose ssDNA with 3′ ends that undergo strand invasion into a homologous duplex (red),
promoting HR. Ataxia telangiectasia and Rad3-related (ATR) is the primary sensor of replication stress (stalling of replication
forks or formation of SSBs), which phosphorylation activates Chk1 and Chk2 and it is recruited to ssDNA sites. ssDNA
tails are coated by replication protein A (RPA) followed by the formation of a D-loop structure through RAD51 load on the
ssDNA. This is mediated by several proteins as BRCA2/Partner and localizer of BRCA2 (PALB2)/DSS1, BRCA1/BRCA1-
associated RING domain (BARD1) and RAD51 cofactors, which allows RAD51 microfilaments formation and subsequent
3′-end strand invasion into the homologous DNA template and D-loop formation. The strand displaced by synthesis
(red) anneals to the other resected end of the DSB (blue). To complete the HR process, the newly synthesized strand can
dissociate to anneal to the other end. Different outcomes are possible, namely formation of Holliday junctions through DSBs
repair (DSBR), synthesis-dependent strand annealing (SDSA) and break-induced DNA replication (BIR). Ubiquitination
(UB); Phosphorylation (P); Exonuclease 1 (Exo1); DNA helicase/endonuclease 2 (DNA2); DNA topoisomerase 2-binding
protein 1 (TOPBP1); BRCA1 A complex subunit (ABRAXAS); BRCA1-associated C-terminal helicase (BACH1); MutL
homolog 1 (MLH1); MutS homolog 6 (MSH6); BRCA1/BRCA2-Containing Complex Subunit 36 (BRCC36) and BRCC45;
Receptor-associated protein 80 (RAP80); X-Ray repair cross complementing 2 (XRCC2) and XRCC3.
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Finally, with the support of DNA polymerases, the second end of the damaged chro-
mosome is captured, and anneals to the complementary strand of the intact homologous
DNA template [24,28]. At the end, the extended D-loop structure can be resolved by one
of the three main mechanisms of DSBs repair (Figure 4). In the DSBs repair (DSBR), after
priming DNA synthesis and sealing the break, the second end is captured, and a double
Holliday junction intermediate is formed. After DNA synthesis and strands ligation, the
two Holliday junctions can be resolved by the catalytic function of resolvases to generate
crossover products, or dissolved to generate non-crossover products and complete the
repair [24,71]. In the synthesis-dependent strand annealing (SDSA) model, the invading
strand is displaced from a D-loop by helicase activity and annealed with the 3’ single-
stranded tail to complete DNA synthesis and repair. Consequently, the intact chromosome
has no risk to form a deleterious crossover product. Finally, the break-induced DNA repli-
cation (BIR) model is used when one of the DSBs ends is missing, leading to assembly of a
partial replication fork that results in half crossover [71] (Figure 4). Neither HR nor NHEJ
are fully dependent on the presence of an intact BRCA1, which suggests its supportive
rather than indispensable function in these repair pathways. Actually, BRCA1-null cells
still retain NHEJ activity [8,28]. However, NHEJ is frequently associated with increased
error rates in cells during the DDR process.

3.2. BRCA1 Mutations and Tissue Specific Tumour Development

BRCA1Mut carriers are at high risk for developing different types of cancer, including
breast, ovarian, pancreatic, prostate, laryngeal and fallopian tube cancers [32,72,73]. Since
its discovery, more than 1600 mutations have been identified in BRCA1 [74], such as
frameshift insertions/deletions, nonsense truncation mutations that lead to premature
chain termination, and many single nucleotide polymorphisms in the coding or noncoding
sequences. Over 70–80% of BRCA1 mutations result in dysfunctional or absent protein
product. Also, a number of missense BRCA1 mutations present clinical relevance, being
associated with increased risk of both hereditary and sporadic cancers [72,75]. However,
the tumour aggressiveness, prognosis and therapeutic outcome vary with the type and
location of the mutation that may occur in the RING and BRCT domains [16,31,72]. Many
efforts have been developed to understand these clinical differences between BRCA1
mutations. Heterozygous BRCA1Mut are commonly related to genetic deficiencies in other
TSGs and DDR factors, such as phosphatase and tensin homolog (PTEN), ATM/ATR,
CHEK2 and TP53 [16,58,72]. Accordingly, TP53 mutations occur at higher frequencies in
BRCA1Mut-associated cancers [76].

Some highly prevalent pathogenic BRCA1 mutations are more frequent in isolated
groups (founder mutations), supporting the existence of distinct incidences among the
world population. In particular, the BRCA1Mut:185delAG founder nonsense mutation is
one of the most frequent in Asian, African, European and Ashkenazi Jews [58]. Although
initially described with complete loss of BRCA1 expression, BRCA1Mut:185delAG alleles
escape degradation, being translated from an alternative site downstream of the stop codon,
which results in a RING-less protein [77]. Besides the loss of BRCA1-BARD1 interaction and
subsequent E3 ligase activity, this alternative translation produces a stable and HR-proficient
protein that retains the capability to interact with DNA and HR proteins [58,77]. Therefore,
patients with BRCA1Mut:185delA display platinum and poly(ADP)-ribose polymerase
(PARP) inhibitors (PARPi) resistance [58,77]. Interestingly, although located in the same
domain as 185delAG, cells expressing BRCA1Mut:I26A produce a protein that lacks the E3
ubiquitin ligase activity, although retaining the heterodimerization with BARD1. Conversely,
BRCA1Mut:185delAG presents a remarkable decrease in BARD1 binding ability [18].

The commonly detected pathogenic BRCA1Mut:5382insC is a frameshift mutation
highly common in European countries, particularly in Ashkenazi Jewish descendants
(Eastern European), Scandinavia and North Russia. Mutations at BRCT domains com-
monly present loss of protein expression associated with reduced transactivation activity,
growth suppression [50] and aberrant cellular localization [78]. The BRCA1Mut:5382insC
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has a slightly truncated BRCT domain. Like 185delAG, also 5382insC was primarily de-
scribed with a complete loss of protein. However, recent studies have shown that the
truncated mRNA seems to encode a stable protein with potentially new cellular func-
tions due to distinct protein-protein interactions [78]. Tumours that display homozygous
BRCA1Mut:5382insC are associated with deficient HR activity and chemosensitivity [79].
However, the therapeutic response also depends on the tumour type. Indeed, although
BRCA1Mut at BRCT domain has been described as associated with chemosensitivity, the
breast HCC1937 cancer cells displayed resistance to PARPi related to residual HR activity
by retaining the integrity of RAD51 binding region [80].

Besides somatic mutations, BRCA1 promoter hypermethylation and decreased BRCA1
expression, by epigenetic silencing or gene depletion, can also render a dysfunctional
BRCA1 pathway in non-hereditary cancers [16,81]. These mechanisms are described to
likely contribute to the “BRCAness genotype”, associated with similar biological and clini-
cal phenotypes to that of tumours harbouring BRCA1Mut. However, whether BRCAness
mechanisms confer the same functional deficiency is still unclear [81].

A strong connection between triple-negative breast cancer (TNBC) and BRCA1 status
has been established. In fact, over 80% of BRCA1Mut breast cancers are TNBC [82], which
is an aggressive form of the disease. Although initially responsive to chemotherapy, most
TNBC patients quickly relapse and acquire therapeutic resistance [83,84]. TNBC with
pathogenic BRCA1Mut also demonstrates to be particularly sensitive to platinum and
PARPi agents, in both neoadjuvant and adjuvant settings [84].

Despite the lower prevalence, ovarian cancer is three-fold more deadly than breast
cancer, with over 70% of patients having late-stage disease [85,86]. While type 1 ovarian
cancer (low grade serous, mucinous, endometrioid and clear cell carcinoma and Brenner
tumours) is commonly associated with mutations in genes like Kirsten rat sarcoma viral
oncogene homolog (KRAS), phosphatase and tensin homolog (PTEN), AT-rich interactive
domain 1A (ARID1A), catenin beta 1 (CTNNB1), protein phosphatase 2 scaffold subunit
A alpha (PPP2R1A) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha (PIK3CA), type 2 (high-grade serous ovarian cancer (HGSOC), endometrioid and un-
differentiated carcinomas) is associated with mutations in BRCA1, BRCA2 and TP53 [85,86].
In fact, over 10–15% of ovarian cancers are related to germline BRCA1 and BRCA2 mu-
tations. Although still controversial, BRCA1Mut carriers seem to have increased overall
survival, likely due to their higher sensitivity to platinum-based therapy [75,87]. Also,
these tumours have a dysfunctional DDR pathway that initially promotes sensitivity of
cancer cells to chemo- and radiotherapy, although the cell population ultimately ends
up developing therapeutic resistance [8]. Indeed, most BRCA1Mut-related ovarian cancer
patients experience relapse associated with platinum resistance [88].

4. DDR Targeted Therapy for Cancer Treatment: The Synthetic Lethality Approach

A defective DNA repair pathway may sensitize cancer cells to chemo- and radiotherapy-
induced cell death [22]. In particular, HR-deficient tumours, namely those harbouring
deleterious BRCA1Mut, are highly sensitive to DSBs-inducing agents, such as interstrand
crosslinking agents (e.g., platinum and alkylating agents) [21,87]. However, despite the
initial encouraging response, these treatments tend to fail due to the development of
resistance. To overcome this limitation, DDR targeted therapies have emerged as a promising
strategy to be used as chemo- or radiosensitizers by exploiting defects in DDR pathways
through the concept of synthetic lethality [89] (Figure 5). This approach relies on the
presence of a specific gene product that resembles a phenotype induced by a mutation
in cancer cells, compatible with viability, which combined with a second mutation in a
different gene results in cell death. This strategy has allowed to enhance the selectivity
towards cancer cells and to reduce the effective dose of conventional therapy, therefore
minimizing side effects [89,90]. Over the last years, many drugs targeting DDR have been
studied for potential use in cancer therapy.
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Figure 5. Underlying mechanism of synthetic lethality by poly(ADP)-ribose polymerase (PARP)
inhibitors (PARPi). PARP enzyme is crucial in single-strand breaks (SSBs) repair. The pharmacological
inhibition of PARP enzyme will assure that DNA lesions as SSBs will not be repaired by base
excision repair (BER) mechanism and the damage will probably progress to double-strand breaks
(DSBs). Homologous recombination (HR) is an important mechanism of DSBs repair. Therefore, the
suppression of PARP enzyme through PARPi will produce distinct DNA repair responses by cells
depending on their HR proficiency status. In HR-proficient cells, despite the failure of BER to repair
SSBs, HR is able to repair the DSBs, contributing to the maintenance of genomic integrity and cell
survival. Conversely, in HR-deficient cells, there are no reliable DNA repair mechanisms to repair
the DNA damage, which leads to genomic instability and cell death.

4.1. PARPi

The concept of synthetic lethality gained clinical relevance in 2005, when BRCAMut

patients were tested in clinical trials for their therapeutic response to the PARPi olaparib [91].
In fact, the pharmacological advantage of induced synthetic lethality has been extensively
exploited during the last decades (Tables 1 and 2), particularly with PARPi. In fact, the
concept that a double-hit in DNA repair pathways results in synthetic lethality is the
rationale for the use of PARPi in BRCA1Mut-related cancers [92] (Figure 5).

PARPi represent a family of nuclear enzymes involved in post-translational modifica-
tions of proteins and synthesis of poly(ADP-riboses) [92]. In particular, PARP1 and PARP2
have important roles in DDR of SSBs at base excision repair (BER) pathway (Figure 1).
PARP also seems to facilitate HR by recruiting DNA repair factors as ATM and MRN
complex to DSBs sites, also interfering with NHEJ by interaction with DNA protein kinase
complex [92]. It is important to highlight the high selectivity of PARPi to HR-deficient cells.
In fact, PARPi lack cytotoxicity on normal cells or cells with intact/residual HR function,
since unrepaired SSBs are converted to DSBs and effectively repaired by HR [80,93].

Benzamide derivates were the first described PARPi, although they never entered clini-
cal trials [94]. Later, olaparib (2014), niraparib (2017) and rucaparib (2018) were developed
and approved by the U.S. Food and drug administration (FDA) for the treatment of advanced
and chemoresistant ovarian cancers, in patients with germline BRCA1Mut [20,95] (Table 1).
In 2018, olaparib and talazoparib were approved for the treatment of metastatic and HER2-
negative breast cancer, in patients who have already endure chemotherapy [96,97]. In-
terestingly, talazoparib showed to be over 100-fold more active at trapping PARP-1 and
-2, with higher tumour selectivity and bioavailability when compared to PARPi such as
rucaparib and niraparib [96]. Other PARPi were developed and entered clinical trials
(Table 1), including veliparib [98], INO-1001 [99], pamiparib [100] and E7449 [101]. Recently,
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NMS-P118 was described as having excellent absorption, distribution, metabolism, and
excretion profile and high in vivo efficacy in BRCA1Mut TNBC, either as a single agent or
in combination therapy [102]. Despite this, NMS-P118 has not yet entered clinical trials.
PJ34 is also a potent PARPi able to improve the cytotoxic effect of chemotherapy on various
tumour types, by inducing apoptosis and G2/M mitotic arrest. Thus, PJ34 may negatively
impact cell growth in multiple ways in addition to PARP blockade to induce cell death in
cancer cells [103]. Currently, several clinical trials with PARPi are still active, attempting
to elucidate the efficacy and safety of these drugs (Table 1). However, despite promising
and effective, many patients have shown severe side effects and heterogeneous response
to PARPi, indicating the existence of complex inherent and acquired mechanisms of resis-
tance [20]. Moreover, while 15% of ovarian cancer patients with BRCA1Mut have five-years
disease free survival upon treatment with olaparib, acquired resistance may occur within
the first year of treatment by mechanisms as secondary frameshift mutations that restore
the BRCA expression and HR function [20]. In fact, epigenetic changes in HR genes are
a cornerstone for PARPi efficacy, with BRCA1 and RAD51C methylation contributing to
PARPi sensitivity, while demethylation has been associated with protein (re)expression
and subsequent resistance [7,104]. Mitigation of replication stress, residual HR, PARP1
mutations, loss of 53BP1 function, overexpression of BRCA1 interacting partners, such as
BRCA2, PALB2, DNA polymerase theta (POLQ), RAD51, RAD52, and drug-efflux pumps
may also render cells more resistant to PARPi [20,80]. In HGSOC, overexpression of miR-622
also restores HR by downregulation of Ku complex, leading damaged cells to switch from
NHEJ to HR [20]. Besides resistance to PARPi, these events may also lead to platinum
resistance, although some exceptions have been reported regarding cellular resistance to
PARPi, but not to platinum drugs [7,20,80,104]. Despite considerable advances with PARPi,
much remains to be done, particularly considering that the resistance mechanisms are highly
dependent on mutational profile of each tumour, its origin and prior treatments.

Table 1. Inhibitors of the DDR pathway that reached clinical trials.

Cancer Mechanism Clinical Trial/Phase Ref.

Inhibitors of PARP

Olaparib (Lynparza;
AZD-2281)

Phase 4

Approved for BRCAMut

metastatic BC (2018),
advanced OC (2014), PC

(2019) and prostate cancer
(2020); advanced gastric and

metastatic renal cell
carcinoma

PARP1/2/3 inhibitor; binds within the
nicotinamide-binding pocket in the ADP-ribosyl transferase
catalytic site; synthetic lethality with HR defects, sensitizes

cells to radiation and DNA damaging agents

NCT03344965/II
NCT02184195/III
NCT01924533/III
NCT02810743/III
NCT03286842/III
NCT03786796/II
NCT01874353/III

[104,105]

Rucaparib (AG-01499;
Clovis)
Phase 3

Approved for advanced OC
(2016) and BRCAMut prostate
cancer (2020); Solid tumours

(e.g., PC and metastatic
urothelial cancer)

NCT04171700/II
NCT02975934/III
NCT02042378/II
NCT02678182/II
NCT03533946/II
NCT03413995/II

[20]

Niraparib (MK-4827;
Zejula; Tesaro)

Phase 3

Approved for recurrent OC
(2017); BC, OC and PC with
BRCAMut; lung, head and

neck cancer

PARP1/2 inhibitor; binds within the nicotinamide-binding
pocket in the ADP-ribosyl transferase catalytic site,

contacting with the regulatory subdomains; traps PARP to
DNA damage sites;

Talazoparib is effective in both BRCAMut and PTENMut

cancer cells

NCT01905592/III
NCT03601923/II
NCT03553004/II
NCT03016338/II

NCT03431350 I/II
NCT03891615/I

[106,107]

Veliparib (ABT-888;
Abbvie) Phase 3

Metastatic BRCAMut BC;
NSCLC; HGSOC

NCT02163694/III
NCT01149083/II
NCT01657799/II
NCT02890355/II
NCT03044795/III

NCT02158507/NA

[98]

Talazoparib (BMN 673)
Phase 3

Approved for BRCAMut

locally advanced or
metastatic BC (2018);

BRCA1Mut OC; leukaemia

NCT02401347/II
NCT02326844/II
NCT02282345/II
NCT02401347/II
NCT03148795/II
NCT03426254/I

[97]
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Table 1. Cont.

Cancer Mechanism Clinical Trial/Phase Ref.

INO-1001
Phase 2 Melanoma Potent PARPi NCT00272415/I [99]

Pamiparib (BGB-290)
Phase 3

Advanced solid tumours; OC;
TNBC; prostate, brain and

central nervous system
tumours

Potent and selective inhibitor of PARP1 and PARP2

NCT03933761/II
NCT03991494/II
NCT03712930/II
NCT04164199/III
NCT03150862 I/II
NCT03333915 I/II

[100]

E7449 (2x-121)
Phase 2

Advanced OC; TNBC;
metastatic BC; malignant

solid tumours

Dual inhibitor of PARP1/2 (traps PARP1 onto damaged
DNA sites) and tankyrase 1/2.

NCT03878849/II
NCT01618136 I/II
NCT03562832/II

[101]

Inhibitors of ATM

M-3541 Solid tumours Compete with ATP-binding site of ATM, inhibiting its
catalytic function in DDR.

KU-60019: downregulates pAKT reducing cell survival;
combined with CDDP increases γH2AX and reduces RAD51

foci; specific for PTEN-deficient and p53Mut cells upon IR.
AZD-0156/AZD-1390: improved blood-brain barrier

penetration

NCT03225105/I [108]

AZD-0156 Advanced solid tumours NCT02588105/I [109]

AZD1390 Glioblastoma; brain
neoplasms

NCT03215381/I
NCT03423628/I [110]

KU-60019 Kidney Cancer NCT03571438/NA [111]

Dual inhibitors of PI3K/mTOR

NVP-BEZ235
Prostate cancer; advanced

tumours including
metastatic BC

Blocks ATM/ATR/DNA-PKs activity; induces chemo- and
radio-sensitization, particularly in

RAS-overexpressing tumours

NCT01717898I/II
NCT01634061/I
NCT01288092/II
NCT01856101/II
NCT01495247I/II

[112–114]

Inhibitors of ATR

AZD6738 (ceralasertib)

Advanced solid tumours;
lymphomas

Selective ATR inhibitor; phosphorylates Chk1 and increases
γH2AX; promising with carboplatin or IR; antitumor

activity in ATM-deficient xenograft models

NCT03770429/I
NCT03682289/II
NCT02630199/I
NCT03462342/II
NCT04298008/II
NCT04361825/II

[22]

BAY1895344
ATR selective inhibitor

NCT04095273/I
NCT03188965/I
NCT04267939/I

[115]

VX-803 (M-4344) NCT04149145/I
NCT02278250/I [115]

VX-970 (Berzosertib;
M6620, VE-822)

Sensitizes PC and NSCLC cells to chemo- and radiotherapy;
no toxicity in normal cells/tissues

NCT03718091/II
NCT02487095 I/II
NCT03641547/I
NCT04052555/I
NCT02157792/I

NCT02627443 I/II

[116]

Inhibitors of Chk1/Chk2

UCN-01

Advanced solid tumours

Block Chk1/2 activity by binding to ATP-binding pocket;
induce cell cycle arrest in G1 (UCN-01) or G2 (MK8776)

phases and apoptosis

NCT00082017/II
NCT00072189/II
NCT00045747/II
NCT00072267/ II

[117]

GDC-0425 NCT01359696/I [118]

MK-8776 (SCH900776)

NCT00779584/I
NCT01521299/I
NCT01870596/II
NCT00907517/I [119]

SRA-737 NCT02797964I/II
NCT02797977I/II

AZD7762 Inhibits Chk1/2 by interaction with their ATP-binding
pocket; suppresses pCdc25C

NCT00937664/I
NCT00413686/I
NCT00473616/I

[120]

CBP-501 Inhibits kinases (MAPKAP-K2, C-TAK1, Chk1) that
phosphorylate Cdc25C Ser216

NCT00551512/I
NCT00942825/II
NCT03113188/I

NCT00700336I/II

[121]

Rabusertib (LY2603618) Solid tumours (NSCLC; PC) Chk1 selective inhibitor

NCT00415636/I
NCT00839332I/II
NCT00988858/II
NCT01296568/I

NCT01139775I/II

[119]
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Table 1. Cont.

Cancer Mechanism Clinical Trial/Phase Ref.

Prexasertib (LY-2606368) SCLC, OC, TNBC, metastatic
castrate-resistant PC Dual Chk1/2 inhibitor

NCT01115790/I
NCT02873975/II
NCT02203513/II
NCT02808650/I
NCT02514603/I

Inhibitors of WEE-1

MK-1775 (AZD-1775)
NSCLC; advanced acute MM;

OC; TNBC; PC; head and
neck cancer; gastric cancer

Inhibitor of WEE1/2 and PLK1 kinases; potent in
combination therapy

NCT01164995/II
NCT02610075/I

NCT01076400I/II
NCT02087241/II
NCT03012477/II

[122]

DNA-PK inhibitors (NHEJ pathway)

LY-3023414
Prostate cancer and

endometrial; NSCLC; TNBC;
PC; lymphoma

Potent and selective ATP competitive inhibitor of class I
PI3K isoforms, mTOR, and DNA-PK

NCT02549989/II
NCT04032080/II
NCT02575703/I
NCT02549989/II
NCT02443337/II

[123]

CC-122
Melanoma; advanced solid

cancer; relapsed or refractory
B-cell malignancies

NCT03834623/II
NCT03310619I/II
NCT02323906/I
NCT02509039/I
NCT01421524/I

[124–126]

CC-115
Glioblastoma; PC; Head and

neck squamous cell
carcinoma

NCT02833883/I
NCT01353625/I
NCT02977780/II

M-3814 (MSC2490484A)
Various solid malignancies DNA-PK-dependent inhibitor

NCT03116971/I
NCT03724890/I

NCT04172532I/II
NCT04092270/I
NCT02516813/I
NCT02316197/I

[127,128]

AZD7648 NCT03907969I/II [129]

VX-984 (M9831) NCT02644278/I [127,128]

Dual inhibitors of HR and NHEJ

AsiDNA Various solid malignancies
Prevents recruitment of repair enzymes (required for HR

and NHEJ) at DSBs: acts as bait for DNA repair proteins or
induces false DNA damage signalling

NCT03579628/I [130]

Inhibitors of RAD51 recombinase (HR pathway)

CYT-0851 B-Cell malignancies;
advanced solid tumours Reduces RAD51 migration to DNA damage sites NCT03997968I/II [131]

Clinical data obtained from clinicaltrials.gov (accessed on 14 May 2021); breast cancer (BC); triple-negative breast cancer (TNBC); ovarian
cancer (OC); pancreatic cancer (PC); non-small cell lung cancer (NSCLC); small cell lung carcinoma (SCLC); myeloid leukaemia (MM);
high grade serous ovarian carcinoma (HGSOC); ionizing radiation (IR); cisplatin (CDDP); phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K); mammalian target of rapamycin (mTOR); DNA-dependent protein kinase (DNA-PK); transforming growth factor-beta-activated
kinase 1 (TAK1); polo-like kinase 1 (PLK1); not applicable (NA).

4.2. Other Inhibitors of the DDR Pathway

Activation of cell cycle checkpoints is a critical step for DDR, giving cells time to repair.
As such, inhibitors of key factors in cell cycle signalling sensitize cancer cells to radio-
and chemotherapy [8,20,132]. Accordingly, inhibitors of phosphatidylinositol 3-kinase-
related kinases (PIKK) family members, including ATM, ATR, and DNA-dependent protein
kinase (DNA-PK), have been developed [8,20,132]. In 2004, the first selective inhibitor of
ATM, KU-55933, was described [133]. However, its high lipophilicity has limited in vivo
use [133]. Thereafter, KU-60019, a more effective analogue of KU-55933 with improved
pharmacokinetic and bioavailability properties, was developed and is currently under
clinical trials [111] (Table 1). CP-466722 is a potent, although reversible, inhibitor of
ATM activity, which sensitizes cancer cells to the effect of ionizing radiation [134]. More
recently, the ATM inhibitors AZ31, AZ32 [135], AZD0156 [109], and its improved version
AZD1390 [110], were also developed, with the last two being tested in clinical trials (Table 1).
In general, ATM inhibitors have shown promising results in combination regimens [136],
although data regarding side effects are still not available.

clinicaltrials.gov
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Some ATR inhibitors have also been disclosed, being the naturally-occurring schisan-
drin B the first reported compound [137]. More effective compounds have followed the
discovery of schisandrin B, namely NU-6027 [138], Torin 2 [139], and ETP-46464 [140].
However, despite their potent ATR inhibitory effect, they lack selectivity [140]. Likewise,
NVP-BEZ235, currently under clinical trials (Table 1), was reported as a dual inhibitor
of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mammalian target of ra-
pamycin (mTOR) pathways, also inhibiting ATM/ATR and DNA-PKs, with considerable
in vivo antitumor activity [112–114]. Later, a set of more selective and potent ATR in-
hibitors were described, including VE-821 [141] and the analogues VX-970 [116] and
VX-803, BAY1895344 [115], AZ20 and AZD6738 [22]. The developed analogues revealed
improved potency, solubility, bioavailability and pharmacokinetic properties compared to
the counterparts [115]. VX-970, VX-804, BAY1895344 and AZD6738 are currently under
clinical trials (Table 1), having AZD6738 and VX-970 undergone the greatest developments.

Abrogation of the G2/M checkpoint by Chk1/2 and WEE-1 inhibitors is currently being
tested in clinical trials (Table 1). Inhibitors of Chk1/2, downstream players of ATM and ATR,
seem to act synergistically with agents that generate replication stress [119]. The first described
Chk1 inhibitor was the staurosporine derivative UCN-01. However, the therapeutic application
of UCN-01 has been hindered by its lack of specificity and long half-life, related to alpha-1-
acid glycoprotein binding that leads to hyperglycemia [117,119]. Following UCN-01, several
other Chk1/2 inhibitors have reached clinical trials (Table 1), namely CBP-501 [121], GDC-
0425 [117], MK-8776, SRA-737 [119], AZD7766 [120], praxasertib, and LY2603618 [119]. Despite
promising pre-clinical studies, results from clinical trials were not impressive, neither alone
nor combined with other therapeutic agents. In fact, AZD7766, LY2603618 and MK-8776 not
only have demonstrated modest efficacy, but also toxic side effects such as cardiotoxicity and
thromboembolic events. As such, further clinical studies with these drugs were not pursued.

The WEE-1 inhibitor AZD-1775 potentiates the cytotoxic effect of several DNA-
damaging drugs, also improving patients’ overall survival [122]. Several clinical trials are
underway for a more rigorous selection of patients who may benefit from monotherapy or
combination regimens with AZD-1775 (Table 1).

Upregulation of DNA-PK, a crucial component of NHEJ, has been observed in some
cancers and, along with increased expression of Ku subunits, it is associated with radiore-
sistance [20]. DNA-PK inhibitors have recently entered clinical trials, both as single agents
and in combination therapy (Table 1). Based on the naturally-occurring flavonoid quercetin,
DNA-PK-targeting inhibitors were developed, namely the non-specific Wortmannin [142]
and LY294002, with high potency against DNA-PK, PI3K, polo-like kinase 1 (PLK1) and
mTOR [143,144]. However, LY294002 proved to have unfavourable toxicological profile
and poor stability, which precluded its clinical translation. Still, it led to the development of
NU7026 and NU7441 (KU57788) [145], more potent and selective for DNA-PK [127]. Addition-
ally, the compounds NU7427 [146], KU-0060648 [147] and NU5455 [148] were also effective
against DNA-PK, sensitizing cells to radio- and chemotherapy-induced DNA damage [149].
Despite promising pre-clinical data, only few DNA-PK inhibitors have reached clinical trials,
as LY3023414 [123,150], MSC2490484A, CC-122 and CC-115 [124–126], which target both
DNA-PK and mTOR. VX-984 and M-3814 represent the latest generation of DNA-PK selective
compounds that have proceeded into clinical trials (Table 1), improving radio- and chemother-
apy efficacy [127,128]. However, despite well-tolerated as monotherapy, M3814 has shown
side effects [127]. Finally, AZD7648 was described as a potent and highly specific DNA-PK
inhibitor, having promising application in combination with standard therapies [129].

AsiDNA is a first-in-class DNA repair inhibitor that acts on enzymes involved in
different DNA repair pathways, as HR, NHEJ, BER and SSA, providing an extensive DNA
repair inhibitory activity rather than targeting specific DSBs proteins [130].

Small molecule inhibitors of MRN complex, RAD51, RAD52 and RAD54 have also
been developed for targeting DSBs repair (Tables 1 and 2). Regarding the MRN complex,
the first compound identified was the MRE11 inhibitor 6-(4-hydroxyphenyl)-2-thioxo-2,3-
dihydro-4(1H)-pyrimidinone (Mirin; Table 1), which targets MRE11 exonuclease activity,
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preventing ATM activation [151]. Mirin leads to HR failure and downregulation of NHEJ’s
repair efficiency. Later, the Mirin analogues PFM39, PFM01 and PFM03, with selectivity to-
wards Mre11 exo- (PFM39) or endonuclease (PFM01/03) activity, were also described [151].

One of the most promising approaches has been the simultaneous targeting of can-
cer cells with PARPi and other inhibitors of DNA repair factors, as RAD51 and RAD52,
triggering a dual synthetic lethality, particularly in cancers with deficient DNA repair
pathways [152]. Indeed, RAD51 overexpression has been described in several cancers,
being associated with therapeutic resistance and poor prognosis [151]. Currently, RAD51
inhibitors able to interfere with RAD51 ssDNA-binding ability have been described, includ-
ing DIDS [153], B02 [154], RI-1 and RI-2 [155,156], IBR2 and its more potent and specific
analogue IBR120 [151] and the Chicago Skye Blue [157] (Table 2). An additional strategy
has exploited the RAD51 overexpression in cancer cells using the compound RS-1, which
stimulates DNA binding and genotoxic RAD51 recombination with subsequent induction
of cell death [158]. Despite promising data in pre-clinical studies, none of these drugs
have entered clinical trials since improvements in their solubility, toxicity and effectiveness
are still needed. However, the new RAD51 inhibitor CYT-0851 [131] has recently reached
clinical trials for safety, tolerability and pharmacokinetic studies (NCT03997968) (Table 1).

Table 2. DDR inhibitors under pre-clinical studies.

Mechanism Research Model Ref.

Inhibitors of RAD51 Recombinase (HR Pathway)

DIDS
Binds directly to RAD51; inhibits ssDNA- and dsDNA-binding, and joint molecule formation in DNA

strand exchange assays; stimulates ATP
hydrolysis; in vitro toxicity

In vitro DNA repair
biochemical assays [153]

B02
Inhibits RAD51-mediated ssDNA-binding activity; enhances cells sensitivity to IR, MMC, PARPi,

doxorubicin and CDDP by inhibiting
RAD51-dependent DSBs repair

In vitro DNA repair
biochemical assays; mouse orthotopic xenograft of human TNBC [154,159,160]

RI-1 Covalently binding to RAD51 protein, surface stably and irreversibly inhibiting its filament formation
upon DNA damage; inhibit HR and disrupts DNA damage-induced RAD51 foci formation; sensitizes

cancer cells to MMC

In vitro DNA repair
biochemical assays;

human embryonic kidney, ECC, BC and OS cell lines

[155,156]

RI-2

IBR2
IBR120 Disrupt RAD51-binding to BRCA2 and RAD51 oligomerization; sensitize cancer cells to IR

In vitro DNA repair
biochemical assays; BC xenograft model; imatinib-resistant

T315I-Ba/F3 cells
[151]

Chicago Skye Blue (CSB) Prevents RAD51 nucleoprotein filament formation by interfering with the RAD51 binding to ssDNA In vitro DNA repair
biochemical assays [157]

Inhibitors of RAD52 (HR pathway)

6-Hydroxy-D,L-dopa Disrupts RAD52 oligomerization In vitro DNA repair biochemical assays; BC and PC cell lines [161]

D-103
Inhibit RAD52-mediated ssDNA annealing; tested in BRCA1Mut and BRCA2Mut cells

In vitro DNA repair biochemical assays; BC, OC, PC and OS cell
lines

[162]

D-G23

AICAR
5′ -phosphate(ZMP)

Disrupts the RAD52-ssDNA interaction; targets intracellular RAD52; undergoes phosphorylation in the

cytoplasm, preferentially killing BRCA1Mut and BRCA2Mut cells

In vitro DNA repair biochemical assays; BRCA1-deficient
BCR-ABL1-32Dcl3 murine hematopoietic cells expressing

GFP-RAD52; BC, PC and OS cell lines
[163]

(-)- EGC Specifically bind to RAD52; disrupt the RAD52-ssDNA interaction and its annealing activity; kill

BRCA2Mut cells

In vitro DNA repair
biochemical assays;
human fibroblasts

[164]

NP-004255

Inhibitor of the BRCA1-BARD1 interaction (HR pathway)

BBIT20 Disrupts the BRCA1-BARD1 interaction
Co-immunoprecipitation and immunofluorescence assays;

BC and OC cell lines; patient-derived cells and xenograft mouse
models of OC

[165]

Inhibitor of RAD54 DNA Branch Migration Activity (HR pathway)

Streptonigrin Directly binds to RAD54 and inhibits its ATPase by reactive oxygen species generation In vitro DNA repair
biochemical assays [166]

Inhibitors of WRN DNA Helicase

NSC 19630 Specifically inhibits WRN helicase activity, but not its nuclease activity;
increases cellular sensitivity to PARPi

In vitro DNA repair
biochemical assays; human ECC, RC, CC, OC, BC and leukaemia

cell lines
[167]

NSC 617145
Specifically inhibits WRN helicase activity,

but not its nuclease activity;
likely traps WRN on the DNA substrate

In vitro DNA repair
biochemical assays; human ECC, OS and CC cell lines [168]

Inhibitor of BLM DNA Helicase

ML216 Inhibits helicase activity of BLM by disruption of its binding to DNA; inhibits WRN
In vitro DNA repair

biochemical assays; BLM-complemented (PSNF5) and
BLM-deficient (PSNG13) fibroblast cell line

[169]

Inhibitors of MRE11 Endo- and Exonuclease

Mirin Bind to active sites of MRE11, blocking DNA phosphate backbone rotation and inhibiting its exonuclease
activity; inhibit MRN/DSBs-mediated ATM activation not affecting ATM protein kinase activity;

G2/M-phase progression in HR-deficient cells

In vitro DNA repair
biochemical assays; human OS cell line; human primary

fibroblasts, NHEJ-deficient cells and FA cell lines

[170,171]

PFM39

PFM01
PFM03

Bind near the dimer interface, blocking the ssDNA-binding path and disrupting endonuclease activity;
enhance NHEJ while reducing the HR pathway (no DDR defects associated)

In vitro DNA repair
biochemical assays; human primary fibroblasts, NHEJ-deficient

cells and FA cell lines
[171]

Cisplatin (CDDP); ionizing radiation (IR); mitomycin C (MMC); triple-negative breast cancer (TNBC); wild-type (wt); werner syndrome
helicase (WRN); bloom syndrome protein (BLM); breast cancer (BC); pancreatic cancer (PC); endocervical cancer (ECC); ovarian cancer
(OC); osteosarcoma (OS); colon cancer (CC); renal cancer (RR); fanconi anemia (FA).
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RAD52 inhibitors have also been developed to explore the synthetic lethality approach
in cancers with BRCAMut or suppressed BRCA1-RAD51 pathway [152]. To date, the RAD52
inhibitors 6-hydroxy-D,L-dopa [161], 5-aminoimidazole-4-carboxamide ribonucleotide
(AICAR) 5’-phosphate (ZMP) [163], D-103, D-G23 [162], and the naturally-occurring (−)-
epigallocatechin (EGC [164]) and NP-00425 were described. However, none of them have
reached clinical trials.

Considering that cells with truncation in BRCA1 C-terminus are more sensitive to
DNA-damaging agents [58,72], the discovery of protein-protein inhibitors targeting the
BRCT domain of BRCA1 also reveals to be an encouraging approach. Currently, only a
small molecule-like [172] and phosphopeptides [173] were identified with the ability of
targeting the BRCT domain of BRCA1. However, only the small molecule-like has in vitro
activity due to its cell permeability [172].

Besides BRCA1Mut-related cancers, BRCA1wt cancers with HR-deficiency due to
impairment in other TSGs, such as p53Mut, might also benefit from DDR therapies. In fact,
studies have unveiled that the poor prognosis and therapeutic resistance of p53Mut tumours
would be related to increased BRCA1wt nuclear retention (associated with DNA repair and
cell cycle checkpoints; Figure 3) [174]. Consistently, an interesting therapeutic approach for
BRCA1wt and p53mut carriers would be the inhibition of the BRCA1-BARD1 interaction
to improve the cellular response to DNA-damaging drugs. In fact, the disruption of the
BRCA1-BARD1 interaction triggers the nuclear-to-cytoplasmic BRCA1 translocation and
the subsequent depletion of BRCA1 HR activity [72]. Based on this premise, the BRCA1-
BARD1 interaction inhibitor dregamine 5-bromopyridin-2-yl hydrazone (BBIT20) was
recently identified by our group [165]. BBIT20 triggers DNA damage by promoting BRCA1
cytoplasmic localization and the subsequent reduction of major proteins involved in HR,
in TNBC and ovarian cancer cells. The encouraging antitumor activity of BBIT20 in patient-
derived cells and xenograft mouse models of ovarian cancer, particularly when compared
to olaparib, may predict its great potential in precision therapy by targeting DDR [165].

5. Conclusions

Despite numerous studies with the aforementioned DDR inhibitors, only PARPi have
been approved by the FDA for clinical use. Hence, the search for more effective agents
targeting DDR pathways, in particular HR, remains of crucial relevance. In fact, the
valuable application of DDR inhibitors in cancer treatment is undeniable. Particularly,
the concept of synthetic lethality has gained significance in the field of DDR due to the
multifactorial pathways that are deeply connected and that may compensate for each
other, offering tumours an opportunity to develop drug resistance. In fact, synthetic
lethality has emerged as a promising anticancer approach, more selective, efficient and
lethal for malignant cells, and with less side effects when compared to conventional therapy.
Nevertheless, its efficacy has also been greatly affected by the occurrence of resistance
associated with the functional restitution of DNA repair pathways. On the other hand,
it is well-accepted that their efficiency will depend on the correct identification of the
genetic backgrounds for DDR deficiency. As such, the validation of biomarkers capable of
stratifying the patients that may benefit from these therapies will be of high relevance to
the success of these drugs. This will allow patients to be matched to the right treatment,
driving the development of DDR targeted therapies for personalized cancer treatment.
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