cancers

Article

Metformin and Niclosamide Synergistically Suppress Wnt and
YAP in APC-Mutated Colorectal Cancer

Hee Eun Kang "%, Yoojeong Seo

23 Jun Seop Yun 1 Sang Hyun Song 1 Dawool Han 1@, Eunae Sandra Cho 1@,

Sue Bean Cho !, Yoon Jeon %, Ho Lee 7, Hyun Sil Kim 1, Joyeon Kang >3, Jong In Yook 1, Nam Hee Kim *

and Tae Il Kim %3/*

check for

updates
Citation: Kang, H.E.; Seo, Y.; Yun,
J.S.; Song, S.H.; Han, D.; Cho, E.S.;
Cho, S.B; Jeon, Y,; Lee, H.; Kim, H.S;
et al. Metformin and Niclosamide
Synergistically Suppress Wnt and
YAP in APC-Mutated Colorectal
Cancer. Cancers 2021, 13, 3437.
https:/ /doi.org/10.3390/cancers13
143437

Academic Editor: Robert Kypta

Received: 4 May 2021
Accepted: 6 July 2021
Published: 9 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry,
Seoul 03722, Korea; wing870817@gmail.com (H.E.K.); Y]S8714@yuhs.ac (J.S.Y.); SSH407@yuhs.ac (S.H.S.);
IPODVIDEO@yubhs.ac (D.H.); SANDRA@yuhs.ac (E.S.C.); chosuebean@gmail.com (S.B.C.);
khs@yuhs.ac (H.S.K.); jiyook@yuhs.ac (J.LY.)

Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine,
Seoul 03722, Korea; YJSEO90@yubhs.ac (Y.S.); RKDWH0105@yuhs.ac (J.K.)

Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
imyoon8l@ncc.re kr (Y.J.); ho25lee@ncc.re.kr (H.L.)

*  Correspondence: MIGO77@yuhs.ac (N.H.K.); TAEILKIM@yuhs.ac (T.LK.)

t These authors contributed equally to this work.

Simple Summary: Hyperactivation of the canonical Wnt and inactivation of the Hippo pathway are
well-known genetic backgrounds for familial adenomatosis polyposis (FAP) and colorectal cancer
(CRC), although the reciprocal regulation between those pathways is not yet clear. In this study, we
found that Axin2, a bona fide downstream target of canonical Wnt, activates the Hippo pathway
in APC-mutated CRC, limiting the therapeutic potential of niclosamide on advanced CRC through
the inactivation of the Hippo pathway. To overcome the limitation, we combined niclosamide
with AMPK activator metformin to activate Hippo and found that this combination synergistically
suppressed canonical Wnt and activated Hippo in APC-mutated CRC. Using patient-derived cancer
organoid and an APC-MIN mice model, we found the combinatory approach to be effective for
APC-mutated CRC. Our results provide not only the reciprocal link between Wnt and Hippo in
APC-mutated CRC, but they also provide an effective therapeutic approach with clinically available
drugs for FAP and CRC patients.

Abstract: The Wnt and Hippo pathways are tightly coordinated and understanding their reciprocal
regulation may provide a novel therapeutic strategy for cancer. Anti-helminthic niclosamide is an
effective inhibitor of Wnt and is now in a phase II trial for advanced colorectal cancer (CRC) patients.
We found that Axin2, an authentic target gene of canonical Wnt, acts as aYAP phosphorylation
activator in APC-mutated CRC. While niclosamide effectively suppresses Wnt, it also inhibits Hippo,
limiting its therapeutic potential for CRC. To overcome this limitation, we utilized metformin, a
clinically available AMPK activator. This combinatory approach not only suppresses canonical Wnt
activity, but also inhibits YAP activity in CRC cancer cells and in patient-derived cancer organoid
through the suppression of cancer stemness. Further, combinatory oral administration suppressed
in vivo tumorigenesis and the cancer progression of APC-MIN mice models. Our observations
provide not only a reciprocal link between Wnt and Hippo, but also clinically available novel
therapeutics that are able to target Wnt and YAP in APC-mutated CRC.

Keywords: colorectal cancer; Wnt; Hippo; niclosamide; metformin

1. Introduction

Mutations in the APC (adenomatosis polyposis coli) have a well-defined function in
canonical Wnt activation and underlie familial adenomatosis polyposis (FAP), an inherited
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form of CRC that accompanies in 90% of sporadic CRCs [1]. Scaffolding Axin2 is a bona
fide downstream target gene of the TCF/LEF transcriptional machinery that is highly
expressed in APC-mutant CRCs [2—4]. While earlier studies have suggested that Axin is a
tumor suppressor, emerging evidence supports the important role of Axin2 in canonical
Wnt and the Snail-mediated epithelial-mesenchymal transition (EMT) [5-7].

FDA-approved niclosamide has long been used based on its clinical safety and anti-
helminthic effectiveness. Interestingly, it was found to have an anti-viral effect against
SARS-CoV1 [8,9]. Later, niclosamide was reported to be an effective small molecule in-
hibitor of canonical Wnt for CRCs both in vitro and in vivo [10]. Subsequently, niclosamide
has been reported as a candidate therapeutic in many cancer types, such as breast can-
cer, ovarian cancer, non-small cell lung cancer, glioblastoma, head and neck cancer, and
hematopoietic malignancy [11-15]. Consistent with those anti-cancer effects, several groups
have reported that niclosamide suppresses [3-catenin mediated canonical Wnt signaling,
through means such as inhibited TCF/LEF transcriptional activity and down-regulated
pathway target genes, e.g., Axin2 [10,12,16,17]. Recently, Axin2-GSK3 interaction has been
proposed as a direct molecular target to support the anti-cancer effects of niclosamide [18].
Currently, phase II trials of re-positioned niclosamide for advanced CRCs (NCT02519582)
and COVID-19 based on broad spectrum anti-viral effects are ongoing [19,20].

Evolutionary conserved Hippo signaling inhibits cell proliferation through contact
inhibition, the loss of which leads to organ growth and cancer development [21]. The
large tumor suppressor (Lats) 1/2 serine/threonine kinase and the AMP-activated protein
kinase (AMPK), both of which mediate YAP phosphorylation, are well-known regulators
of the Hippo pathway [22], and their inhibition results in increased nuclear YAP activity
and TEAD transcriptional activity and increased organ size as well as cancer overgrowth.
The YAP-TEAD complex has thus emerged as a novel therapeutic target for human can-
cer [23,24].

Due to the importance of the Hippo and Wnt pathways in human cancer, a better
understanding of the reciprocal link between the two may provide critical insight into
human cancer. Recently, we reported that the Wnt scaffolding protein DVL acts as a
molecular effector for the nuclear export of phosphorylated YAP in a tumor suppressing
context-dependent manner [25], indicating that the Wnt and Hippo pathways are tightly
controlled by each other. In this study, we found that the Axin2 scaffolding protein of
the Wnt pathway activates the Hippo pathway in APC-mutant CRC cells. Conversely, a
knock-down of Axin2 or niclosamide treatment increases nuclear YAP activity, possibly
limiting the therapeutic potential of niclosamide for APC-mutated CRC. To overcome
YAP activation by niclosamide, we examined metformin as an AMPK activator to re-
activate the Hippo pathway. Interestingly, the combination of niclosamide and metformin
synergistically suppresses Wnt activity and EMT programs while successfully rescuing
nuclear YAP activity in CRC cells and in patient-derived cancer organoids. In vivo, the
combination effectively suppresses tumorigenesis and DSS-induced cancer progression in
aAPC-Min mice model. Our observations demonstrate that combinatory targeting of the
canonical Wnt and YAP pathways may potentiate the therapeutic effect of niclosamide for
FAP and APC-mutated CRC patients.

2. Materials and Methods
2.1. Cell Culture and Transfection

Human colorectal cancer cell lines DLD-1 (ATCC, CCL-221) and human embryonic
kidney 293 cells were cultured in Dullbecco’s modified Eagle’s medium (DMEM, Lonza,
12-604F, Basel, Switzerland), and SW480 (Korean Cell Line Bank, KCLB No0.10228, Seoul,
Korea) was grown in the Roswell Park Memorial Institute 1640 (RPMI 1640, Lonza, 12-702F)
with 10% fetal bovine serum (FBS, Life Technologies, Carlsbad, CA, USA) and 100 IU/mL
penicillin/streptomycin. SW480 and DLD-1 are colon cancer cells bearing the truncated
APC gene. All cells were cultured in a humidified incubator at 37 °C and 5% CO,. The Tet-
pLKO-puro vector (#1915, Addgene, Watertown, MA, USA) was used for inducible shRNA
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knockdown. The target shRNA sequence for Axin2 was 5'-ACCACCACTACATCCACCA-
3’. Mutant APC expression vectors pCMV-neo-Bam APC 1-1309 (#16508) and pCMV-
neo-Bam APC 1-1941 (#16510) were obtained from Addgene. Mycoplasma infection tests
were regularly performed with a PCR-based kit (Sigma, MP0040, St. Louis, MI, USA).
Transfection was performed using Lipofectamine 2000 according to the manufacturer’s
protocols (Invitrogen, 11668-019, Waltham, MA, USA). Niclosamide (2, 5-dichloro-4’-
nitrosalicylanilide) was purchased from CAYMAN, and metformin was obtained from
TCI America (TCI, M2009, Portland, OR, USA). The niclosamide and metformin were
solubilized in DMSO and distiller water for in vitro experiments.

2.2. Immunoblot Analysis

Niclosamide and metformin were treated for 16 h, and the cells were then washed
twice with PBS and incubated with 1% triton X-100 lysis buffer (50 mM Tris pH 7.4, 150 mM
NaCl, 1 mM EDTA, 1% triton X-100). To evaluate the drug-induced EMT markers, the
niclosamide and metformin were treated for 48 h. The cells were collected using a scraper
and centrifuged at 13,200 rpm for 15 min at 4 °C. To isolate the nuclear protein fraction, the
cells (1 x 10°) were collected in microcentrifuge tubes and treated with hypotonic buffer
(10 mM HEPES [pH 7.9], 10 mM KCl, 0.1 mM EDTA, 1 mM DTT with protases inhibitors) on
ice for 5 min. The cell membrane was ruptured by adding 10% NP-40 to a final concentration
of 0.6% and then vigorously vortexed for 10 s followed by high-speed centrifugation for
30 s. The supernatant cytosolic fractions were collected separately, and the nuclear pellets
were washed with ice-cold PBS twice. Nuclear protein was extracted with hypertonic buffer
(20 mM HEPES [pH 7.9], 0.4 M NaCl, 1 mM EDTA, 1 mM DTT) on ice for 15 min followed by
high-speed centrifugation. SDS-polyacrylamide was separated using electrophoresis and
transferred to a nitrocellulose membrane (Whatman, Maidstone, UK). After the transfer,
the membrane was blocked with 5% skim milk (BD bioscience) for 1 h and incubated
at room temperature for 3 h or at 4 °C for 12 h or more. The antibodies against Snail
(Cell Signaling, #3895S, Danvers, MA, USA), Axin1 (Cell Signaling, #2087S), Axin2 (Cell
Signaling, #2151S), YAP (Santa Cruz, sc-101199), p-YAP(S127) (Cell Signaling, #4911S), S6
(Cell Signaling, #2217S), p-56(5235/236) (Cell Signaling, #4858S), E-cadherin (BD bioscience,
#61081), occludin (Cell Signaling, #5506S), Zebl (Cell Signaling, #D80D3), fibronectin
(Abcam, ab2413, Cambridge, United Kingdom), tubulin (AB Frontier, LF-PA0146A, Seoul,
Korea), and HDACI1 (Santa Cruz, sc-81598) were obtained from commercial vendors.
Phos-tag gel was purchased from WAKO chemicals (AAL-107).

2.3. Cell Migration Assay

For migration assays with niclosamide and metformin, DLD-1 and SW480 cells
(5 x 10*) were seeded into transwell inserts (5.0 um pore, BD Biosciences). The filter
inserts were prewetted before the cells were added with PBS. 1 mL of medium was added
to the lower chamber. Cells were added to 5 x 10*/100 uL. medium in the top of the inserts.
After a 48 h culture period in the medium, which contained 0.5 pM niclosamide or 10 mM
metformin or a combination of the two was added to the bottom, the cells were washed
twice with PBS and fixed with 4% formaldehyde. The upper part was wiped with cotton,
and the cells in the lower part were stained with 0.25% crystal violet. Cell counts were
determined in five random fields.

2.4. Quantitative Real Time-PCR and Reporter Assay

Total RNA was extracted with TRIzol reagent (Invitrogen) according to the manufac-
turer’s protocols. cDNA was generated using the SuperScript III Synthesis Kit (Invitrogen).
Real-time quantitative PCR (qPCR) analysis was performed with the ABI-7300 according
to the SYBR Green Mix protocol (n = 3). Each ACt value from each sample was calculated
by normalization with GAPDH. Primer specificity was confirmed by the dissociation curve
after qPCR reaction. Primer sequences used for real-time qPCR are shown in Table S1.
For TEAD or TCF/LEF transcriptional activity, the cells were transfected with 100 ng of
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the reporter vectors and 1 ng of the pSV-Renilla expression vector. Luciferase and renilla
activity were measured using the Dual-Luciferase Reporter System Kit (Promega, Madison,
WI, USA) 48 h after transfection and normalized through renilla activity. Results were
averaged by triplicate experiments.

2.5. Immunofluorescence

For the immunofluorescence studies, cells were washed twice with ice cold PBS and
incubated with 4% formaldehyde for 15 min at room temperature. For staining, the cells
were permeabilized with 0.5% Triton X-100 for 45 min, blocked with PBS containing 3%
bovine serum albumin for 1 h, and then incubated with primary antibody overnight at
4 °C. Cells were then washed three times with PBS containing 0.1% Tween 20 followed
by incubation with anti-mouse-Alexa Fluor-594 (Invitrogen, A11005) secondary antibody.
Cells were mounted with the Vectorshield (Vector Laboratories, Burlingame, CA, USA)
with 4/ ,6-diamidino-2-phenylindole (DAPI). Cellular fluorescence was monitored using
confocal microscopy (Zeiss LSM780, Jena, Germany). Images were analyzed with the
assistance of Image J software (Media Cybernetics, Inc., Rockville, MD, USA). The relative
fluorescence intensity was measured in the whole nuclear area.

2.6. Gene Expression Analysis of Clinical Samples

Publicly available mRNASeq data of 220 colorectal cancer samples (COADREAD)
having APC or CTNNB1 mutational status from The Cancer Genome Atlas (TCGA)
were downloaded (https:/ /gdac.broadinstitute.org (accessed on 2 February 2017)). The
illuminahiseq_rnaseqv2-RSEM_genes_normalized (MD5) was log2 transformed, and the
relative transcript abundance of Axin2, CTGF, and CYR61 were compared using Pearson
correlation. Separately, a reverse phase protein arrays (RPPA) dataset of 483 COADREAD
from TCGA was obtained. The YAP and active AMPK protein abundance were compared
using Pearson correlation. The scatter plots of CTGF and Axin2 abundances were obtained
using R.

2.7. Culture of Patient-Derived Organoids from Colon Cancer and FAP Patients

Patient-derived organoid culture experiments were approved by the Institutional
Review Board of Yonsei University College of Medicine, Severance Hospital (IRB No. 4-
2012-0859), and endoscopic biopsy samples were obtained from patients with informed
consent. The biopsy samples were washed in PBS with 100 pg/mL primocin (InvivoGen,
San Diego, USA) and chopped into pieces of around 0.5 mm and further incubated in
digestion buffer (DMEM, 2.5% FBS, 6.25 mg/mL collagenase type IX (Sigma, St. Louis,
MO, USA)) for 30 min at 37 °C. Next, the isolated cells were mixed with 20 uL of Matrigel
(growth-factor reduced, phenol red free; BD Bioscience) and plated in 48-well plates.
After the polymerization of the Matrigel, tumor organoid culture medium (advanced
DMEM/F12 with 1% penicillin/streptomycin (Glutamax); 1 x N2 and 1 x B27 without
retinoic acid(all from Invitrogen); 2 mM L-glutamine (Life Technologies); 50 ng/mL EGF
(R&D Systems); and 1 mM N-Acetyl-L-cysteine, 10 mM Nicotinamide, 10nM Gastrin I,
2.5 pM PGE2 and 100 ng/mL Noggin (all from Sigma)) was overlaid (250 uL/well). For the
first 2 days after plating, the medium was also supplemented with 10 pM ROCK inhibitor
Y27632 (Sigma), and the culture medium was changed every 2 days. For passage, the
organoids and Matrigel were washed in PBS and dissociated with trypsin/EDTA (Sigma).
The dissociated organoids were embedded in 20 uL of Matrigel and seeded in 96-well plates.
The Matrigel was polymerized and then overlaid with 100 uL/well basal culture medium
with niclosamide (0.5 or 1 uM), metformin (2 mM), or a combination of niclosamide and
metformin. The culture medium was changed every 2 days.

2.8. Tumor Sphere Culture

SW480 and DLD-1 cells (2000 cells per well) were plated in 24-well ultra-low ad-
hesive plates (Corning Incorporated, Corning, USA) in sphere formation media with
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niclosamide (1 uM), metformin (2 mM), or a combination of niclosamide and metformin
for 8 days. The sphere formation media were serum-free DMEM-F12 supplemented with
B27 (Life Technologies, Carlsbad, CA, USA), 20 ng/mL epidermal growth factor (EGF),
10ng/mL basic fibroblast growth factor (R&D Systems, Minneapolis, MN, USA), 1% peni-
cillin/streptomycin, and 2 mM L-glutamine (Life Technologies, Carlsbad, CA, USA). At the
end of the experiment, the cells were stained with calcein AM and, the live cell fluorescence
intensities of tumor spheres were then measured using Image].

2.9. Flow-Cytometric Analysis for Cancer Stem Cell Markers

Colorectal cancer cell lines SW480 and DLD-1 were plated at a density of 2 x 10° cells/well
in 6-well plates and treated with niclosamide (0.1 tM), metformin (10 mM), and a com-
bination of niclosamide and metformin. After 48 h, the prepared cells were detached by
Accutase (Millipore, Billerica, MA, USA) and resuspended in FACS buffer (1 x PBS, 1%
bovine serum albumin, and 2 mM ethylene diamine tetra-acetic acid). Antibodies for cancer
stem cell markers (PE-conjugated anti-CD166 and FITC-conjugated anti-CD44) were added
and incubated for 10 min at 4 °C. The samples were then washed with FACS buffer and
subjected to flow cytometry for analysis using a FACSVerse (BD Biosciences, San Diego,
CA, USA) coupled to a computer with BD FACSuite software.

2.10. APC-MIN Mouse Model for FAP and DSS-Induced Colon Cancer

APC min mice were produced by mating C57BL/6] wild type female mice with
C57BL/6]J-APC min +/— (APC min, The Jackson Laboratory strain 002020) male mice.
When the APC min mice reached 6 weeks of age, chemical treatment was started. For the
combination treatment of niclosamide and metformin, the mice were treated with vehicle
or with niclosamide (50 mg/kg, P.O.) only or with metformin (2 mg/mL, P.O.) only or both
niclosamide (50 mg/kg, P.O.) and metformin (2 mg/mL, P.O.) for 14 weeks, after which the
mice were sacrificed, and the entirety of their intestines were dissected. The tissues were
fixed in 4% formaldehyde for 24 h and then washed twice with 70% ethanol. The number
of polyps in the small intestine was calculated using a stereomicroscope. Polyps under
1 mm were small, those that were between 1 mm and 3 mm were medium, and polyps that
were over 3 mm were large.

For the mouse colon cancer model, six-week-old APC min/+ male mice were treated
with drinking water containing 3% DSS (w/v) for 6 days, followed by a 4-week recovery
period with regular water. The DSS-treated APC min/+ mice were then randomly divided
into four groups (5 mice per group): control, metformin (metformin, 500 mg/kg/day
in drinking water), niclosamide (niclosamide, 50 mg/kg/day in diet), and combination
(metformin and niclosamide). The mice were monitored daily and weighed thrice weekly,
with the amount of drinking water and their diets being measured daily. Mice were
sacrificed after 3 weeks of treatment with metformin or niclosamide or a combination of the
two, and intestinal tissue samples were collected for further analysis. The opened intestinal
segments were spread flat between sheets of filter paper and stained with 0.2% methylene
blue. The stained sections were rinsed in deionized water and imaged by camera, and
the tissue was then fixed with 4% PFA for 24 h. These experiments were performed in
accordance with protocols approved by the Institutional Animal Care and Use Committee
of the Yonsei University.

2.11. Immunohistochemistry for In Vivo Samples

IHC was performed on 4 um sections of formalin-fixed, paraffin-embedded, dissected
tumor samples for CD166, CD44, pS6, and 3-catenin. The paraffin-embedded sections
were deparaffinized in xylene and rehydrated in gradually decreasing concentrations of
ethanol. Antigen retrieval was performed using sodium citrate buffer (10 mM, pH 6.0) in
a heated pressure cooker for 5 or 7 min. After incubation with 3% hydrogen peroxide to
block endogenous peroxidase activity for 30 min, the sections were incubated in a blocking
reagent for 30 min at room temperature. Anti-CD166 antibody (1:200 dilution), anti-CD44
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antibody (1:100 dilution), anti-pS6 antibody (1:100 dilution), and (3-catenin (1:6000 dilution)
were incubated with the sections overnight at 4 °C, and the secondary antibody was
then incubated for 30 min at room temperature. After the slides were developed with
a Vectastain ABC Kit (Vector Laboratories), immunostaining was performed using DAB
solution (Dako, Carpinteria, CA, USA). After counterstaining with hematoxylin, IHC
staining was evaluated by light microscopy, and immunoactivity was assessed based
on the proportion of immunostained tumor cells. We measured the intensity of CD44,
CD166, pS6, and f3-catenin through IHC scores using IHC profiles based on the Image]
program [26]. The calculation for IHC score is ‘Score = (number of pixels in a zone) x (score
of the zone)/total number of pixels in the image’. The assigned scores were 4 for the high
positive zone, 3 for the positive zone, 2 for the low positive zone, and 1 for the negative zone.

2.12. In Vivo Xenograft Assay

All animal experiments were conducted by the Institutional Animal Care and Use
Committee of Yonsei University and approved by the Animal Care Committee of Yonsei
University School of Dental Sciences and the National Cancer Center Research Institute.
Female BALB/c nude mice (6 weeks old, purchased from Nara Biotech, Seoul, Korea)
were used for xenograft assays with subcutaneous injection. To study the anti-tumor
effect of combined niclosamide and metformin, SW480 cells in the control or experimental
groups were trypsinized, harvested, and injected into subcutaneous tissue (1 x 10° cells
per 0.1 mL PBS). For the combination treatment of niclosamide and metformin in vivo, the
mice were treated either with vehicle, with niclosamide (200 mg/kg, P.O.) only, with met-
formin (2 mg/mL, P.O.) only, or with both niclosamide (200 mg/kg, P.O.) and metformin
(2 mg/mL, P.O.) after the subcutaneous injection of SW480 cells. These treatments were
applied 5 times a week for 4 weeks from the day after the mice received the tumor cell injec-
tions. Tumor growth and body weight were monitored twice a week with Vernier calipers,
and tumor volume was calculated with the equation V (in mm?) = (a x b?)/2: a, the longest
diameter; b, the shortest diameter. The proliferation index was examined using Ki-67 im-
munostain, and relative Ki-67 positive abundance was determined by the Image] program
downloaded from NIH (https://imagej.nih.gov/ij/ (accessed on 23 August 2019)).

2.13. Statistical Analysis

All statistical analyses of cell viability, cell migration, and reporter assay were per-
formed with two-tailed Student’s t-tests; data are expressed as means and s.d. Triple
asterisks denote p < 0.001, double asterisks denote p < 0.01, and one asterisk denotes
p < 0.05. Statistical significance of animal experiments was determined using the Mann-—
Whitney test; data are expressed as mean and s.e.m. for tumor volume. No statistical
method was used to predetermine the sample size.

3. Results
3.1. Axin2 Potentiates the Hippo Pathway in APC-Mutant Colorectal Cells

The regulatory axis of canonical Wnt-dependent Axin2 plays an important role in the
regulation of Snail (SNAI1) mediated EMT in cancer [5], is a typical downstream target of
the TCF/LEF transcript factor, and is highly abundant in CRC due to the loss of APC [3,4].
To determine the role of Axin2 on the Hippo pathway in clinical samples, we analyzed
RNA expression data from primary human CRC having APC/CTNNB1 mutational sta-
tus (210 samples from The Cancer Genome Atlas, TCGA), choosing CTGF, CYR61, and
Axin2 transcripts, which are representative transcriptional target genes of the YAP and
TCF/LEF machinery, respectively [27]. Unlike in breast cancer samples [25], Wnt activity
determined by Axin2 was inversely correlated to YAP-mediated transcriptional activity
in CRC samples, particularly in APC or CTNNB1 mutated cancer samples (Figure 1A). In
the CRC cancer patients, abundances of YAP-mediated transcripts were associated with
a worse prognosis while the association with Axin2 was inverted (Figure S1A). Because
Axin2 is abundant in CRC cells, we next examined the protein abundance of Axin and
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the YAP phosphorylation status in APC-mutated CRC cell lines. Consistent with previous
observations [3,4], the Axin2 protein is highly expressed in APC or CTNNB1-mutated
CRC cell lines while Axinl was equivalently expressed regardless of APC or CTNNB1
mutational status (Figure S1B). Notably, YAP phosphorylation status was correlated with
Axin2 abundance, suggesting that Axin2 may activate the Hippo pathway in APC-mutated
CRC. To directly determine the role of Axin2 in the Hippo pathway, we chose two CRC
cell lines with APC mutation and made inducible Axin2 knockdown cells. Interestingly,
the knockdown of Axin2 in CRC cells suppressed YAP phosphorylation as determined by
pSer127-YAP and mobility shift while the total YAP level increased (Figure 1B). Along with
decreased YAP phosphorylation, the CTGF transcript level and TEAD reporter activity
were increased by knockdown of Axin2. Consistent with previous observations [5,6], the
knockdown of Axin2 suppressed EMT-inducer Snail along with increased E-cadherin abun-
dance. Considering that E-cadherin/ «-catenin tumor suppressors strongly induce YAP
phosphorylation as an upstream regulator of the Hippo [25,28], these results indicate that
Axin2 specifically inhibits the Hippo pathway in CRC. To directly address this hypothesis,
we transfected mutant APC into 293 cells together with Axinl or Axin2 and examined the
YAP phosphorylation status. Indeed, Axin2 increased YAP phosphorylation, especially
the in APC-mutant background (Figure 1C). Non-sense mutations in C-terminal of Axin2
are frequently found in CRC with defective mismatch repair [29]. When we examined the
effect of wild type (wt) and C-terminal truncated Axin2 on YAP activity in the 293 tested
cells, wt Axin2 consistently suppressed TEAD reporter activity while C-terminal truncated
Axin2 largely relieved reporter activity (Figure S1C). These results indicate that Axin2
inhibits the tumor-suppressive Hippo pathway, resulting in increased nuclear YAP activity
in APC-mutated CRCs.

3.2. Niclosamide Suppresses the Canonical Wnt and Hippo Pathways in APC-Mutant Cells

While niclosamide has emerged as a CRC therapeutic due to its suppression of the Wnt
pathway and Axin2/Snail-mediated EMT program [10,16,18], its effect on Hippo has not
yet been determined. We therefore treated the CRC cells with niclosamide and examined
YAP phosphorylation status and transcriptional activities. The niclosamide decreased
Axin2 and Snail abundance along with TCF/LEF transcriptional activities (Figure S2A,B).
We further evaluated the protein levels YAP and p-YAP in 293 cells, which were not APC-
mutant and not-tumor cells. YAP phosphorylation was not affected by niclosamide in
those 293 cells (Figure S2C). Given that Axin2 increases YAP phosphorylation in CRC, the
niclosamide increased nuclear YAP abundance by inhibiting its phosphorylation in APC-
mutated CRC cells (Figure 2A). Niclosamide also increased endogenous YAP transcriptional
activity by means of CTGF transcript abundance and TEAD reporter assay (Figure 2B).
In an immunofluorescence study, niclosamide significantly increased the nuclear YAP
abundance in CRC cells (Figure 2C). The p53 and Lats2 tumor suppressors comprise a
feed-forward loop, and the loss of wild type p53 governs DVL-mediated nuclear YAP
activity [25,30]. To determine the effect of the p53 tumor suppressor on niclosamide, we
examined the YAP phosphorylation status in wt and p53-null HCT116 cells and in CRC
cells. Interestingly, niclosamide decreased YAP phosphorylation regardless of the wt p53
status in the HCT116 cells as well as in the p53-mutated SW480 cells (Figure 2D). These
results indicate that niclosamide inhibits tumor suppressive Hippo followed by oncogenic
YAP activation although it effectively suppresses canonical Wnt activity, suggesting the
potentially limited clinical effectiveness of niclosamide in CRC patients (Figure 2E).
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Figure 1. Axin2 potentiates the Hippo pathway in APC-mutant colorectal cancer. (A) Axin2 transcript abundance in CRC
patient samples was inversely correlated to YAP target genes CTGF and CYR61. Those transcript abundances in human
COADREAD samples from the TCGA Illumina HiSeq database are represented in a heatmap (left panel, Axin2 vs. CTGE,
p=2.456 x 1077; Axin2 vs. CYR61, p = 4.068 x 107, Pearson correlation). APC or CTNNB1 mutant samples are denoted
as red bars. Scatter plots of CTGF, CYR61, and Axin2 transcript in TCGA COADREAD samples having APC or CTNNB1
mutation (n = 168). Axin2 vs. CTGF, R2 = —0.3769, p = 4.779 x 10~7; Axin2 vs. CYR61, R2 = —0.3219, p = 2.0848 x 1075.
(B) Inducible knockdown of Axin2 suppressed Hippo pathway by decreased YAP phosphorylation. YAP phosphorylation
level was determined by pS127-YAP antibody and mobility shift on a phos-tag gel in inducible knockdown of Axin2 with
doxycycline (Dox) treatment 3 g/mL for 48 h (left panels). Relative CTGF transcript abundance and TEAD reporter activity
of CRC cells expressing inducible shRNA of Axin2 (right). Statistical significances compared to control are denoted as
*p <0.05 ** p < 0.01 by a two-tailed Student’s t-test. (C) Axin2 increased YAP phosphorylation in the presence of APC
mutation. 293 cells were transfected with indicated vectors, and total YAP and phosphorylation YAP (p127-YAP) were
determined by Western blot analysis.
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Figure 2. Niclosamide suppresses the canonical Wnt and Hippo pathways in APC-mutant cells.
(A) Niclosamide inhibits the Hippo pathway through decreased YAP phosphorylation. Immunoblot
analysis of endogenous YAP and phospho-YAP. YAP phosphorylation level in nuclear fraction and
whole cell lysate (WCL) was determined by the pS127-YAP antibody and mobility shift on a phos-tag
gel following niclosamide treatment (0.5 uM) for 16 h in CRC cells. HDACI1 and tubulin serve as
loading controls for nuclear fraction and whole cell lysates (WCL), respectively. (B) Relative CTGF
transcript abundance (left) and TEAD reporter activity (right) were determined by reporter assay
and qRT-PCR, respectively. Statistical significances compared to control are denoted as * p < 0.05;
**p < 0.01; ** p < 0.001 by a two-tailed Student’s ¢-test. (C) The CRC cells were cultured in 80~90%
density conditions and treated with niclosamide (0.5 uM); subcellular localization of endogenous YAP
was determined by confocal microscopy. Relative nuclear YAP intensity was quantified using Image]J
and DAPI nuclear stain; scale bar, 5 um. (D) HCT116 wild type (wt), HCT116 p53 null (p53 —/—),
DLD-1, and SW480 cells were treated with 0.25 uM of niclosamide, and the phosphorylation of YAP
was observed with a mobility shift phos-tag. The cells were grown in both serum- and glucose-
starved condition and treated with niclosamide for 6 h before examination. (E) A schematic diagram
of effects of niclosamide on the canonical Wnt and Hippo pathways by suppressing Axin2, Snail and
phosphorylation of YAP.
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3.3. AMPK-Activator Metformin Attenuates Niclosamide-Mediated Hippo Suppression

In the Hippo pathway, the large tumor suppressor (Lats) kinase phosphorylates at
multiple YAP sites, including Ser127, regulating nuclear YAP activity [31]. Independently,
metabolic AMP-activated protein kinase (AMPK) has been found to directly phosphorylate
YAP, resulting in decreased oncogenic YAP activity in a DVL-dependent manner [22,25,32].
Metformin is widely used and is a well-known activator of AMPK [33]. Thus, we chose
metformin to overcome niclosamide-mediated Hippo inactivation in APC-mutated CRC.
Consistent with previous observations [22,25,32], metformin not only effectively sup-
pressed nuclear YAP activity by means of increased YAP phosphorylation in APC-mutated
CRC cells, but also moderately suppressed canonical Wnt activity, the Snail-mediated
EMT program, and mTOR activity (Figure S3), indicating that metformin can attenuate
niclosamide-mediated oncogenic YAP activation as well as suppress Wnt activity.

Prior to testing the metformin on YAP activity, we examined the combination of
niclosamide and metformin on the canonical Wnt and Snail-mediated EMT programs.
Interestingly, metformin potentiates the effect of niclosamide on these programs by means
of Axin2 and Snail abundance in APC-mutated CRC cells as well as in their transcriptional
program (Figure 3A,B). When we examined the transcript abundances and protein levels of
epithelial and mesenchymal markers, the combination of niclosamide and metformin signif-
icantly increased epithelial genes while suppressing mesenchymal markers (Figure 3C,D).
Accordingly, the combination effectively inhibits the transwell migration of CRC cells
(Figure 3E), indicating that metformin potentiates the niclosamide-mediated suppression
of Wnt activity and the Snail-mediated EMT program.

Because oncogenic YAP stability and activity are directly regulated by AMPK, we
next explored the effect of AMPK activity on YAP abundance in clinical CRC samples.
In the TCGA dataset, protein expression levels as determined by reverse phase protein
arrays (RPPA) were available for 483 CRC patients (COADREAD). By analyzing active
AMPK and YAP abundance, we found that active AMPK was inversely correlated to YAP
abundance in the CRC patient samples (Figure 4A), indicating that AMPK activity plays an
important role in oncogenic YAP stability and suggesting the potential role of the AMPK
activator in Hippo in CRC. Given the Hippo activation by metformin, we next exam-
ined whether metformin positively influences niclosamide-mediated Hippo suppression.
Indeed, metformin increased YAP phosphorylation, resulting in decreased nuclear YAP
abundance (Figure 4B), as well as suppressing the CTGF transcript abundance increased by
niclosamide (Figure 4C). Interestingly, niclosamide or metformin alone can activate AMPK,
and the combination of the two significantly increased phosphorylated AMPK under phys-
iologic glucose conditions. Consistent with the opposing actions of AMPK and mTOR
(target of rapamycin) in cell growth control [34], metformin also suppressed mTOR activity
in combination with niclosamide in CRC cells (Figure S4A). An immunofluorescence study
further supports the role of metformin in intracellular YAP translocation (Figure 4D). These
results show that the AMPK activator metformin successfully positively influences Hippo
suppression caused by the Wnt inhibitor niclosamide in APC-mutated CRC.

Given the observation that niclosamide suppresses the Hippo pathway, we next tested
whether metformin could attenuate oncogenic YAP activity induced by niclosamide treat-
ment. To test the effect of the combination of the two on tumorigenesis, we next used an
in vivo xenograft model. The athymic nude mice who had been subcutaneously injected
with SW480 cells were orally administrated either niclosamide (200 mpk), metformin
(2 mg/mL in drinking water), or a combination of the two, and the tumor volume was
monitored for 40 days. Interestingly, the tumor formation and volume significantly de-
creased with the single or combinational administration of niclosamide and metformin
(Figure S4B), while the body weight of the mice was unchanged. To further examine the
xenografted tumor samples, we assessed the proliferative potential of an in vivo CRC
tumor by means of a immunohistochemical stain for Ki-67. Interestingly, niclosamide or
metformin decreased the in vivo proliferation of the CRC cells, and the combination syn-
ergistically inhibited the Ki-67 index in vivo (Figure S4C). To further examine the clinical



Cancers 2021, 13, 3437

11 0f 19

(@)

Relative transcript level
O =2 NWAGOO N ®

relevance of the combinatory approach in the APC-mutated context, we used FAP-patient
derived polyp organoids. Niclosamide and metformin separately induced the suppression
of the FAP organoids while their combined treatment yielded the further decrease of the
FAP organoids (Figure 4E). These results indicate that the AMPK activator metformin
potentiates the anti-tumor effect of niclosamide for FAP patients through the suppression
of canonical Wnt and mTOR activity as well as by the activation of the tumor suppressive
Hippo pathway (Figure 4F).
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Figure 3. Metformin potentiates niclosamide in canonical Wnt and Snail-mediated EMT. (A) The CRC cells were treated with

either niclosamide (0.5 uM), metformin (5 mM), or a combination of the two for 16 h; endogenous Axin2 and Snail protein

abundance were determined using immunoblot analysis. (B) Relative Axin2 transcript abundance (left) and TCF/LEF

reporter (TOP flash) activity (right) in CRC cells. Statistical significances compared to control are denoted as * p < 0.05;
**p <0.01; ** p < 0.001 by a two-tailed Student’s t-test. (C) Relative transcript abundance of epithelial markers (left)
and mesenchymal genes (right) were determined by qRT-PCR in CRC cells treated with either niclosamide (0.25 uM),

metformin (10 mM), or a combination of the two for 16 h. Statistical significances compared to control are denoted as

*p<0.05 *p
markers were

< 0.01; *** p < 0.001 by a two-tailed Student’s t-test. (D) The protein levels of epithelial and mesenechymal
determined in SW480 cells. (E) The migration ability of colon cancer cells treated with niclosamide (0.5 M),

metformin (10 mM), or a combination of the two was determined by transwell migration assay; scale bar, 200 um. Statistical

significances compared to control are denoted as * p < 0.05; *** p < 0.001 by a two-tailed Student’s ¢-test.
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Figure 4. Metformin activates the Hippo pathway in CRC. (A) YAP abundance is inversely correlated to active AMPK in
CRC samples. YAP and active AMPK (pT172) protein abundance in human COADREAD samples from the TCGA RPPA
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database is represented as a heatmap (left panel). Scatter plots of YAP and active AMPK (right panel, R2 = —0.5153,
p=4143 x 10~34). (B) The colon cancer cells were treated with either niclosamide (0.25 M), metformin (10 mM), or a
combination of the two, and YAP and AMPK phosphorylation status in nuclear fraction and whole cell lysates (WCL) was
determined by the pS127-YAP antibody. (C) Relative CTGF transcript abundance in CRC cells determined by qRT-PCR.
(D) YAP abundance was determined by confocal immunofluorescence (left panels), and quantitative nuclear YAP intensity
was determined using the Image] program (right panel); scale bar, 5 um. Statistical significances compared to control are
denoted as * p < 0.05; ** p < 0.01; ** p < 0.001 by a two-tailed Student’s t-test. (E) Patient-derived FAP organoids were
established from biopsy tissue of FAP patient. The dissociated organoids were seeded in 20 uL of Matrigel and cultured
with niclosamide (0.5 or 1 uM), metformin (2 mM), and their combination for 8 days. Organoids were then stained with
calcein AM for live cells; scale bar, 500 pm. Quantitative analysis of live cell fluorescence intensities of organoids was
performed using Image J. Means + SD. * p < 0.05, ** p < 0.01, *** p < 0.001. (F) A schematic model for regulation of Wnt/EMT
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and Hippo with the combination of niclosamide and metformin in APC-mutated CRC.

3.4. The Combination of Niclosamide and Metformin Suppresses Tumor Organoids and the In Vivo
Tumor Potential of CRC

The signaling pathways of Wnt, Yap, and mTOR play important roles in maintaining
cancer stem cells in colorectal cancer, and it has recently been discovered that node signaling
may also play a role [35]. Therefore, we tested the effect of niclosamide, metformin, and
a combination of the two on the tumor sphere and cancer stem cell population in CRC
cells and patient-derived tumor organoids. In SW480 and DLD-1 cells, the combination of
niclosamide and metformin yielded a significant decrease of tumor spheres and a lower
proportion of CD44+/CD166+ cells compared to those of cells treated with niclosamide
or metformin alone (Figure 5A,C and Figure S5). In addition, when using established
patient-derived cancer organoids, we found the same effect of those drugs, as shown in
Figure 5B, indicating that Wnt inhibition and Hippo activation caused by the combination
treatment effectively suppresses the stemness of CRC cells and the patient-derived samples.

To determine the therapeutic potential of niclosamide and metformin, we next used an
APC-MIN (APC?85%) mice model. APC-MIN mice (3 weeks old) were orally administered
both niclosamide and metformin in daily doses of 50 mg/kg niclosamide and 2 mg/mL
metformin in drinking water. Fourteen weeks after administration, the intestinal adenoma
burden was significantly decreased, with body weight being unaffected (Figure 5D).

3.5. Combination of Niclosamide and Metformin Efficiently Suppresses Cancer Progression in
APC-MIN-DSS Model

Finally, we investigated the effect of the combinatory targeting of Wnt and YAP in
a well-established DSS-induced colon cancer model using APC-MIN mice (Figure 6A).
While the oral administration of metformin or niclosamide alone was minimally effective
compared to the control, their combination significantly suppressed colon tumor progres-
sion in the APC-mutant model in terms of the number and area of tumors (Figure 6B-D).
Immunostaining for -catenin and phosphor-S6 showed that niclosamide suppressed
-catenin expression while the metformin suppressed mTOR activity in cancer tissue
(Figure 6E,F). Further evaluating the colon cancer stem cell (CSC) markers, we found that
both CD44 and CD166 expression were reduced in the DSS-induced colon cancer samples
of mice treated with the same drugs, particularly the combination of niclosamide and
metformin (Figure 6G,H). These results indicate that the combinational suppression of
canonical Wnt and the activation of AMPK-dependent Hippo with clinically available
drugs effectively suppresses CRC progression in an APC-mutated genetic background.
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Figure 5. Combination of niclosamide and metformin suppresses tumor sphere, cancer stem cells,
and organoids of CRC as well as the in vivo tumorigenic potential for colon cancer cells. (A) For
tumor sphere culture, SW480 and DLD-1 cells were seeded in low attachment plates, cultured in
sphere culture medium and treated with niclosamide (1 uM), metformin (2 mM), and a combination
of the two for 8 days. Tumor spheres were then stained with calcein AM, and the live cell fluorescence
intensities of tumor spheres were measured using Image]; scale bar, 500 um. (B) Patient-derived
cancer organoids were established from colon cancer biopsy tissue. The dissociated tumor organoids
were seeded in 20 pL of Matrigel and cultured with niclosamide (0.5 uM), metformin (2 mM), and a
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combination of the two for 8 days. Organoids were then stained with calcein AM for live cells and
quantitative analysis of the live cell fluorescence intensities of organoids was performed using Image
J; scale bar, 500 um. Means =+ SD. * p < 0.05, ** p < 0.01, *** p < 0.001. (C) SW480 and DLD-1 cells were
treated with metformin (10 mM), niclosamide (0.1 uM), and a combination of the two. After 48 h,
CD44+/CD166+ cells were analyzed by flow cytometry using anti-FITC-CD44 and anti-PE-CD166.
(D) APC-MIN mice were administrated with vehicle (control) or with either niclosamide (50 mg/kg,
P.O.), metformin (2 mg/mL, P.O.), or a combination of the two daily until the 14-week endpoint.
The body weight (upper left) and total number of polyps (upper right). Statistical significances
compared to vehicle control was denoted as * p < 0.05; ** p < 0.01 by a Mann—-Whitney test. Low
power steromicroscopic images of representative intestine that showed the median adenoma value
for each group. Arrows indicate adenoma foci in mouse intestine.
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Figure 6. Combination of niclosamide and metformin effectively suppresses tumor progression in
mouse colon cancer model. (A) Schematic diagram for DSS-induced CRC model using APC-MIN
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mice. (B) In mouse colon tumor model, the mice were evenly and randomly allocated into four groups;
vehicle, metformin (metformin, 500 mg/kg/day in drinking water), niclosamide (niclosamide,
50 mg/kg/day in diet), and a combination of the same amounts of metformin and niclosamide; the
mice were sacrificed after 3 weeks of drug treatment. (C,D) The number of tumors per mouse (C) and
total tumor size (D) were compared, respectively, and quantitative analysis of total tumor size was
performed using Image]J. (E) Inmunohistochemistry (IHC) of colon tumors treated with control,
metformin alone, niclosamide alone, and metformin combined with niclosamide was performed
on sections of formalin-fixed, paraffin-embedded, dissected tumor sample to determine (3-catenin
and pS6; scale bar, 200 um. (F) In the stained colon tumor, the expression of 3-catenin and pS6
was evaluated using IHC scores based on the Image] program. (G,H) IHC was performed for CSC
markers (CD44 and CD166) and analyzed in the same manner as above in (E,F); scale bar, 200 pm.
Data are expressed as the means £ SD. n = 5 per group. * p < 0.05, ** p < 0.001.

4. Discussion

Hyperactivation of oncogenic Wnt caused by APC mutation is well-known as genetic
background for human FAP and CRC. As a typical transcription target gene of canonical
Wnt, Axin2 is highly expressed in CRC [3,4]. Although Axinl has been widely regarded
as a tumor suppressor, Axin2 plays a key regulatory function in the Snail-mediated EMT
program and cancer progression caused by the nuclear-cytosolic shuttling of GSK-3 [5,6].
Together with canonical Wnt, inactivation of the tumor-suppressive Hippo pathway result-
ing in YAP activation comprises fundamental signaling involved in many types of human
cancer [21]. Although the Wnt and Hippo pathways share intercellular adhesion and
nuclear transcriptional programs, the reciprocal link between those pathways is not well
understood. According to the open public resources in Gepia, the expression level of Axin2
is markedly abundant in CRC tissues compared to normal colon tissues, and the expression
ratio in CRC samples in respect to normal tissues of Axin2 is inversely correlated with
the ratio of YAP-mediated transcripts. A recent study proposed that the Wnt scaffolding
protein DVL is responsible for the intracellular trafficking of YAP phosphorylated caused
by Lats or AMPK [25]. In this study, we found that Axin2 activates the Hippo pathway,
especially given the APC-mutated genetic background of CRC. Conversely, targeting Axin2
with shRNA or niclosamide suppresses the Hippo pathway while effectively suppressing
canonical Wnt in CRC.

Niclosamide is an orally administered drug that was approved by the FDA in 1982 [36]
and designated as a World Health Organization (WHO) essential drug in developing coun-
tries. Because it also has broad spectrum antiviral effects against SARS-CoV, MERS-CoV,
Zika virus, and human adenovirus [37], clinical trials for its use against SARS-CoV2 are
ongoing in multiple centers (NCT04542434, NCT04399356, NCT04558021). Recent studies
have shown that niclosamide can treat cancer by controlling several signaling pathways
such as the Wnt, STAT3, and Notch pathways [16,18,38,39]. In particular, niclosamide is
known to be a potent canonical Wnt pathway inhibitor in human ovarian cancer, breast
cancer, retinoblastoma, prostate cancer, and colorectal cancer [12,18,40—42]. Based on these
observations, a phase II trial of niclosamide in the treatment of advanced CRCs is on-
going [19]. Niclosamide exerts a pharmacological effect by disrupting the Axin-GSK3
protein—protein interaction, at least in part, resulting in the suppression of Axin2 and the
Snail-mediated EMT program [18]. In this study, we found that niclosamide activates
nuclear YAP activity with inactivation of the tumor-suppressive Hippo pathway in APC-
mutated CRC cells. These results suggest a potential therapeutic limit of niclosamide in
the clinical trial of CRC patients because YAP activation is an independent predictor of
prognosis in CRC [43].

Overexpression of oncogenic YAP has been associated with several types of cancer
including lung, colorectal, and breast cancer [44—46]. In particular, YAP is required for
CRC development in APC-mutant CRC [47], and the inactivation of the Hippo pathway
accompanies high metastatic potential and poor survival outcome [43]. The AMPK is a key
kinase in the Hippo pathway because of the multiple phosphorylations of YAP, including
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Ser127 [22,32]. Interestingly, AMPK plays an important role in regulating YAP stability in
clinical CRC samples in the TCGA dataset. Since pharmacological activation of Lats kinase
is currently very limited, we chose metformin as a clinically available AMPK activator to
overcome the therapeutic limitation of niclosamide in APC-mutated CRC [33].

The biguanide compound metformin is the most common therapeutic for type 2
diabetes. Several large-scale cohort studies have revealed that the long-term use of met-
formin decreases the risk of CRC and colorectal adenoma formation [48,49]. Furthermore,
high-dose metformin effectively suppressed intestinal polyp formation in a APC-MIN
mice model [50], revealing that metformin is effective for the chemoprevention of CRC.
Mechanistically, metformin is a potent AMPK activator and suppresses the mTOR pathway
as well as EMT in CRC cells [51]. In this study, we showed that metformin in combination
with niclosamide effectively suppresses the canonical Wnt and Snail-mediated EMT pro-
grams as well as activates the Hippo pathway in APC-mutated CRC. Our study provides
a novel therapeutic option for CRC and FAP patients by targeting both oncogenic Wnt
and YAP.

5. Conclusions

The activation of Wnt and the inactivation of Hippo comprise key signaling pathways
in cancer. Kang et al. demonstrate that the combination of the clinically available drugs
niclosamide and metformin synergistically inhibits APC-mutant CRC progression via the
suppression of Wnt and YAP.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ cancers13143437/s1, Figure S1: Axin2 activates Hippo pathway in APC-mutated CRC cells,
Figure S2: Niclosamide suppresses canonical Wnt activity and Snail abundance in APC-mutated CRC
cells, Figure S3: Metformin suppresses nuclear YAP activity, Figure S4: Metformin in combination
with niclosamide suppresses mTOR activity and adenoma formation in APC-MIN mice, Figure S5.
FACS Plot data, Figure S6. Uncropped images of all the Western blot data, Table S1: Primer sequences
used for real-time quantitative PCR.

Author Contributions: HEK,, Y.S., and ].S.Y. performed the main experiments; S.H.S., D.H., ES.C.,
Y]., H.L., and J.K. supported the in vitro and in vivo experiments; S.B.C. performed bioinformatic
analysis; N.HK., HS.K, TLK, and LY. planned all of the experiments, analyzed the data, and wrote
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the National Research Foundation of Korea (NRF-
2017M3A9G2074773, NRF-2017R1A2B3002241, NRF-2018M3A9E2022820, NRF-2019R1A2C2084535,
and NRF-2021R1A2C3003496) funded by the Korea government (MSIP).

Institutional Review Board Statement: Patient-derived organoid culture experiments were ap-
proved by the Institutional Review Board of Yonsei University College of Medicine, Severance
Hospital (IRB No. 4-2012-0859).

Informed Consent Statement: Endoscopic biopsy samples were obtained from patients with in-
formed consent. Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available in this article and in the
supplementary materials.

Acknowledgments: We thank E. Tunkle for the preparation of the manuscript and K.Y. Kim for the
statistical analysis.

Conflicts of Interest: The authors declare no conflict of interest.

1. Clevers, H.; Nusse, R. Wnt/ 3-catenin signaling and disease. Cell 2012, 149, 1192-1205. [CrossRef]

2. Yan, D.; Wiesmann, M.; Rohan, M.; Chan, V.; Jefferson, A.B.; Guo, L.; Sakamoto, D.; Caothien, R.H.; Fuller, ].H.; Reinhard, C; et al.
Elevated expression of axin2 and hnkd mrna provides evidence that wnt/beta -catenin signaling is activated in human colon
tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 14973-14978. [CrossRef]


https://www.mdpi.com/article/10.3390/cancers13143437/s1
https://www.mdpi.com/article/10.3390/cancers13143437/s1
http://doi.org/10.1016/j.cell.2012.05.012
http://doi.org/10.1073/pnas.261574498

Cancers 2021, 13, 3437 18 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Leung, J.Y.; Kolligs, ET.; Wu, R.; Zhai, Y.; Kuick, R.; Hanash, S.; Cho, K.R.; Fearon, E.R. Activation of axin2 expression by
beta-catenin-t cell factor. A feedback repressor pathway regulating wnt signaling. J. Biol. Chem. 2002, 277, 21657-21665. [CrossRef]
Lustig, B.; Jerchow, B.; Sachs, M.; Weiler, S.; Pietsch, T.; Karsten, U.; van de Wetering, M.; Clevers, H.; Schlag, P.M.;
Birchmeier, W.; et al. Negative feedback loop of wnt signaling through upregulation of conductin/axin2 in colorectal and liver
tumors. Mol. Cell Biol. 2002, 22, 1184-1193. [CrossRef]

Yook, ].I; Li, X.Y.; Ota, I; Hu, C.; Kim, H.S.; Kim, N.H.; Cha, S.Y.; Ryu, ] K.; Choi, Y.J.; Kim, J.; et al. A wnt-axin2-gsk3beta cascade
regulates snaill activity in breast cancer cells. Nat. Cell Biol. 2006, 8, 1398-1406. [CrossRef]

Wu, Z.Q.; Brabletz, T.; Fearon, E.; Willis, A.L.; Hu, C.Y,; Li, X.Y.; Weiss, S.J. Canonical wnt suppressor, axin2, promotes colon
carcinoma oncogenic activity. Proc. Natl. Acad. Sci. USA 2012, 109, 11312-11317. [CrossRef]

Yochum, G.S. Axin2: Tumor suppressor, oncogene or both in colorectal cancer? J. Cancer Sci. Ther. 2012, 4, 2. [CrossRef]

Wu, C.-J,; Jan, J.-T.; Chen, C.-M,; Hsieh, H.-P.; Hwang, D.-R.; Liu, H.-W,; Liu, C.-Y.,; Huang, H.-W.; Chen, S.-C.; Hong, C.-E; et al.
Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother. 2004,
48, 2693-2696. [CrossRef]

Zhang, X.W.; Yap, Y.L. Old drugs as lead compounds for a new disease? Binding analysis of sars coronavirus main proteinase
with hiv, psychotic and parasite drugs. Bioorganic Med. Chem. 2004, 12, 2517-2521. [CrossRef]

Sack, U.; Walther, W.; Scudiero, D.; Selby, M.; Kobelt, D.; Lemm, M.; Fichtner, I.; Schlag, PM.; Shoemaker, R.H.; Stein, U. Novel
effect of antihelminthic niclosamide on s100a4-mediated metastatic progression in colon cancer. J. Natl. Cancer Inst. 2011,
103, 1018-1036. [CrossRef]

Londono-Joshi, A.L; Arend, R.C.; Aristizabal, L.; Lu, W.; Samant, R.S.; Metge, B.J.; Hidalgo, B.; Grizzle, W.E.; Conner, M.;
Forero-Torres, A.; et al. Effect of niclosamide on basal-like breast cancers. Mol. Cancer Ther. 2014, 13, 800-811. [CrossRef]
Arend, R.C.; Londono-Joshi, A.L; Samant, R.S.; Li, Y.; Conner, M.; Hidalgo, B.; Alvarez, R.D.; Landen, C.N.; Straughn, ].M.;
Buchsbaum, D.J. Inhibition of wnt/beta-catenin pathway by niclosamide: A therapeutic target for ovarian cancer. Gynecol. Oncol.
2014, 134, 112-120. [CrossRef] [PubMed]

Li,R.; Hu, Z.; Sun, S.-Y.; Chen, Z.G.; Owonikoko, T.K,; Sica, G.L.; Ramalingam, S.S.; Curran, W.J.; Khuri, ER.; Deng, X. Niclosamide
overcomes acquired resistance to erlotinib through suppression of stat3 in non-small cell lung cancer. Mol. Cancer Ther. 2013,
12,2200-2212. [CrossRef] [PubMed]

Wieland, A.; Trageser, D.; Gogolok, S.; Reinartz, R.; Hofer, H.; Keller, M.; Leinhaas, A.; Schelle, R.; Normann, S.; Klaas, L.; et al.
Anticancer effects of niclosamide in human glioblastoma. Clin. Cancer Res. 2013, 19, 4124—4136. [CrossRef] [PubMed]

Jin, Y; Lu, Z,; Ding, K,; Li, J.; Du, X,; Chen, C.; Sun, X.; Wu, Y.; Zhou, ].; Pan, J. Antineoplastic mechanisms of niclosamide in acute
myelogenous leukemia stem cells: Inactivation of the nf-kb pathway and generation of reactive oxygen species. Cancer Res. 2010,
70, 2516-2527. [CrossRef] [PubMed]

Osada, T.; Chen, M.; Yang, X.Y.; Spasojevic, I.; Vandeusen, J.B.; Hsu, D.; Clary, B.M.; Clay, TM.; Chen, W.; Morse, M.A; et al.
Antihelminth compound niclosamide downregulates wnt signaling and elicits antitumor responses in tumors with activating apc
mutations. Cancer Res. 2011, 71, 4172-4182. [CrossRef]

Tomizawa, M.; Shinozaki, F.; Motoyoshi, Y.; Sugiyama, T.; Yamamoto, S.; Sueishi, M.; Yoshida, T. Niclosamide suppresses
hepatoma cell proliferation via the wnt pathway. Onco Targets Ther. 2013, 6, 1685-1693. [CrossRef]

Ahn, S.Y,; Kim, N.H.; Lee, K.; Cha, YH.; Yang, ].H.; Cha, S.Y.; Cho, E.S;; Lee, Y,; Cha, ].S.; Cho, H.S.; et al. Niclosamide is a
potential therapeutic for familial adenomatosis polyposis by disrupting axin-gsk3 interaction. Oncotarget 2017, 8, 31842-31855.
[CrossRef]

Burock, S.; Daum, S.; Keilholz, U.; Neumann, K.; Walther, W.; Stein, U. Phase ii trial to investigate the safety and efficacy of orally
applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy:
The nikolo trial. BMC Cancer 2018, 18, 297. [CrossRef]

Xu, J.; Shi, P-Y.; Li, H.; Zhou, J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect. Dis. 2020,
6,909-915. [CrossRef]

Yu, EX,; Zhao, B.; Guan, K.L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015, 163, 811-828.
[CrossRef] [PubMed]

Mo, J.S.; Meng, Z.; Kim, Y.C.; Park, HW.; Hansen, C.G.; Kim, S.; Lim, D.S.; Guan, K.L. Cellular energy stress induces ampk-
mediated regulation of yap and the hippo pathway. Nat. Cell Biol. 2015, 17, 500-510. [CrossRef] [PubMed]

Zhou, Z.; Hu, T.;; Xu, Z; Lin, Z.; Zhang, Z.; Feng, T.; Zhu, L.; Rong, Y.; Shen, H.; Luk, ].M.; et al. Targeting hippo pathway by
specific interruption of yap-tead interaction using cyclic yap-like peptides. FASEB . 2015, 29, 724-732. [CrossRef] [PubMed]
Kakiuchi-Kiyota, S.; Schutten, M.M.; Zhong, Y.; Crawford, ].].; Dey, A. Safety considerations in the development of hippo pathway
inhibitors in cancers. Front. Cell Dev. Biol. 2019, 7, 156. [CrossRef] [PubMed]

Lee, Y.; Kim, N.H.; Cho, E.S; Yang, ] H,; Cha, YH.; Kang, HEE.; Yun, J.S.; Cho, S.B,; Lee, S.-H.; Paclikova, P; et al. Dishevelled has
a yap nuclear export function in a tumor suppressor context-dependent manner. Nat. Commun. 2018, 9, 2301. [CrossRef]
Varghese, F.; Bukhari, A.B.; Malhotra, R.; De, A. Ihc profiler: An open source plugin for the quantitative evaluation and automated
scoring of immunohistochemistry images of human tissue samples. PLoS ONE 2014, 9, €96801. [CrossRef] [PubMed]

Zhao, B.; Lei, Q.-Y;; Guan, K.-L. The hippo-yap pathway: New connections between regulation of organ size and cancer.
Curr. Opin. Cell Biol. 2008, 20, 638-646. [CrossRef]


http://doi.org/10.1074/jbc.M200139200
http://doi.org/10.1128/MCB.22.4.1184-1193.2002
http://doi.org/10.1038/ncb1508
http://doi.org/10.1073/pnas.1203015109
http://doi.org/10.4172/1948-5956.1000e109
http://doi.org/10.1128/AAC.48.7.2693-2696.2004
http://doi.org/10.1016/j.bmc.2004.03.035
http://doi.org/10.1093/jnci/djr190
http://doi.org/10.1158/1535-7163.MCT-13-0555
http://doi.org/10.1016/j.ygyno.2014.04.005
http://www.ncbi.nlm.nih.gov/pubmed/24736023
http://doi.org/10.1158/1535-7163.MCT-13-0095
http://www.ncbi.nlm.nih.gov/pubmed/23894143
http://doi.org/10.1158/1078-0432.CCR-12-2895
http://www.ncbi.nlm.nih.gov/pubmed/23908450
http://doi.org/10.1158/0008-5472.CAN-09-3950
http://www.ncbi.nlm.nih.gov/pubmed/20215516
http://doi.org/10.1158/0008-5472.CAN-10-3978
http://doi.org/10.2147/OTT.S50065
http://doi.org/10.18632/oncotarget.16252
http://doi.org/10.1186/s12885-018-4197-9
http://doi.org/10.1021/acsinfecdis.0c00052
http://doi.org/10.1016/j.cell.2015.10.044
http://www.ncbi.nlm.nih.gov/pubmed/26544935
http://doi.org/10.1038/ncb3111
http://www.ncbi.nlm.nih.gov/pubmed/25751140
http://doi.org/10.1096/fj.14-262980
http://www.ncbi.nlm.nih.gov/pubmed/25384421
http://doi.org/10.3389/fcell.2019.00156
http://www.ncbi.nlm.nih.gov/pubmed/31475147
http://doi.org/10.1038/s41467-018-04757-w
http://doi.org/10.1371/journal.pone.0096801
http://www.ncbi.nlm.nih.gov/pubmed/24802416
http://doi.org/10.1016/j.ceb.2008.10.001

Cancers 2021, 13, 3437 19 of 19

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Kim, N.-G.; Koh, E.; Chen, X.; Gumbiner, B.M. E-cadherin mediates contact inhibition of proliferation through hippo signaling-
pathway components. Proc. Natl. Acad. Sci. USA 2011, 108, 11930-11935. [CrossRef]

Liu, W.; Dong, X.; Mai, M.; Seelan, R.S.; Taniguchi, K.; Krishnadath, K.K.; Halling, K.C.; Cunningham, ].M.; Boardman, L.A.;
Qian, C.; et al. Mutations in axin2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/tcf signalling.
Nat. Genet. 2000, 26, 146-147. [CrossRef]

Aylon, Y.; Michael, D.; Shmueli, A.; Yabuta, N.; Nojima, H.; Oren, M. A positive feedback loop between the p53 and lats2 tumor
suppressors prevents tetraploidization. Genes Dev. 2006, 20, 2687-2700. [CrossRef]

Moroishi, T.; Hansen, C.G.; Guan, K.L. The emerging roles of yap and taz in cancer. Nat. Rev. Cancer 2015, 15, 73-79. [CrossRef]
Wang, W.; Xiao, Z.D.; Li, X,; Aziz, K.E.; Gan, B.; Johnson, R.L.; Chen, ]. Ampk modulates hippo pathway activity to regulate
energy homeostasis. Nat. Cell Biol. 2015, 17, 490-499. [CrossRef]

Hawley, S.A.; Gadalla, A.E.; Olsen, G.S.; Hardie, D.G. The antidiabetic drug metformin activates the amp-activated protein kinase
cascade via an adenine nucleotide-independent mechanism. Diabetes 2002, 51, 2420-2425. [CrossRef] [PubMed]

Hindupur, S.K.; Gonzalez, A.; Hall, M.N. The opposing actions of target of rapamycin and amp-activated protein kinase in cell
growth control. Cold Spring Harb. Perspect. Biol. 2015, 7, a019141. [CrossRef] [PubMed]

Cave, D.D.; Hernando-Momblona, X.; Sevillano, M.; Minchiotti, G.; Lonardo, E. Nodal-induced 11cam/cxcr4 subpopulation
sustains tumor growth and metastasis in colorectal cancer derived organoids. Theranostics 2021, 11, 5686-5699. [CrossRef]
Pearson, R.D.; Hewlett, E.L. Niclosamide therapy for tapeworm infections. Ann. Intern. Med. 1985, 102, 550-551. [CrossRef]
Xu, M.; Lee, EM.; Wen, Z.; Cheng, Y.; Huang, WK,; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S.C.; Hammack, C.; et al.
Identification of small-molecule inhibitors of zika virus infection and induced neural cell death via a drug repurposing screen.
Nat. Med. 2016, 22, 1101-1107. [CrossRef]

Wang, C.; Zhou, X.; Xu, H; Shi, X.; Zhao, J.; Yang, M.; Zhang, L.; Jin, X.; Hu, Y.; Li, X,; et al. Niclosamide inhibits cell growth and
enhances drug sensitivity of hepatocellular carcinoma cells via stat3 signaling pathway. J. Cancer 2018, 9, 4150-4155. [CrossRef]
[PubMed]

Li, Y;; Li, PK,; Roberts, M.].; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-targeted therapy of cancer by niclosamide: A new
application for an old drug. Cancer Lett. 2014, 349, 8-14. [CrossRef] [PubMed]

Arend, R.C.; Londono-Joshi, A.L; Gangrade, A.; Katre, A.A; Kurpad, C; Li, Y,; Samant, R.S.; Li, PK,; Landen, C.N.; Yang, E.S.;
et al. Niclosamide and its analogs are potent inhibitors of wnt/beta-catenin, mtor and stat3 signaling in ovarian cancer. Oncotarget
2016, 7, 86803-86815. [CrossRef]

Li, Z.; Li, Q.; Wang, G.; Huang, Y.; Mao, X.; Zhang, Y.; Wang, X. Inhibition of wnt/beta-catenin by anthelmintic drug niclosamide
effectively targets growth, survival, and angiogenesis of retinoblastoma. Am. . Transl. Res. 2017, 9, 3776-3786.

Lu, W.; Lin, C.; Roberts, M.].; Waud, W.R.; Piazza, G.A.; Li, Y. Niclosamide suppresses cancer cell growth by inducing wnt
co-receptor lrp6 degradation and inhibiting the wnt/beta-catenin pathway. PLoS ONE 2011, 6, €29290. [CrossRef]

Wang, L.; Shi, S.; Guo, Z.; Zhang, X,; Han, S.; Yang, A.; Wen, W.; Zhu, Q. Overexpression of yap and taz is an independent
predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS ONE 2013,
8, €65539. [CrossRef] [PubMed]

Wang, Y.,; Dong, Q.; Zhang, Q.; Li, Z.; Wang, E.; Qiu, X. Overexpression of yes-associated protein contributes to progression and
poor prognosis of non-small-cell lung cancer. Cancer Sci. 2010, 101, 1279-1285. [CrossRef] [PubMed]

Cai, J.; Zhang, N.; Zheng, Y.; de Wilde, R.F; Maitra, A.; Pan, D. The hippo signaling pathway restricts the oncogenic potential of
an intestinal regeneration program. Genes Dev. 2010, 24, 2383-2388. [CrossRef] [PubMed]

Wang, X.; Su, L.; Ou, Q. Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer.
Eur. J. Cancer 2012, 48, 1227-1234. [CrossRef] [PubMed]

Cai, J.; Maitra, A.; Anders, R.A.; Taketo, M.M.; Pan, D. Beta-catenin destruction complex-independent regulation of hippo-yap
signaling by apc in intestinal tumorigenesis. Genes Dev. 2015, 29, 1493-1506. [CrossRef]

Bradley, M.C.; Ferrara, A.; Achacoso, N.; Ehrlich, S.F.; Quesenberry, C.P, Jr.; Habel, L.A. A cohort study of metformin and
colorectal cancer risk among patients with diabetes mellitus. Cancer Epidemiol. Biomark. Prev. 2018, 27, 525-530. [CrossRef]
Marks, A.R.; Pietrofesa, R.A.; Jensen, C.D.; Zebrowski, A.; Corley, D.A.; Doubeni, C.A. Metformin use and risk of colorectal
adenoma after polypectomy in patients with type 2 diabetes mellitus. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1692-1698.
[CrossRef]

Tomimoto, A.; Endo, H.; Sugiyama, M.; Fujisawa, T.; Hosono, K.; Takahashi, H.; Nakajima, N.; Nagashima, Y.; Wada, K,;
Nakagama, H.; et al. Metformin suppresses intestinal polyp growth in apcmin/+ mice. Cancer Sci. 2008, 99, 2136-2141. [CrossRef]
Wang, Y.; Wu, Z.; Hu, L. The regulatory effects of metformin on the [snail/mir-34]:[zeb/mir-200] system in the epithelial-
mesenchymal transition(emt) for colorectal cancer(crc). Eur. J. Pharmacol. 2018, 834, 45-53. [CrossRef] [PubMed]


http://doi.org/10.1073/pnas.1103345108
http://doi.org/10.1038/79859
http://doi.org/10.1101/gad.1447006
http://doi.org/10.1038/nrc3876
http://doi.org/10.1038/ncb3113
http://doi.org/10.2337/diabetes.51.8.2420
http://www.ncbi.nlm.nih.gov/pubmed/12145153
http://doi.org/10.1101/cshperspect.a019141
http://www.ncbi.nlm.nih.gov/pubmed/26238356
http://doi.org/10.7150/thno.54027
http://doi.org/10.7326/0003-4819-102-4-550
http://doi.org/10.1038/nm.4184
http://doi.org/10.7150/jca.26948
http://www.ncbi.nlm.nih.gov/pubmed/30519314
http://doi.org/10.1016/j.canlet.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24732808
http://doi.org/10.18632/oncotarget.13466
http://doi.org/10.1371/journal.pone.0029290
http://doi.org/10.1371/journal.pone.0065539
http://www.ncbi.nlm.nih.gov/pubmed/23762387
http://doi.org/10.1111/j.1349-7006.2010.01511.x
http://www.ncbi.nlm.nih.gov/pubmed/20219076
http://doi.org/10.1101/gad.1978810
http://www.ncbi.nlm.nih.gov/pubmed/21041407
http://doi.org/10.1016/j.ejca.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22056638
http://doi.org/10.1101/gad.264515.115
http://doi.org/10.1158/1055-9965.EPI-17-0424
http://doi.org/10.1158/1055-9965.EPI-15-0559
http://doi.org/10.1111/j.1349-7006.2008.00933.x
http://doi.org/10.1016/j.ejphar.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30017802

	Introduction 
	Materials and Methods 
	Cell Culture and Transfection 
	Immunoblot Analysis 
	Cell Migration Assay 
	Quantitative Real Time-PCR and Reporter Assay 
	Immunofluorescence 
	Gene Expression Analysis of Clinical Samples 
	Culture of Patient-Derived Organoids from Colon Cancer and FAP Patients 
	Tumor Sphere Culture 
	Flow-Cytometric Analysis for Cancer Stem Cell Markers 
	APC-MIN Mouse Model for FAP and DSS-Induced Colon Cancer 
	Immunohistochemistry for In Vivo Samples 
	In Vivo Xenograft Assay 
	Statistical Analysis 

	Results 
	Axin2 Potentiates the Hippo Pathway in APC-Mutant Colorectal Cells 
	Niclosamide Suppresses the Canonical Wnt and Hippo Pathways in APC-Mutant Cells 
	AMPK-Activator Metformin Attenuates Niclosamide-Mediated Hippo Suppression 
	The Combination of Niclosamide and Metformin Suppresses Tumor Organoids and the In Vivo Tumor Potential of CRC 
	Combination of Niclosamide and Metformin Efficiently Suppresses Cancer Progression in APC-MIN-DSS Model 

	Discussion 
	Conclusions 
	References

