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Simple Summary: Gene expression profiling of tumors is an essential approach for the selection of
biomarkers and the investigation of the molecular mechanisms of cancer, but transcriptomic results
are often difficult to reproduce due to technical biases, sample heterogeneity, or small sample sizes.
Combining many datasets can help to reduce artefacts and improve statistical power. Therefore,
we aimed at creating a comprehensive resource of transcriptomic datasets investigating breast cancers,
focusing on microdissected tumors, which enable the distinguishing of the contribution of the tumor
microenvironment from that of cancer cells. We define robust lists of differentially expressed genes
and describe their relationships with clinical features in each cellular compartment, identifying
clinically relevant markers that can only be retrieved by measuring their expression in the sole
tumor microenvironment.

Abstract: Transcriptome data provide a valuable resource for the study of cancer molecular mecha-
nisms, but technical biases, sample heterogeneity, and small sample sizes result in poorly reproducible
lists of regulated genes. Additionally, the presence of multiple cellular components contributing
to cancer development complicates the interpretation of bulk transcriptomic profiles. To address
these issues, we collected 48 microarray datasets derived from laser capture microdissected stroma or
epithelium in breast tumors and performed a meta-analysis identifying robust lists of differentially
expressed genes. This was used to create a database with carefully harmonized metadata that we
make freely available to the research community. As predicted, combining the results of multiple
datasets improved statistical power. Moreover, the separate analysis of stroma and epithelium al-
lowed the identification of genes with different contributions in each compartment, which would not
be detected by bulk analysis due to their distinct regulation in the two compartments. Our method
can be profitably used to help in the discovery of biomarkers and the identification of functionally
relevant genes in both the stroma and the epithelium. This database was made to be readily accessible
through a user-friendly web interface.

Keywords: tumor microenvironment; meta-analysis; tumor stroma; breast cancer; LCM; microdissection;
transcriptomics; microarray; database

1. Introduction

High-throughput analyses of gene expression hold great promise for the identification
of biomarkers of clinical status, with the potential of predicting outcome, response to ther-
apy, or informing researchers about molecular mechanisms underpinning disease onset and
progression and identifying therapeutic targets [1]. Nevertheless, lists of candidate genes
obtained through transcriptome-based studies have proven difficult to reproduce [2–6],
raising a note of caution regarding conclusions driven by single sets of experiments. Sample
collection and processing methods, protocols, and platforms may impact on the resulting
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gene signatures, making them non-overlapping between studies [7]. Additional variabil-
ity may be introduced by patient heterogeneity, which is not sufficiently represented in
small samples.

To resolve these issues, the vast amount of information present in gene expression
databases such as Gene Expression Omnibus, ArrayExpress, and EGA [8–10] can be in-
tegrated to improve the quality of gene signatures. The advantage is twofold: on one
side, a larger sample size allows for the increasing of statistical power; on the other side,
merging data obtained through different experimental settings facilitates the removal
single-experiments biases, improving robustness [11,12]. Meta-analyses serve this scope,
providing a quantitative approach to combine the results of studies investigating the same
biological system [5]. Several methods based on different statistical approaches have been
proposed [13,14]: (i) aggregating gene lists based on p-value [15]; (ii) effect size [16]; and
(iii) gene rankings [17].

Meta-analyses are extremely beneficial when applied to cancer biology, an extremely
prolific field that often offers tens of independent studies analyzing the same biological or
clinical question in different patient cohorts. In their simplest, yet most significant, form,
meta-analyses have been applied to assess the reliability of specific genes as diagnostic
and prognostic markers [18,19], while whole transcriptomic datasets have been employed
for the unbiased evaluation and refinement of prognostic signatures [20–25] to identify
patient subgroups [26–30], markers of metastatic tumors [31], and markers of resistance to
treatments [32].

The tumor microenvironment is an important player in determining tumor growth,
disease progression, and drug resistance [33–35]. It is a composite environment comprising
growth factors, cytokines, and cells of different origin such as fibroblasts, endothelial cells,
and immune cells [36]. Each of these components can support or inhibit tumor growth and
are involved in multidirectional cross-talk among each other and with tumor cells that can
influence their behavior in supporting cancer. Indeed, the pro-tumoral functions of cancer
associated fibroblasts (CAFs) and immune cells in the tumor microenvironment are being
studied as therapeutic targets [37,38].

Understanding the biology of each component of the tumor milieu is necessary to
obtain a complete picture of tumors but obtaining compartment-specific gene expression
profiles is laborious, and therefore most high-throughput datasets are based on bulk tissues.
Nevertheless, relying on samples composed of cell admixtures may hide cell type specific
signals and may create confounding effects. For example, tumor composition due to sam-
pling variation significantly impacts genomic data [39] and tumor subtype definition [40].
Moreover, differences in the prognostic role of the same gene when measured in different
compartments have been reported [41–43].

To overcome these limitations, a number of approaches have been introduced: (i) laser
capture microdissection (LCM) is commonly employed to separate cell compartments that
are histologically well defined [44]; (ii) spatial transcriptomics has allowed for the obtaining
of spatially-resolved profiles of stroma-rich and stroma-poor regions in tumor tissues [45];
(iii) single-cell techniques have allowed the distinguishing of transcriptomic profiles of
different cell types within a tumor [46] and the dissection of the CAFs’ transcriptional
heterogeneity [47]; (iv) computational methods have been designed to deconvolve the
contribution of each cell type to the final bulk gene expression profile in silico [48]. Despite
all of these methods being valuable, single-cell techniques are affected by loss of information
resulting from dropouts and zero-inflation, and due to the cost, they are usually only
applied to screen a few tumors in a single study, impeding the correlation of gene expression
profiles with clinical features [49]. Similar problems apply to spatial transcriptomics.
Deconvolution methods, on the other hand, rely on strong assumptions and depend on the
quality of the specific signatures of the cell type, which are applied as input in the model.
Finally, LCM, despite not allowing single-cell resolution, represents a good compromise to
disentangle the specific contribution of the tumor epithelium and microenvironment and
collect information on many clinically distinct samples.
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Here, we performed a meta-analysis of 48 transcriptomic datasets from LCM breast
tumor samples, studying the specific epithelium and stroma contribution to the gene
expression profiles of bulk tumors. We identified genes robustly changing their expression
in each compartment with respect to a normal breast and selected categories of genes with
compartment-specific regulation and correlation with clinical features. Finally, we made the
whole database and the harmonized metadata available, providing a web-based interface
to facilitate its interrogation (https://aurorasavino.shinyapps.io/metalcm/, accessed on
22 June 2021).

2. Materials and Methods
2.1. Search of Datasets

Transcriptomic datasets of breast tumors analyzed in their stromal compartment were
searched on Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) on
20 December 2020, using the search terms “Breast cancer” AND “lcm” or “Breast cancer”
AND “stroma” or “Breast cancer” AND “microdissect*” and selecting the study type as
“Expression profiling by array” and “Expression profiling by high-throughput sequencing”.
They were then individually screened to discard datasets not comprising untreated tumor
samples. The whole list of datasets comprised in the final database is available in Table S1.
Original works describing each dataset can be found in [50–94].

2.2. Data Download and Pre-Processing

GEO datasets were downloaded using the GEOquery package [95]. Normalized
(FPKM) breast cancer data from the TCGA data were obtained through TCGA biolinks [96],
and METABRIC transcriptome data were obtained from synapse.org (syn2160410, ac-
cessed on 26 April 2021). Clinical and biological annotations were obtained using the
same methods.

Mapping of the probes to the gene symbols was obtained from the respective platforms’
information in GEO for each dataset, and in case of multiple probes mapping to the same
gene symbol, the probe with the highest mean expression across the dataset’s samples
was chosen.

Whenever data were not already log transformed, we applied log2 transformation,
adding an offset of 1 when the data minimum value was 0.

Replicates were merged calculating the average of their expression signals before log
transformation. In GSE4823, expression values of dye-swap replicates (not log transformed)
were inverted before averaging. In GSE8977, to allow variance stabilization, negative values
were removed prior to log transformation.

2.3. Database Metadata

After defining the biological and clinical annotations to be gathered, Aurora Savino
and Niccolò De Marzo independently collected them from GEO. Discrepancies were then
individually checked and resolved. Moreover, for datasets GSE14548, GSE16873, GSE20437,
GSE21947, GSE22513, GSE26910, GSE33692, GSE35019, GSE38959, GSE5764, and GSE72644,
additional clinical annotations were obtained from the tables of the original manuscripts.

To allow for the comparison of the different datasets, annotations were harmonized as
much as possible.

When multiple samples from the same subject were available and were matched to
the subject of origin, all clinical annotations were assigned to all samples, including the
histologically normal ones.

Details regarding single annotations are provided in Appendix A.

2.4. Meta-Analysis Pipeline

The meta-analysis involves the following steps: (1) define the conditions to be com-
pared (e.g., tumor stroma vs. normal stroma); (2) select all datasets in the database com-
prising samples belonging to both conditions; (3) for each separate dataset, obtain the

https://aurorasavino.shinyapps.io/metalcm/
https://www.ncbi.nlm.nih.gov/geo/
synapse.org
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differentially expressed genes (p-values and logFC); (4) keep only the genes with a probe
in all microarray platforms of the selected datasets; (5) collapse the p-values by taking
the differential expression sign into account, thus obtaining a p-value for each gene’s up-
regulation and a p-value for each gene’s down-regulation; (6) adjust the resulting p-values
for multiple testing. Importantly, as stated in step 3, each dataset was analyzed separately
to avoid batch effects.

The procedure for each step is detailed below (Sections 2.5 and 2.7).

2.5. Differential Expression

Differential expression was calculated using limma [97] for each separate dataset,
and information about the subject was added as a factor when the samples were subject-matched.

2.6. Datasets’ Comparison

The comparison between two different datasets was performed by considering the
gene symbols represented in both arrays and computing the Spearman correlation of
their logFC. For experiments using mouse systems, human orthologs were obtained from
biomaRt [98]. Specifically, in Section 3.2, all datasets comprising both cancerous and
non-cancerous stromal samples were used, and pairwise correlations between datasets
are shown. The datasets used for each class of comparisons are invasive BC vs. normal
tissue (GSE10797, GSE33692, GSE35019, GSE8977); invasive BC vs. normal counterpart
(GSE14548, GSE26910, GSE35019, GSE83591, GSE90505); DCIS vs. normal tissue (GSE33692,
GSE35019); DCIS vs. normal counterpart (GSE14548, GSE35019); in vitro samples derived
from invasive BC vs. normal tissue (GSE20086, GSE29270); in vitro samples derived
from invasive BC vs. normal counterpart (GSE29270); and in vitro samples derived from
carcinomas (not invasive) vs. normal tissue (GSE129189, GSE45256). In Section 3.3 the
average logFC obtained after comparing tumor vs. normal samples in either the epithelium
or in the stroma is shown, with DEGs obtained as described in Section 2.8.

2.7. Collapsing p-Values

Uncorrected p-values for each gene and each dataset, obtained either from differential
expression or correlation with clinical features, were collapsed with Fisher’s method [99]
from the metap package (https://CRAN.R-project.org/package=metap, accessed on 26
April 2021). Two different tests were performed separately for testing coherent up- or
down-regulation (positive or negative correlation) and for taking logFC signs (correlation
signs) into account. p-values were then cut at 2.2 × 10−16. Since all tests were two-sided,
one-sided p-values were obtained with the two2one function from the metap package
before applying Fisher’s method. Resulting p-values were corrected for multiple testing
with the p.adjust function from R stats with the default Holm method.

2.8. Definition of DEG Categories

The meta-analysis of differentially expressed genes between invasive BC and nor-
mal/normal counterpart tissues, performed separately for epithelial and stromal samples,
made use of the following datasets: GSE10797, GSE33692, GSE35019, GSE8977, GSE14548,
GSE26910, GSE83591, and GSE90505 for the stroma; and GSE10780, GSE10797, GSE33692,
GSE38959, GSE45581, GSE14548, GSE5764, GSE72644, and GSE83591 for the epithelium.
The analysis followed the steps described in Section 2.4 to obtain lists of DEGs in the two
tissues. We collapsed the results obtained by comparing tumor vs. normal tissue and
tumor vs. normal counterpart. One dataset, GSE35019, allowed both comparisons (tumor
stroma vs. normal stroma, tumor stroma vs. stromal normal counterpart), and to satisfy
Fisher’s method for the assumption of independence, we only kept the tumor vs. normal
comparison for this dataset. Keeping only the genes with a probe in all selected datasets,
9523 genes were analyzed for their differential expression in the stroma, and 10,623 were
analyzed in the epithelium.

https://CRAN.R-project.org/package=metap
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To define the classes of the DEGs being regulated in both the stroma and the epithe-
lium, or with evidence of differential expression in only one of the two tissues, collapsed
and adjusted p-value cutoff was set to 0.05, while no evidence of differential expression
called for nominal p-values > 0.05. Thus, for example, the genes that were significantly
up-regulated in only the tumor stroma and not differentially expressed in the tumor epithe-
lium are those with the stromal up-regulation p-value (adjusted) < 0.05 and both epithelial
up- and down-regulation nominal p-values > 0.05.

2.9. Assessment of DEG Groups’ Robustness

Since all the available datasets were used and no other independent study was
thus available, we used a cross validation procedure in order to assess the robustness
of the DEGs. Specifically, we divided the datasets selected for the comparisons, indi-
cated in Section 2.8, into 2 groups of approximately equal size (4 and 4 datasets for the
stroma, 4 and 5 datasets for the epithelium). In one group made of 4 stromal datasets and
4 epithelial datasets, which was the training set, we defined the DEG classes as described.
In the second group, the test set, we tested for the differential expression of genes belonging
to the DEG classes according to the same criteria but using nominal p-values. We repeated
the same procedure 100 times by randomly selecting different combinations of datasets as
training and test sets.

2.10. Enrichment for Functional Categories

Gene ontology enrichment was calculated with the enrichGO function from the clus-
terProfiler package [100] using “Biological Process” GO categories and default parameters.

2.11. Relationship with Clinical Features

The relationship between gene expression and clinical features (grade, age at diagnosis,
size) was obtained by computing Spearman’s correlation coefficients and their correspond-
ing p-values with the rcorr function from the Hmisc package (https://CRAN.R-project.
org/package=Hmisc, accessed on 26 April 2021).

The relationship with survival in the METABRIC cohort was determined by dividing
patients in two groups by the median expression value of the gene of interest and computing
their difference in disease free survival with the Kaplan–Meier method and the log-rank test
through the survival package (https://CRAN.R-project.org/package=survival, accessed
on 22 April 2021).

The datasets used in the analysis of the correlation between DEG groups with clin-
ical features (Section 3.3) are listed below. Only samples annotated as invasive BC were
used. Grade in stroma: GSE12622, GSE14548, GSE35019, and GSE90505; grade in epithe-
lium: GSE1378, GSE14548, GSE35019, GSE5764, and GSE72644; age in stroma: GSE12622,
GSE14548, GSE26910, GSE90505, and GSE90521; age in epithelium: GSE1378, GSE14548,
GSE38959, GSE72644, and GSE13293; node in stroma: GSE12622, GSE14548, GSE90505,
GSE35019; node in epithelium: GSE1378, GSE14548, GSE5764, and GSE35019; size in
stroma: GSE14548, GSE35019, GSE90505, and GSE90521; and size in epithelium: GSE1378,
GSE14548, GSE35019, and GSE72644. Correlation coefficients with a specific clinical feature
in the selected datasets were obtained for each gene and then averaged across all datasets.

The meta-analysis of correlation with clinical features was performed as described in
Section 2.4, but the computation of Spearman’s correlation and the corresponding p-values
were completed with the rcorr function from the Hmisc package (https://CRAN.R-project.
org/package=Hmisc), and these values were used in step 5 of the meta-analysis.

2.12. Epithelial, Stromal and Vascular Scores

Scores for epithelial, stromal, and vascular signatures expression were calculated with
a single sample GSEA (ssGSEA) via the GSVA package [101] using signatures obtained
from the current meta-analysis comparing tumor and normal gene expression in samples
of epithelial, stromal, or vascular origin.

https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
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Stromal and epithelial markers were obtained when comparing epithelial and stromal
gene expression profiles in invasive BC samples from the same dataset and merging the
p-values with the Fisher method as described above. The datasets used are GSE10797,
GSE14548, GSE33692, GSE35019, GSE41228, GSE5847, GSE59772, GSE68744, GSE81838,
GSE83591, and GSE88715. To achieve a higher stringency, we only retained DEGs with
|average logFC| > 1.

Multivariate Cox models were fit with the coxph function from the survival package
(https://CRAN.R-project.org/package=survival).

2.13. Plots and Statistical Analyses

All statistical analyses were performed with R 4.0.4 [102].
Packages used for plotting are R base graphics, ggplot2 [103], ggsignif (https://

CRAN.R-project.org/package=ggsignif, accessed on 10 April 2021), ggvenn (https://
CRAN.R-project.org/package=ggvenn, accessed on 16 April 2021), survminer (https:
//CRAN.R-project.org/package=survminer, accessed on 16 April 2021), and pheatmap
(https://CRAN.R-project.org/package=pheatmap, accessed on 16 April 2021).

2.14. Web App

The web app (https://aurorasavino.shinyapps.io/metalcm/, accessed on 22 June
2021) was built with the Shiny package (https://CRAN.R-project.org/package=shiny,
accessed on 26 April 2021) taking advantage of rintrojs [104], shinybusy (https://CRAN.R-
project.org/package=shinybusy, accessed on 10 May 2021), shinythemes (https://CRAN.
R-project.org/package=shinythemes, accessed on 10 May 2021), and shinyWidgets (https:
//CRAN.R-project.org/package=shinyWidgets, accessed on 10 May 2021).

The data that can be easily interrogated with the app are datasets of primary invasive
breast cancers, excluding inflammatory and micropapillary cancers. A tutorial describing
tool’s usage is shown by pressing the “Tutorial” button. The user can choose between
two conditions to compare based on compartment (stroma or epithelium), disease status
(invasive BC, normal or normal counterpart—“counterpart”), and PAM50 subtype. The
analysis pipeline applied is the same as the one used in this work and detailed above
(Section 2.4). Additionally, the enrichment of user-defined gene lists for DEGs can be
assessed in the second tab, displaying the result of a one-tailed Fisher test (fisher.test
function from R stats). To be noted, when the user inputs a gene list, the correction for
multiple testing, used to determine the list of DEGs shown in the first tab, is applied to
those genes only. The p-adjustment is applied to all genes when obtaining DEGs for the
Fisher test.

The DEG lists can be downloaded, and include collapsed p-values, average logFC
across analysed datasets, and individual-datasets’ p-values and logFCs.

2.15. Stat3 Signatures

Signatures of Stat3 activity were obtained from Azare et al. [105], Dauer et al. [106], IL6
and Jak/STAT from MSigDB [107], Alvarez et al. [108], Tell and Horvath [109],
and Sonnenblick et al. [110].

3. Results
3.1. Database Construction

We collected 48 transcriptomic datasets of breast tumors or breast hyperplasias de-
posited in the Gene Expression Omnibus (GEO) database, selecting experiments where
different cellular compartments were separated prior to RNA extraction. Most of the
datasets (43) derive from laser capture microdissected primary tumors, while a minority
measure gene expression of cancer associated fibroblasts (CAFs) grown in vitro, derived
from either primary tumors or from mouse models. Overall, we collected 2144 samples,
2048 of which derive from primary tumors. The complete list of datasets is available in
Table S1.

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=ggsignif
https://CRAN.R-project.org/package=ggsignif
https://CRAN.R-project.org/package=ggvenn
https://CRAN.R-project.org/package=ggvenn
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=pheatmap
https://aurorasavino.shinyapps.io/metalcm/
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shinybusy
https://CRAN.R-project.org/package=shinybusy
https://CRAN.R-project.org/package=shinythemes
https://CRAN.R-project.org/package=shinythemes
https://CRAN.R-project.org/package=shinyWidgets
https://CRAN.R-project.org/package=shinyWidgets
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To facilitate the comparability of different experiments, we mapped the probes used
for each specific experiment to gene symbols, and we did an extensive and careful har-
monization of biological and clinical annotations, as detailed in the Methods (Section 2.3).
Specifically, we gathered information about cellular compartment, disease status, receptor
status (estrogen receptor, progesteron receptor, and HER2 amplification), PAM50 sub-
type, tumor histology, size, grade, TNM stage as well as the overall pathological stage,
node positivity, recurrence, response to treatment, and patient’s age at diagnosis, ethnic-
ity, and menopause status (Tables 1 and 2 and Table S2). Moreover, wherever possible
and appropriate, we predicted the PAM50 breast cancer (BC) subtype from gene expres-
sion, obtaining a good concordance between subtype and receptor expression (Figure S1)
and inferred clinical variables from other available clinical annotations (Section 2.3 and
Appendix A). Importantly, for 11 of the 48 datasets, we found clinical annotations that were
made available by the authors of the original publication but that did not accompany the cor-
responding dataset in GEO. Their inclusion in our database significantly improved clinical
annotations, which initially were relatively scarce. For example, we increased the number
of samples annotated for age from 530 to 756 and for size from 122 to 378. The complete
database comprising gene expression data and metadata is available in Tables S3 and S4,
while Table S2 comprises the complete summary of available clinical features.

Table 1. Summary of sample features: number of samples derived from primary tumors or in vitro
systems and biological/clinical annotations of primary tumor samples. Only the main levels of each
factor are shown. For a complete list, refer to Table S2.

Category # of Samples # of Datasets
System

Primary tumor 2048 43
In vitro 96 5

Compartment

Epithelium 1230 32
Stroma 664 21
Vessels 64 4

Adipose 16 1

Disease status

Invasive BC 990 31
Tumor (other) 296 11

Normal counterpart 370 17
Normal 326 16

ER status

Positive 502 20
Negative 419 23

PR status

Positive 306 16
Negative 435 21

Her2 status

Positive 302 18
Negative 661 24

LN positivity

Positive 309 15
Negative 228 17

PAM50 subtype

Basal-like 120 16
Her2+ 71 13
LumA 194 16
LumB 140 16

Normal-like 35 10
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Table 2. Summary of clinical features for primary tumor samples (complete list in Table S2).

Age

Median (range) 55 (27–94)
# annotated samples 756

# of datasets 18

Size (in mm)

Median (range) 24 (4–161)
# annotated samples 378

# of datasets 9

Grade # of samples

I 50
II 189
III 312

# of datasets 12

3.2. Primary and In Vitro Datasets Are Only Slightly Correlated

First, we quantified gene expression changes between normal and tumor stroma
in primary invasive ductal carcinomas (IDC), ductal carcinoma in situ (DCIS), or CAFs
grown in vitro. As a reference condition, we used samples from cancer patients labelled as
histologically normal (“normal counterpart” or simply “counterpart”), or, where available,
normal breast tissue from reduction mammoplasty (“normal”). To avoid batch effects,
we analyzed each dataset separately and then compared gene expression fold changes to
assess similarities and differences between datasets. We were able to perform a total of
18 comparisons, as detailed in the Methods (Section 2.6). The correlations between pairs
of comparisons are globally, albeit slightly, positive (Figure 1a, mean correlation of 0.13),
indicating intrinsic differences between the datasets. Moreover, different classes of datasets
display different degrees of similarity (Figure 1b). Indeed, for example, primary tumors and
in vitro samples appeared to be only slightly positively correlated (Figure 1b,c, ρ = 0.05).
Similarly, IDC and DCIS samples behave differently (Figure 1d), motivating us to keep
them separated for meta-analytic purposes in order to limit the biological heterogeneity.

3.3. Non-Redundant Information Is Obtained by Separating Different Tissues

We then took advantage of the tissue specificity of the collected datasets to compare
tumor epithelium and stroma gene expression behaviors. We thus calculated differentially
expressed genes (DEGs) for each dataset comprising normal and tumor samples (or normal
counterpart and tumor), analyzing epithelium and stroma separately. We then collapsed
the differential gene expression statistics to obtain a global measure of the reliability of
the gene expression changes across all of the available datasets. As microarray platform
and pre-processing can impact the measure of fold changes in differential gene expression,
we chose to apply the widely employed Fisher’s method, summing the log-transformed
p-values obtained from independent studies [99]. To limit the heterogeneity of input data,
we only employed invasive BC samples for this analysis. In total, we could perform nine
comparisons for epithelium and eight for stroma (datasets used are listed in the Methods,
Section 2.8). Strikingly, when comparing the average fold changes for each gene in tumor
stroma or epithelium, we observed that most genes behave similarly across compartments
(Figure 2a), suggesting coordinated gene expression reorganization between the tumor and
the surrounding cells. Alternatively, it is possible that, despite the use of LCM, the two
compartments have not been perfectly separated, resulting in shared DEGs.
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Figure 1. Similarity between stroma datasets of detected genes changing between normal and cancer samples.
(a) Distribution of Pearson’s correlation between log2 fold changes (logFC) of genes between cancerous/non-cancerous con-
ditions in each dataset, showing an average correlation of 0.13. All datasets comprising both cancerous and non-cancerous
stromal samples were used, and pairwise correlations between datasets are shown. (b) Correlation of logFC between
groups of datasets comparing invasive ductal carcinoma (IDC) and normal breast tissue from healthy donors (normal) or
histologically normal tissue adjacent to tumor (counterpart), cuctal carcinoma in situ (DCIS) vs. normal or counterpart,
cancer associated fibroblasts (CAFs) and normal fibroblasts (NFs) grown in vitro. Red indicates a high average positive
correlation. (c) Distribution of Pearson’s correlations between logFC obtained from datasets sampling primary tumors or
comparing logFC obtained from primary tumors or from in vitro experiments. (d) Distribution of Pearson’s correlations
between logFC obtained from datasets sampling IDCs or comparing logFC obtained from IDCs and from DCIS.

Figure 2. DEGs comparison between stroma and epithelium. (a) Cross-datasets average logFC for
genes measured in normal/cancerous stroma (X axis) or in normal/cancerous epithelium (Y axis).
Pearson’s correlation and p-value are indicated; the colour indicates the number of overlapping
dots. (b) Venn diagrams comparing significant DEGs (p-adjusted < 0.05) detected in the stroma and
in the epithelium.
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In the meta-analytic setting, we defined lists of robust DEGs. Specifically, we found
4390 DEGs in the epithelium (2601 up- and 1789 down-regulated in tumors) and 2243 DEGs
in the stroma (1301 up- and 942 down-regulated) (Figure 2b, Table S5). The full list of
fold changes and p-values obtained for each dataset and condition is available in Table S6,
and GO categories enriched for each class are listed in Table S7. Of note, by combining the
information present in several datasets, we were able to identify 229 DEGs that would not
be identified in any individual dataset if analyzed separately.

Although, as mentioned above, changes in gene expression in the tumor stroma and
epithelium are globally correlated (Figure 2a). For 17% of the DEGs, there was statistically
significant evidence of differential expression in only the stroma/epithelium. Moreover,
104 genes showed significant differential expression in both the compartments but with
opposite signs (Table S8). We posit that genes that are either regulated in one compartment
only or with opposite regulation between compartments, though potentially relevant
in tumor progression, may be hidden in bulk datasets due to their regulation in one
compartment being confounded by a different regulation in the other.

To test this hypothesis, we selected five classes of genes: (1) genes up-regulated in
both the tumor stroma and epithelium (UpBoth); (2) genes with evidence of up-regulation
in only one of the two compartments (up-regulated in the epithelium—UpEpi—or in
the stroma—UpStr); (3) genes with opposite signs of differential expression in the two
compartments (up-regulated in the stroma and down-regulated in the epithelium—StrEpi—
or down-regulated in the stroma and up-regulated in the epithelium—EpiStr); (4) genes
with evidence of down-regulation in only one of the two compartments (down-regulated
in the epithelium—DnEpi—or in the stroma—DnStr); and (5) genes down-regulated in
both the tumor stroma and the epithelium (DnBoth) (Table S8). We tested the robustness
of these classes with a 2-fold cross validation, obtaining good sensitivity and specificity
(Figure S2). For each gene, we measured the average expression fold changes between
normal breast and breast tumor in bulk samples obtained from the TCGA [111]. The
classes with the highest fold changes are those comprising the genes that are coherently
differentially expressed in both compartments, while the remaining classes show average
fold changes closer to zero (Figure 3a), indicating that their genes are not detected as
differentially expressed when analyzing bulk tumors. Similar results were obtained with
the METABRIC dataset, which due to its extensive clinical annotations, allowed us to
show graded relationships with overall patient survival and tumor grade and size in the
above classes (Figure 3b–d). Thus, for two independent bulk tumor datasets, we could
show that genes regulated in both tissues are more strongly differentially expressed or
correlated with clinical features, suggesting the possibility that their expression is more
reliably measured in bulk than genes with evidence of regulation in only one tissue or with
opposite regulation in the stroma and the epithelium. Indeed, all of the classes of genes
that we defined show a good robustness (Figure S2) and are therefore likely regulated but
missed when analyzing bulk data. A more detailed picture of the DEGs classes indicates
that genes with opposite regulation in the stroma/epithelium show correlation with the
clinical features in line with their regulation in the epithelium: The EpiStr class increases its
expression in bulk tumors when compared to normal breast (Figure S3a). It is enriched with
genes correlated with poor prognosis (Figure S3b) and correlates with higher tumor grade
(Figure S3c) and size (Figure S3d). The class of genes down-regulated in the epithelium
and up-regulated in the stroma shows the opposite trend for its expression in bulk tumors
and its correlation with size, though it is not related with patient survival or tumor grade
(Figure S3). These observations fit with more epithelium content than stromal content in
bulk samples, which hides the signal originating from the tumor stroma. Indeed, the top
DEGs in the category of genes that are higher in the tumor stroma and lower in the tumor
epithelium are relatively coherently up-regulated in tumor stroma across the available
datasets (Figure 4a). However, they all appear significantly down-regulated in tumor
samples from the TCGA (Figure 4b), confirming that their regulation in the stroma is not
detected in bulk.
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Figure 3. The 5 classes of DEGs in bulk samples. Genes regulated in both tumor epithelium and
stroma, significantly regulated only in one of the two compartments and with opposite regulation
in the two compartments show different degrees of: (a) differential expression between tumor and
normal samples in the bulk samples of the TCGA cohort; (b) ratio between the number of genes
significantly correlated with poor prognosis and the number of genes significantly correlated with
good prognosis in the METABRIC cohort. High values indicate that many genes are correlated with
poor prognosis, while inversely, negative values indicate that many genes are correlated with good
prognosis; Spearman’s correlation with tumor grade (c) and size (d). Significance was assessed with
the Wilcoxon test (** <0.01, *** <0.001, NS = Not Significant).
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Figure 4. The opposite regulation of genes in tumor stroma or epithelium is hidden in bulk samples.
(a) Top five significantly differentially expressed genes with higher expression in tumor stroma
and lower expression in tumor epithelium when compared to respective compartments in normal
breast tissue. Rows correspond to the five selected genes and columns to GEO IDs of datasets where
the comparisons were possible and that were merged in the meta-analysis. On the left, datasets
comparing normal and tumor stroma are shown, while on the right, there are datasets comparing
normal and tumor epithelium. The color in the heatmap indicates logFC value for the corresponding
gene and dataset. (b) Gene expression changes detected in bulk samples from the TCGA dataset for
the five selected genes tested with the Wilcoxon test (*** p < 0.001).

To test the potential relevance of genes that are differentially expressed in one compart-
ment only as compartment-specific clinical markers, we computed their correlation with the
tumor grade or age at onset when measured in the stroma or in the epithelium of invasive
BC, identifying a differential correlation in line with the compartment in which each gene
class is regulated (datasets and analysis are described in the Methods, Section 2.11). Indeed,
genes that are up-regulated in the stroma are more strongly correlated with a higher grade
and earlier onset when measured in the stroma than in the epithelium, while genes that are
down-regulated in the stroma show the opposite trend (Figure 5), supporting the hypoth-
esis of their potential compartment-specific clinical relevance, which cannot be assessed
without separating them. Similar trends are observed with node positivity and size, even if
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some tests do not reach statistical significance (Figure 5). Nevertheless, we did not observe
this consistent relationship for genes that were regulated in the epithelium (Figure S4a).
Accordingly, the classes of genes with opposite regulation in the stroma and the epithelium
display an opposite relationship with clinical features when measured in either the stroma
or in the epithelium (Figure S4b), confirming that these classes of DEGs might also be
relevant for tumor progression but differentially regulated in the two compartments.

Figure 5. Compartment-specific relationship with clinical features for genes regulated in tumor stroma. Spearman’s
correlation between gene expression and age at onset, tumor grade, lymph node status, and size for the classes of DEGs
regulated only in tumor stroma, calculated for each dataset separately and then averaged. The correlation was computed
when their expression was measured directly in the stroma or in the epithelium and was compared with the Wilcoxon test
(* <0.05, ** <0.01, NS = Not Significant).

We further showed that with our compartment-specific gene expression database
and the use of meta-analysis, we can identify relationships between genes and clinical
features that could not be identified otherwise. As an example, we took the 50 most
down-regulated genes in tumor stroma vs. normal stroma (DnStr class). Twelve of these
genes were also significantly negatively correlated with tumor grade when measured in the
stroma, and most of them (75%) displayed a stronger relationship with grade in the LCM
data than in bulk. We identified UPB1 (beta-ureidopropionase 1) as negatively correlated
with grade in the tumor stroma but not in bulk (METABRIC dataset, Figure 6). Of note,
despite the relatively small number of samples annotated for clinical features and the
high within- and between-dataset variability, we were able to improve statistical power by
combining multiple datasets (Figure 6a). In one case (the HSD11B2 gene, hydroxysteroid
11-beta dehydrogenase 2), the correlation in the stroma and in bulk shows opposite trends
(Figure S5). This could be due to the confounding effect of multiple cell types present in
mixed samples. Conversely, we identified NECAP2 (NECAP endocytosis associated 2) as
up-regulated in tumor stroma and correlated with higher tumor grade when measured
directly in the stroma (p-value = 0.01, average ]ρ = 0.30) but only slightly when measured
in bulk (p-value = 0.03, ρ = 0.05).

Considering the enrichment for gene ontology categories, genes in the UpBoth class
show enrichment for mitochondrion-related categories, the extracellular matrix (ECM),
and antigen processing, while UpEpi genes are enriched for cell cycle and DNA repair. No
categories are enriched for UpStr genes. Counter-intuitively, DnBoth genes are enriched
for angiogenesis-related categories. DnEpi genes belong to the “cornification” category,
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while no biological processes are over-represented in DnStr genes. Interestingly, genes
with opposite regulation and over-expressed in tumor stroma are enriched for cytokine
secretion and Toll-like receptor 2 signaling. Full GO lists are available in Table S9.

Figure 6. UPB1 is correlated with lower grade in the stroma, but not in bulk. (a) UPB1 expression
in the 4 datasets with annotation for grade in the tumor stroma. The p-value for the correlation
between UPB1 expression and tumor grade is indicated above each boxplot. Collapsing p-values
with a meta-analysis, the statistical power increases, and the p-value reaches significance. Overall,
the correlation between UPB1 expression and tumor grade in stroma is significantly negative. (b) no
significant relationship between UPB1 expression and tumor grade in bulk in the METABRIC cohort.

We repeated the meta-analysis to identify robust DEGs in tumor blood vessels (datasets
used: GSE15363, GSE31138, GSE7413, and GSE43379), obtaining 13 up-regulated genes
and 1 down-regulated gene (Table S5).

Despite the difficulty of accurately detecting the signal deriving from specific cellu-
lar compartment in bulk, as discussed above, we also showed in bulk samples that the
epithelial and vascular signatures are independent predictors of a patient’s disease-free
survival (DFS) (Figure 7). This, again, points to the relevance of cell type specific signa-
tures in describing tumor biology. Indeed, higher expression of up-regulated genes in
the epithelium or in the blood vessels independently correlate with poor prognosis in
the METABRIC BC cohort (Figure 7a), while down-regulated genes in the blood vessels
define the only significant signature of good prognosis (Figure 7b). We could not detect any
relationship between the stromal signatures and patient DFS. This result can be attributed
to the presence of multiple cell types in bulk samples, confounding compartment-specific
signals. Nevertheless, it is also possible that the stromal signatures we defined, despite
being correlated with tumor grade and age at onset, are not correlated with patient survival.
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Figure 7. Survival models with epithelial, stromal, and vessel DEGs. Forest plots of multivariate
Cox models of disease-free survival with PAM50 subtypes and expression levels of genes in gene
signatures (a) up- or (b) down-regulated in tumor epithelium, stroma, or vessels when compared to
corresponding normal tissues (* <0.05, ** <0.01, *** <0.001).

3.4. Stromal and Epithelial Markers to Impute Cell Proportions from Bulk Samples

Computational methods to estimate cell type proportions in bulk transcriptomes
often require gene expression signatures of the cell types of interest. Amongst the first
proposed and most commonly applied methods is ESTIMATE [112], which based on a
single sample GSEA (ssGSEA) of stromal and immune signatures to infer their proportions
from the transcriptomes of cell admixtures. We computed ssGSEA on primary BC tran-
scriptomes of the METABRIC cohort based on the stromal and epithelial markers obtained
through a meta-analysis comparing tumor epithelium and stroma from our gene expression
database (datasets detailed in the methods). We observed that the epithelial signature
is positively correlated with the clinician-defined measure of cellularity (Spearman’s rho
= 0.12, p-value = 2.8 × 10−7), while the stromal signature is negatively correlated with it
(Spearman’s rho = −0.25, p-value < 2.2 × 10−16) (Figure 8), indicating that these marker lists
are representative of the corresponding cell compartment and are appropriate to infer cell
proportions. Moreover, our stromal signature shows a stronger correlation with cellularity
than the estimated tumor purity obtained with the original ESTIMATE signatures (for
which Spearman’s rho = −0.15, p-value = 1.4 × 10−11).
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Figure 8. Correlation between epithelial or stromal markers and cellularity in the METABRIC cohort.
Epithelial and stromal signatures were obtained through a meta-analysis comparing the expression
patterns of tumor stroma and epithelium. The signatures were then used to build stromal and
epithelial scores representing cell proportions for each tumor sample in the METABRIC cohort and
correlated with clinician annotation of cellularity.

3.5. Potential Use of the Database and Web Platform

Due to the number of datasets and annotation categories, our meta-analysis offers
many combinations of variables that can be selected for comparison to address specific
questions. In order to make this resource available to the scientific community and to
facilitate the choice of the datasets to analyze, we indicated the annotations available
for each dataset (Figures S6 and S7) and some of the comparisons that can be made
using a sample from a specific dataset (Figures S8 and S9). For example, there are 10
different datasets with estrogen receptor status annotations in stroma samples (Figure S6),
three datasets that can be used to compare the stroma of IDC and DCIS (Figure S8b),
and three datasets allowing for the comparison of Basal and LumA stroma in invasive
BC (Figure S9a).

To ease the interrogation of the whole collection of datasets (available in Tables S3
and S4), we created a web app that provides a user-friendly interface, which allows the
generating of lists of DEGs between two conditions and the testing of enrichment for user-
provided gene lists (https://aurorasavino.shinyapps.io/metalcm/). As a use-case example,
we tested the enrichment of up-regulated genes in the tumor stroma for five signatures
of the pro-oncogenic transcription factor signal transducer and activator of transcription
(STAT) 3 activation. We set the parameters for comparing tumor stroma and normal
stroma of any BC subtype, with a p-value threshold of 0.05. We then loaded the gene lists
corresponding to the five signatures one at a time and obtained the Fisher test enrichment
p-value seen in the “Enrichment” Table We observed that the enrichment is significant
for 3/5 of the signatures when tested in the stroma, while none show enrichment for
up-regulated genes in the tumor epithelium. This observation is suggestive of the different
roles of STAT3 in the two compartments, linking tumorigenesis and its up-regulation in the
stroma. A lack of significance in the epithelium due to higher variability in the available
datasets cannot be excluded, but it is unlikely given that the number of DEGs detected in
tumor epithelium was higher than in tumor stroma (Figure 2b).

4. Discussion

Breast cancer is a heterogeneous disease with several cellular components playing
specific roles in its development and clinical course. In particular, the microenvironment
has been shown to either counteract or promote tumor progression depending on the
specific conditions, and important players such as immune cells or cancer associated
fibroblasts are the objects of intense study. Importantly, the analysis of bulk tumor samples
comprising cell admixtures complicates disentangling the specific behaviors of each cell

https://aurorasavino.shinyapps.io/metalcm/
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component. Laser capture microdissection can help in separating the contribution of
different cell compartments and can still present some relevant advantages with respect to
single cell techniques. Indeed, cell type separation does not rely on set of markers, but it
is directly based on histological features. Moreover, the relatively contained cost allows
for sampling ranges of tumors with different characteristics and the assessment of the
relationships between gene expression and clinical features.

As an additional complication, breast cancer heterogeneity is hardly captured in the
small sample sizes of most microarray studies, but the strong research effort dedicated
to this biological system has led to a rich collection of independent datasets that can be
combined to improve robustness and statistical power.

Here, we gathered 48 transcriptomic datasets of microdissected breast tumors where
the stroma and the epithelium were separated prior to RNA extraction to study the distinct
behavior of different cellular compartments. We carefully collected and harmonized
corresponding biological and clinical annotations to facilitate data integration.

With this tool in hand, we identified genes robustly and coherently changing their
expression in breast tumors when compared to normal tissue, either in the stroma or
in the epithelium. Analyzing these lists separately, we detected increased expression
of cell cycle related genes in the tumor epithelium and of immune-related categories in
the tumor stroma. Additionally, we detected the over-expression of the non-canonical
Wnt/PCP pathway, which is involved in breast cancer progression [113], synergizing with
the STAT3 pathway, contributing to its aggressiveness [114] in both the stroma and the
epithelium. Moreover, we observed a decrease in lipid catabolism in the tumor stroma,
consistent with a potential metabolic coupling between cancer cells and the microenviron-
ment, with stromal components reducing their consumption to release lipids and feeding
cancer cell growth [115].

Comparing differentially expressed genes in the two compartments, genes that are
up-regulated in both are enriched in mitochondrial-related and extracellular matrix gene
ontology categories. Indeed, the extracellular matrix can act as a reservoir of growth
factors, and its remodeling has been associated with metastatic spread [116]. The role
of high oxidative phosphorylation in tumors is being increasingly recognized [49,117].
Counter-intuitively, down-regulated genes are enriched for angiogenesis. A similar trend
had already been observed [118] and could be explained by the higher resistance of tumor
cells to apoptosis under hypoxic conditions, especially in advanced tumors that also show
lower microvessel densities than normal tissues [119].

Moreover, genes that are significantly regulated in only one compartment can exhibit
a corresponding compartment-specific relationship with clinical features. For example,
genes that are only up-regulated in tumor stroma correlate with a higher grade and earlier
age at onset when measured directly in the stroma, while their relationship with clinical
features is weaker when their expression is measured in the epithelium, highlighting the
specific role of the stromal tissue. At the top of the list were UPB1 and HSD11B2. The
latter is the enzyme that converts cortisol in cortisone, which is down-regulated in tumor
stroma and correlates with a lower grade. Its decrease across tumor progression might be
responsible for high cortisol levels, which have been associated with higher severity and
mortality [120]. To our knowledge, this is the first time that such a relationship has been
detected in the stroma. UPB1 encodes for the last enzyme in the pyrimidine degradation
pathway, and its down-regulation might lead to dihydropyrimidine accumulation, linked
with EMT [121]. Similarly, NECAP2 is among the top up-regulated genes in tumor stroma
only, correlating with a higher grade. NECAP2 is involved in endocytic recycling [122],
suggesting a potential role in regulating surface protein localization and cell-cell commu-
nication. Of note, the compartment-specific regulation of a number of genes exhibiting
opposite regulation in tumor epithelium or stroma would have been missed based on
bulk data: genes that are up-regulated in tumor stroma and down-regulated in tumor
epithelium are enriched for cytokine secretion and Toll-like receptor 2 signaling, suggest-
ing that the microenvironment produces different sets of cytokines than the tumor itself,
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possibly reflecting different chemoattraction and hence different immune cell proportions
depending on tumor proximity. Indeed, immune cell distribution has been found to be of
clinical relevance in cancer [123–125].

To the best of our knowledge, this is the first meta-analysis performed specifically on
LCM transcriptomic data. We show how different platforms can be successfully integrated
to reveal robust differential expression patterns and to increase statistical power, identifying
differentially expressed genes that would not be identified otherwise. We note, however,
that some of our results need to be cautiously interpreted given that the definition of non-
differential genes cannot be given in a statistically rigorous way. Nevertheless, this caveat
only applies to a limited part of our work, and the lists of DEGs in tumor epithelium,
stroma, and vessels that we provide are indeed robust.

From the analysis of our database, we can conclude that although the behavior of
the epithelium and the stroma at the gene expression level is globally similar, separating
compartments allows for the identification of gene regulation patterns that could not be
detected in bulk. Moreover, integrating many different datasets allowed us to improve
statistical power and, despite the small sample size of each dataset, to identify the genes
that are correlated with clinical features in a compartment-specific manner.

We showed additional use-cases of our database, such as the selection of epithelial
and stromal markers that improves the correlation with cellularity compared to published
signatures. Indeed, this refined signature could prove to be profitable in estimating the
tumor/stroma composition of bulk tumors through deconvolution methods. Moreover,
our analysis of STAT3 signaling pathway regulation revealed a particularly relevant role in
tumor stroma compared to the epithelial counterpart, despite STAT3 being considered as
an oncogene in many tumor types, including breast cancer [126], and was consistent with
data showing an opposite role in the two compartments in colorectal cancer [127]. Specific
questions can be addressed by performing the wide variety of comparisons allowed by
the conditions represented in our database. A particularly interesting application will
be the construction of compartment-specific gene regulatory networks. Indeed, cancer
gene networks built from bulk transcriptome data are affected by the presence of multiple
cell types and often include microenvironment-related gene sub-networks, confounding
the identification of cancer cell gene interactions [128]. Therefore, the use of the LCM
data collected here will be a valuable resource to build more specific and robust gene
co-expression networks.

An important practical corollary of our work is the availability of our database as a
resource for other researchers to explore via a simple web platform that allows differential
gene expression and enrichment analyses (https://aurorasavino.shinyapps.io/metalcm/).

5. Conclusions

By collecting and harmonizing multiple datasets of LCM breast tumors, we gener-
ated a resource that can be profitably used to discover biomarkers, investigate cancer
molecular mechanisms, or test specific research-driven hypotheses in a robust setting. We
envision several applications for our database, from the meta-analytic comparison of the
several biological conditions and clinical statuses there annotated to the construction of
compartment-specific co-expression networks, which will hopefully help in the formulation
of robust and specific research hypotheses.
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DEGs in bulk samples, Figure S4: Compartment-specific relationship with clinical features for genes
regulated in tumor epithelium or with opposite regulation in stroma and epithelium, Figure S5:
HSD11B2 is correlated with a lower grade in the stroma but not in bulk, Figure S6: Summary
of annotations available for each dataset, Figure S7: Summary of histological types available for
each dataset, Figure S8: Summary of possible comparisons between disease status and histological
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Appendix A

Appendix A.1. Details Regarding Single Annotations and Their Harmonization Compartment

The compartment column refers to the tissue of origin and can have values: “Epi”
(epithelium), “Stroma”, “Vessel” (microvessels), and “Adipose”. The additional values
“fine needle” and “core needle” refer to fine/core needle biopsies from the GSE32518
dataset, stroma-poor and stroma-rich, respectively.

Appendix A.2. Disease Status

The “diseaseStatus” column indicates whether the sample has a cancerous origin.
Where not otherwise specified, malignant samples were annotated as “InvasiveBC” (inva-
sive breast cancer). “Tumor” refers to malignancies and hyperplasias annotated as DCIS
(ductal carcinoma in situ), inflammatory breast cancer (IBC), IMC (invasive micropapil-
lary carcinoma), PABC (pregnancy associated breast cancer), AH (atypical hyperplasia),
and hyperplasia not otherwise specified. “Normal” indicates histologically normal breast
samples from cancer-free subjects, while “counterpart” indicates histologically normal
breast samples close to the tumor. Additional annotations are related to specific datasets
with particular sample types: in GSE72644, multiple normal samples were obtained from
along the duct leading to the tumor at different distances (annotated as “counterpart”
in the case of “normal same duct” samples and as “counterpart-adjacent” in the case of
“adjacent to tumor” samples) or from contralateral duct (annotated as “contralateral”);
in GSE13293, benign breast disease samples with no sign of hyperplasia or atypia were
collected and were denoted as “benign”; in GSE20437, histologically normal breast samples
from women at high risk of breast cancer were collected and denoted as “prophylactic”;
in GSE141828, histologically normal samples from women that developed cancer later
were denoted as “susceptible”. These additional levels of disease status were kept sepa-
rate from other normal samples in the meta-analysis because they were considered to be
essentially different.

https://aurorasavino.shinyapps.io/metalcm/
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Appendix A.3. Receptor Status (ER, PR, Her2)

Can either be “positive” or “negative”. Where the percentage of cells positive with
IHC staining was indicated, “positive” was assigned to values ≥ 10%.

For the Her2 status, values of 1+ were considered “negative”, 3+ as “positive”, and 2+
as ambiguous and were converted to “positive” only in case of FISH positivity and as a
missing value otherwise [129].

Samples annotated as triple negative were assigned a “negative” value to all three
receptors’ statuses.

Appendix A.4. TNBC Status

For some datasets, samples belonging to the triple negative breast cancer (TNBC)
subtype was reported. Hence, in this column “yes” indicates that the sample is triple
negative, and “no” indicates that the sample is not triple negative. Additionally, TNBC
status was inferred from the receptor status annotations: “no” when either one of the three
receptors (ER, PR, Her2) had a “positive” value and “yes” when all three receptors had a
“negative” value.

Appendix A.5. PAM50

PAM50 molecular subtype. Where this information was missing and epithelial in-
vasive BC samples were available, the PAM50 subtype was imputed from gene expres-
sion using the genefu package [130] with the model “pam50”. PAM50 was not imputed
for datasets homogeneous for the receptor status or annotated as TNBC, since the algo-
rithm only accurately infers the subtype from sets of samples comprising a mixture of
all subtypes.

Appendix A.6. Age

Denotes patient age at onset in years.

Appendix A.7. Grade

Histological tumor grade. Values of I, II, and III were converted to 1, 2, and 3 to
facilitate computations. Similarly, “low”, “intermediate”, and “high” values were converted
to 1, 2, and 3, respectively.

Appendix A.8. Size

Tumor size in millimetres. Where multiple sizes were indicated, the highest value
was kept.

Appendix A.9. Node

Can either be “Positive” or “Negative”. Where the number of positive lymph nodes
was indicated, “Positive” was assigned to values > 0.

Appendix A.10. Stage

Overall stage. Obtained from TNM scores, and some missing values were inferred
from these scores: M1 corresponds to stage IV; T1, N0, and M0 correspond to stage I; N3
and M0 correspond to stage IIIC; T4, M0, but not N3 correspond to stage IIIB.

Appendix A.11. Tscore, Nscore, Mscore

TNM staging system [131]. Values of T and N are in part redundant with other clinical
annotations but cannot be biunivocally matched, and different datasets provided different
clinical categories. Hence, they have been retained and used to infer other clinical variables
or viceversa. Lymph node positivity is reflected in the N score: samples annotated as
node negative were then also annotated as N0, while samples annotated as N0 were also
added the “negative” value in the node column. Samples with N1-N3 were annotated as
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node “positive”. Finally, some missing values were inferred from the overall stage with the
conversion rules listed above.

Appendix A.12. Disease Free Survival

Two columns are related to disease free survival (DFS): DFSevent indicates presence
(“yes”) or absence (“no”) of relapse; DFStime indicates the time (in months) before the
relapse or the follow-up time in case of no relapse.

Appendix A.13. Histology

Contains information about the specific histological type of the tumor. IDC (invasive
ductal carcinoma), ILC (invasive lobular carcinoma), DCIS (ductal carcinoma in Situ),
inflammatory breast cancer (IBC), IMC (invasive micropapillary carcinoma), PABC (preg-
nancy associated breast cancer), AH (atypical hyperplasia), and hyperplasia not otherwise
specified. Where two histological types were reported for the same sample, the most ag-
gressive was retained (e.g., IDC+DCIS resulted in IDC annotation); the normal counterpart
was annotated with the same histological type as the corresponding tumor.

Appendix A.14. Matching

Unique ID to allow the matching of samples belonging to the same subject.
No assumptions or changes were needed for vital status, parity, menopause, treatment,

response to treatment, and ethnicity annotations.
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