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Simple Summary: Radiologists interpret prostate multiparametric magnetic resonance imaging
(mpMRI) to identify abnormalities that may correspond to prostate cancer, whose status is later
confirmed by MR-guided targeted biopsy. Artificial intelligence algorithms may improve the di-
agnostic accuracy achievable by radiologists alone, as well as alleviate pressures on the prostate
cancer diagnostic pathway caused by rising case incidence and a shortage of specialist radiologists
to read prostate mpMRI. In this review article, we considered studies that compared the diagnostic
accuracy of radiologists, artificial intelligence algorithms, and where possible, a combination of
the two. Our review found insufficient evidence to suggest the clinical deployment of artificial
intelligence algorithms at present, due to flaws in study designs and biases caused by performance
comparisons using small, predominantly single-center patient cohorts. Several recommendations are
made to ensure future studies bear greater clinical impact.

Abstract: Computer-aided diagnosis (CAD) of prostate cancer on multiparametric magnetic reso-
nance imaging (mpMRI), using artificial intelligence (AI), may reduce missed cancers and unnecessary
biopsies, increase inter-observer agreement between radiologists, and alleviate pressures caused by
rising case incidence and a shortage of specialist radiologists to read prostate mpMRI. However,
well-designed evaluation studies are required to prove efficacy above current clinical practice. A
systematic search of the MEDLINE, EMBASE, and arXiv electronic databases was conducted for
studies that compared CAD for prostate cancer detection or classification on MRI against radiologist
interpretation and a histopathological reference standard, in treatment-naïve men with a clinical
suspicion of prostate cancer. Twenty-seven studies were included in the final analysis. Due to
substantial heterogeneities in the included studies, a narrative synthesis is presented. Several studies
reported superior diagnostic accuracy for CAD over radiologist interpretation on small, internal
patient datasets, though this was not observed in the few studies that performed evaluation using
external patient data. Our review found insufficient evidence to suggest the clinical deployment of
artificial intelligence algorithms at present. Further work is needed to develop and enforce method-
ological standards, promote access to large diverse datasets, and conduct prospective evaluations
before clinical adoption can be considered.

Keywords: artificial intelligence; computer-aided diagnosis; machine learning; deep learning; mag-
netic resonance imaging; PRISMA-DTA; prostate cancer; QUADAS-2; systematic review
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1. Introduction

International guidelines recommend multiparametric magnetic resonance imaging
(mpMRI) for biopsy naïve men with suspected prostate cancer for lesion localization prior
to MR-guided targeted biopsies [1,2]. Predominantly, radiologists interpret and report
mpMRI using the Prostate Imaging-Reporting and Data System (PI-RADS) [3] or Likert-
impression scale [4]; sensitivities ranging between 81–90% and specificities ranging between
64–81% have previously been reported for clinically significant prostate cancer detection
on mpMRI, by radiologists, in treatment-naïve men [5]. Crucially, mpMRI followed by
MR-guided targeted biopsy improves the detection of clinically significant prostate cancer
and reduces the over-diagnosis of clinically insignificant prostate cancer, compared to
non-targeted transrectal ultrasound-guided (TRUS) biopsies [6]. However, improvements
to the prostate cancer diagnostic pathway are needed to identify the small proportion of
men whose clinically significant prostate cancer is missed by radiologists reading mpMRI,
to reduce the large number of men who undergo unnecessary biopsies due to false positives
on mpMRI, and to increase the inter-observer agreement between radiologists of varying
experience [5,7–9].

Computer-aided diagnosis (CAD) systems that use artificial intelligence (AI) are ac-
tively being researched for use in a variety of medical image analysis tasks [10]. The most
common roles performed by CAD systems for MRI-based prostate cancer diagnosis are in
lesion classification, lesion detection and segmentation, and patient classification [11]. Pro-
vided clinical efficacy of systems can be demonstrated, clinical deployment to the prostate
cancer diagnostic pathway can be envisioned as (i) companion systems for radiologists dur-
ing their clinical read, (ii) second reader systems that provide an independent diagnosis, or
(iii) patient triage systems that create a clinical workflow based on patient risk. In addition
to anticipated improvements in diagnostic accuracy and reporting consistency between
readers/centers, CAD systems can alleviate pressures caused by rising case incidence and
a shortage of specialist radiologists to read prostate mpMRI [12].

Earlier reviews of CAD systems for MRI-based prostate cancer diagnosis have focused
on the technical aspects and potential applications of systems [11,13]. By contrast, this
systematic review considers whether sufficient evidence exists to suggest clinical deploy-
ment of CAD for prostate MRI. In order to translate systems from research to clinical use,
they must demonstrate an advantage over current clinical practice and provide enhanced
clinical outcomes. Therefore, clinical readiness of CAD systems should be determined
through comparison of their performances to the performance of radiologists, who are the
current clinical standard. Accordingly, the key selection criteria for study inclusion in this
systematic review is reported radiologist performance to which the performance of CAD
is compared.

Our review found insufficient evidence to suggest the clinical deployment of AI CAD
systems for prostate MRI, at present, due to methodological flaws in studies identified using
quality assessment frameworks, and biases caused by performance comparisons using
small, predominantly single-center patient cohorts. While several studies reported superior
performance for CAD over radiologist interpretation on small, internal patient datasets, this
was not observed in the few studies that performed evaluation using external patient data.
Our review concludes that further work is needed to develop and enforce methodological
standards, promote access to large diverse datasets, and conduct prospective evaluations
before clinical adoption can be considered.

2. Materials and Methods

This review was carried out according to the preferred reporting items for systematic
review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guidance [14]
and performed by both clinical experts and algorithm developers to ensure accurate
analysis and sufficient critique of the information presented in studies.
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2.1. Literature Search

A systematic search of the literature was undertaken by two reviewers independently
that included both a clinician and an algorithm developer with an interest in prostate MRI
CAD. The search was performed within the MEDLINE, EMBASE, and arXiv electronic
databases, and the OpenSIGLE repository to explore possible unpublished grey literature.
Search terms and strategy were developed by considering previous systematic reviews of
AI in medical imaging found in the Cochrane Database of Systematic Reviews, National
Institute of Health Research (NIHR) Health Technology Assessment (HTA) database, and
the Database of Abstracts of Reviews of Effects (DARE). The search terms and strategy used
for MEDLINE are shown in Table A1 (Appendix A); alterations were made to suit each
electronic database. Once eligible studies were identified, the Science Citation Index was
used to identify further studies which cited those found using the original search terms,
and references were manually screened to identify any further studies that may have been
missed. All studies were considered up until the date of the search: 25 March 2021.

2.2. Selection Criteria

Studies were included if (i) they evaluated CAD for prostate cancer detection or
classification on MRI, (ii) CAD performance was compared to radiologist interpretation
and against a histopathological reference standard, (iii) the evaluation patient cohort
was treatment-naïve, and (iv) a full-text article was available. Studies were excluded
if (i) MRI sequences other than T1-weighted imaging, T2-weighted imaging, diffusion-
weighted imaging, or dynamic contrast-enhanced imaging were used, (ii) the comparator
radiologist(s) did not have access to at least axial T2-weighted imaging and diffusion-
weighted imaging with apparent diffusion coefficient map for reporting, and (iii) the
patient cohort used for testing was less than thirty patients.

2.3. Data Extraction

Studies were initially screened by relevance of title and abstract; full texts of the
remaining studies were read independently by the two reviewers. Studies that met the
selection criteria were included; any disagreements between the two reviewers were solved
by reaching a consensus or consulting a third expert reviewer if necessary.

Extracted data were categorized broadly into patient and study characteristics, radiol-
ogist and CAD system characteristics, and diagnostic performance. Sensitivity, specificity,
and area under the receiver operating characteristic curve (AUC) were extracted at both
per-lesion and per-patient levels, with 95% confidence intervals where available. Where
multiple CAD systems were assessed in the same study, the results corresponding to
highest performing system were considered. In studies where the requisite performance
statistics were not reported, the performance statistics were calculated from the available
data if possible, and attempts were made to contact authors if data were missing or unclear
from their article.

2.4. Risk of Bias Assessment

In light of the lack of standardized and validated quality assessment tools for assessing
studies concerning AI in medical imaging, we used an adapted version of the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool with additional signaling
questions from the preliminary QUADAS-C tool [15,16] and a published editorial outlining
key considerations when assessing radiology research on AI [17]. The QUADAS-2 adapted
tool and additional signaling questions are shown in the Supplementary Materials.

2.5. Data Synthesis

Due to substantial heterogeneities in CAD system applications, study designs, al-
gorithms employed, patient cohorts used for evaluation, evaluation strategies, and per-
formance metrics, it was decided that analysis would be by narrative synthesis rather
than statistical pooling. Meta-analysis is not recommended for diagnostic test accuracy
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studies where the patient cohorts and test settings significantly differ between studies and
would likely produce a biased result [18]. Publication bias was not assessed as there are no
recommended methods for diagnostic accuracy studies [18].

3. Results
3.1. Literature Search

A PRISMA flow diagram of the systematic search is shown in Figure 1. A total of
27 studies were included in the final analysis [19–43]. The 27 studies, and by extension,
the CAD systems presented or evaluated within them, were categorized as either ROI
Classification (ROI-C), Lesion Localization and Classification (LL&C), or Patient Classi-
fication (PAT-C); the categories are shown diagrammatically in Figure 2. ROI-C refers to
(n = 16) studies where CAD systems classified pre-defined regions of interest (ROI), e.g.,
manually contoured lesions [19–32,44,45], LL&C refers to (n = 10) studies where CAD
systems performed simultaneous lesion localization and classification [33–42], and PAT-C
refers to (n = 1) studies where CAD systems classified patients directly [43].
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= region of interest. CNN = convolutional neural network. ML = machine learning. ML* here refers to ML algorithms 
exclusive of CNNs, such as support vector machines, random forest, logistic regression, and artificial neural networks. 
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Patient and study characteristics are summarized in Table 1. Studies were published 

between 2013 and 2021 from groups spanning Asia, Europe, and the USA. All 27 included 
studies used a retrospective study design. The median size of patient cohorts used for 
evaluation was 98 (range 30 to 417, n = 26) for studies where the size of the evaluation 
patient cohort was reported [19–29,31–45]. Most studies (n = 18) considered clinically sus-
pected patient cohorts [20–23,27,31,34–45], while fewer studies (n = 9) considered patient 
cohorts with biopsy-proven prostate cancer [19,24–26,28–30,32,33]. Histopathological ref-
erence standards used in studies were one or a combination of the following: transperineal 
template prostate-mapping (TTPM) biopsy, in-bore targeted biopsy, TRUS targeted bi-
opsy, TRUS saturation biopsy, TRUS systematic biopsy, or radical prostatectomy. The ma-
jority of studies (n = 22) collected scans using 3T MR scanners [19–21,23–25,29–34,36–45], 
while fewer studies (n = 4) used 1.5T MR scanners [22,26,27,35]; one further study used 3T 
mainly but included one scan acquired at 1.5T [28]. Evaluation using multicenter data was 
completed in three studies [19,34,38], and only three studies used multivendor MRI data 
for evaluation [19,23,34].

Figure 2. Workflow of typical prostate cancer AI CAD systems. Systems are categorized as ROI Classification (ROI-C), Lesion
Localization and Classification (LL&C), or Patient Classification (PAT-C). Blue indicates mpMRI input, yellow indicates
manual processes, white indicates automated processes, and green indicates intermediate or final outputs. ROI = region of
interest. CNN = convolutional neural network. ML = machine learning. ML* here refers to ML algorithms exclusive of
CNNs, such as support vector machines, random forest, logistic regression, and artificial neural networks.

3.2. Patient and Study Characteristics

Patient and study characteristics are summarized in Table 1. Studies were published
between 2013 and 2021 from groups spanning Asia, Europe, and the USA. All 27 included
studies used a retrospective study design. The median size of patient cohorts used for
evaluation was 98 (range 30 to 417, n = 26) for studies where the size of the evaluation
patient cohort was reported [19–29,31–45]. Most studies (n = 18) considered clinically sus-
pected patient cohorts [20–23,27,31,34–45], while fewer studies (n = 9) considered patient
cohorts with biopsy-proven prostate cancer [19,24–26,28–30,32,33]. Histopathological refer-
ence standards used in studies were one or a combination of the following: transperineal
template prostate-mapping (TTPM) biopsy, in-bore targeted biopsy, TRUS targeted biopsy,
TRUS saturation biopsy, TRUS systematic biopsy, or radical prostatectomy. The majority
of studies (n = 22) collected scans using 3T MR scanners [19–21,23–25,29–34,36–45], while
fewer studies (n = 4) used 1.5T MR scanners [22,26,27,35]; one further study used 3T mainly
but included one scan acquired at 1.5T [28]. Evaluation using multicenter data was com-
pleted in three studies [19,34,38], and only three studies used multivendor MRI data for
evaluation [19,23,34].
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Table 1. Patient and Study Characteristics.

Study Year Country No. of
Patients Age, Years PSA, ng/mL Patient Population Pre- or Post-

Biopsy MRI
Field

Strength, T
n◦

Centers/Vendors Reference Standard

ROI Classification (ROI-C)

Algohary [19] 2020 USA 115 NR NR Biopsy proven Pre-biopsy 3 4/2 TRUS (12-core)

Antonelli [20] 2019 UK 134 64 (43–83) 7.4 (2.5–30.3) Clinically suspected Pre-biopsy 3 1/1 TTMB +/− TB

Bonekamp [21] 2018 Germany 133 63 (58–71) 7.5 (5.4–11) Clinically suspected Pre-biopsy 3 1/1 TB

Dikaios [22] 2015 UK 85 63 * (45–77) 8.7 * (0.2–39) Clinically suspected Pre-biopsy 1.5 1/1 TTMB

Dinh [23] 2018 France 129 67 (IQR 61–70) 7.3 (IQR 5.1–11.5) Clinically suspected Pre-biopsy 3 1/2 TRUS (4-core) + TB

Hambrock [24] 2013 Netherlands 34 64 * (53–74) 7.5 * (3.4–21.8) Biopsy proven Post-biopsy 3 1/1 RP

Iyama [25] 2017 Japan 60 70 * (55–81) 10.4 * (5–160) Biopsy proven Unclear 3 1/1 RP

Li [45] 2021 China 62 65 * (SD 9.4) NR Clinically suspected Pre-biopsy 3 1/1 TRUS (12-core)/RP

Litjens [44] 2015 Netherlands 107 66 (48–83) 13 (1–56) Clinically suspected ‡ Pre-biopsy 3 1/1 TB

Niaf [26] 2014 France 30 62 (45–70) 7.4 (4.6–40) Biopsy proven Post-biopsy 1.5 1/1 RP

Niu [27] 2017 China 184 59 (42–79) 12.0 (4–98.3) Clinically suspected Pre-biopsy 1.5 1/1 TRUS (12-core) + TB

Transin [28] 2019 France 74 66 (IQR, 62–69) 7.4 (IQR 5.7–11) Biopsy proven Post-biopsy 3/1.5 § 1/1 RP

Wang [29] 2017 China 54 74 (IQR, 66–78) 23.6 (IQR, 12.5–56.1) Biopsy proven Post-biopsy 3 1/1 RP

Winkel [30] 2020 Switzerland 40 ** 69 * (SD 8.7) † 7 * (SD 11.2) † Biopsy proven Pre-biopsy 3 1/1 TRUS (12/18 core) + TB

Woźnicki [31] 2020 Germany 40 69 (IQR 63–72) 8.2 (IQR 6.8–11.9) Clinically suspected Pre-biopsy 3 1/1 TRUS (12-core) + TB

Zhong [32] 2019 USA 30 NR (43–80) † 7.9 * (SD 12.5) † Biopsy proven Mix 3 1/1 RP

Lesion Localization and Classification (LL&C)

Cao [33] 2019 USA 417 NR NR Biopsy proven Pre-biopsy 3 1/1 RP

Gaur [34] 2018 USA 216 62 * (42–79) 8.1 * (0.3–31.9) Clinically suspected Pre-biopsy 3 5/3 RP/TRUS (12/24-core)

Giannini [35] 2017 Italy 89 67 (63–73) 7.5 (6.2–11.0) Clinically suspected Pre-biopsy 1.5 1/1 TB/Saturation biopsy ˆ

Greer [36] 2018 USA 163 62 * (43–83) 9.8 * (1.5–84.6) Clinically suspected Pre-biopsy 3 1/1 RP/TRUS (12-core)

Litjens [37] 2014 Netherlands 347 NR NR Clinically suspected Pre-biopsy 3 1/1 TB

Mehralivand [38] 2020 Multiple 236 NR NR Clinically suspected Pre-biopsy 3 5/NR RP/TRUS (12-core)
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Table 1. Cont.

Study Year Country No. of
Patients Age, Years PSA, ng/mL Patient Population Pre- or Post-

Biopsy MRI
Field

Strength, T
n◦

Centers/Vendors Reference Standard

Schelb [39] 2019 Germany 62 64 (IQR 60–69) 6.9 (IQR 5.1–8.9) Clinically suspected Pre-biopsy 3 1/1 TRUS + TB

Schelb [40] 2020 Germany 259 61 (IQR 61–72) 7.2 (IQR 5.2–10.0) Clinically suspected Pre-biopsy 3 1/1 TB + Saturation biopsy

Thon [41] 2017 Germany 79 65 * (48–80) NR Clinically suspected ‡ Pre-biopsy 3 1/1 TB

Zhu [42] 2019 China 153 66 (IQR 30–73) 12.3 (IQR 7.9–21) Clinically suspected Pre-biopsy 3 1/1 TRUS (12/13-core) + TB

Patient Classification (PAT-C)

Deniffel [43] 2020 Canada 50 64 * (SD 8.4) 7.2 (IQR 5.2–11.2) Clinically suspected Pre-biopsy 3 1/1 TB +/− TRUS (12-core)

(Age and PSA median (min-max range) reported unless stated otherwise; IQR—interquartile range; MRI—magnetic resonance imaging; NA—not applicable; NR—not reported; PSA—prostate-specific antigen;
RP—radical prostatectomy; SD—standard deviation; T—tesla; TB—targeted biopsy; TTMB—transperineal template prostate-mapping biopsy; TRUS—transrectal ultrasound-guided biopsy)* Mean † Includes
training and test set ‡ Previous negative systematic biopsy § Only one scan using 1.5T ˆ PSA and MRI surveillance were used in patients with negative mpMRI who did not undergo biopsy ** Lesions reported.
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3.3. Reader and CAD System Characteristics

Reader and CAD system characteristics are summarized in Table 2. In the majority
of studies (n = 26), readers scored suspicious lesions using mpMRI [20–45], while in one
study, biparametric MRI (bpMRI) was used [19]. In 15 studies, patient cases were reported
by a single reader [19–23,28,32,33,37–40,42–44], while in the remaining 12 studies, patient
cases were reported by more than one reader [24–27,29–31,34–36,41,45]; where multiple
readers reported on each patient, the presented reader performance is either an average
of reader performance or based on the consensus view of readers. Reader experience
varied significantly across studies; in studies where reader performance was stratified by
experience level, details of the most experienced reader group were extracted. Considerable
heterogeneity was observed in the machine learning algorithms employed by the CAD
systems: five studies presented convolutional neural networks (CNN) [32,33,39,40,43], one
study evaluated the commercially available Watson ElementaryTM system [41], while the
remaining 21 studies presented or evaluated CAD systems based on traditional machine
learning algorithms [19–22,24,25,35–38,41,45]. Across the studies, a variety of methods
were used to construct datasets for training and evaluation. Six studies used random
splitting [19,30–32,39,43], five studies used temporal splitting [21–23,40,45], five studies
used leave-one-patient-out (LOPO) cross-validation [24–26,29,37], four studies used an
independent internal testing cohort [35,36,42,44], four studies obtained external data for
testing [28,34,38,41], two studies used five-fold cross-validation [20,33], and one study did
not report how they separated data for training and evaluation [27].
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Table 2. Reader and CAD System Characteristics.

Study Reader Characteristics CAD System Characteristics

MRI No. of
Readers § Reader Experience, Years Algorithm Input Sequences Discriminative Features Evaluation Strategy

ROI Classification (ROI-C)

Algohary [19] bp 1 7–25 QDA T2WI, ADC ROI radiomic features
(intra-tumoral and peri-tumoral) Randomly split test cohort

Antonelli [20] mp 1 10 (>100 MRIs/year) PZ: LinR, TZ: NB ADC, DCE, PSAd ROI radiomic features, PSAd Five-fold CV

Bonekamp [21] mp 1 >3 * RF T2WI, ADC, DWI (b1500) ROI radiomic features Temporally split test cohort

Dikaios [22] mp 1 7 (300–400 MRIs/year) LogR T2WI, ADC, DCE ROI radiomic features Temporally split test cohort

Dinh [23] mp 1 0.25–17 GLMM ADC, DCE ROI radiomic features Temporally split test cohort

Hambrock [24] mp 4 ‡ NR (>100 MRIs) LDA ADC, DCE ROI radiomic features LOPO CV

Iyama [25] mp 2 7 LogR T2WI, ADC ROI radiomic features LOPO CV

Li [45] mp 2 >5 LogR T2WI, ADC, DWI (b1000), DCE ROI radiomic features, PI-RADS
v2.1 score, PSA Temporally split test cohort

Litjens [44] mp 1 2–20 LogR PDI, T2WI, ADC, DWI (b800),
DCE RF likelihood, PI-RADS v1 score Internal independent test cohort

Niaf [26] mp 5 ‡ 1–7 SVM T2WI, DWI (b600), DCE ROI radiomic features LOPO CV

Niu [27] mp 2 1–4 LogR T2WI, ADC ROI radiomic features NR

Transin [28] mp 1 20 GLMM ADC, DCE ROI radiomic features External test cohort

Wang [29] mp 2 >10 SVM T2WI, ADC, DWI (b1500), DCE ROI radiomic features, PI-RADS
v2 score LOPO CV

Winkel [30] mp 2 >5 RF T2WI, ADC, DCE ROI radiomic features Randomly split test cohort

Woźnicki [31] mp 2 >7 Ensemble (SVM, LogR) T2WI, ADC
ROI/WG radiomic features,

PI-RADS v2 score, PSAd, DRE
findings

Randomly split test cohort

Zhong [32] mp 1 >10 (>500 MRIs/year) CNN T2WI, ADC CNN learned features Randomly split test cohort

Lesion Localization and Classification (LL&C)

Cao [33] mp 1 >10 (>1000 MRIs/year) CNN T2WI, ADC CNN learned features Five-fold CV

Gaur [34] mp 2 NR (500–2000 MRIs/year) RF T2WI, ADC, DWI (b1500) Voxel radiomic features Multicenter external test cohort

Giannini [35] mp 3 2–4 (120–200 MRIs/year) SVM T2WI, ADC, DCE Voxel radiomic features Internal independent test cohort

Greer [36] mp 2 NR (<500–2000 MRIs/year) RF T2WI, ADC, DWI (b2000) Voxel radiomic features Internal independent test cohort
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Table 2. Cont.

Study Reader Characteristics CAD System Characteristics

MRI No. of
Readers § Reader Experience, Years Algorithm Input Sequences Discriminative Features Evaluation Strategy

Litjens [37] mp 1 20 † RF PDI, T2WI, ADC,
DWI (b800), DCE

Stage 1: voxel radiomic features,
Stage 2: candidate
radiomic features

LOPO CV

Mehralivand [38] mp 1 <1–>3 or
<100–>300 MRIs/year RF T2WI, ADC, DWI (b1500) Patch-based radiomic features Multicenter external test cohort

Schelb [39] mp 1 >3 * CNN T2WI, ADC, DWI (b1500) CNN learned features Randomly split test cohort

Schelb [40] mp 1 >3 * CNN T2WI, ADC, DWI (b1500) CNN learned features Temporally split test cohort

Thon [41] mp 2 NR Watson ElementaryTM T2WI, ADC, DCE Voxel radiomic features External test cohort

Zhu [42] mp 1 1–2 (200 MRIs/year) ANN T2WI, ADC, DCE Voxel radiomic features Internal independent test cohort

Patient Classification (PAT-C)

Deniffel [43] mp 1 3–15 CNN T2WI, ADC, DWI (b1600) CNN learned features Randomly split test cohort

(ADC—apparent diffusion coefficient; ANN—artificial neural network; b—b-value; bp—biparametric; CAD—computer-aided diagnosis; CNN—convolutional neural network; CV—cross-validation; DCE—
dynamic contrast-enhanced imaging; DWI—diffusion-weighted imaging; GLMM—generalized linear mixed model; LinR—linear regression; LogR—logistic regression; LOPO—leave-one-patient-out;
mp—multiparametric; MRI—magnetic resonance imaging; NB—naïve Bayes; NR—not reported; PDI—proton density image; PI-RADS—Prostate Imaging-Reporting and Data System; PSAd—prostate
specific antigen density; PUN—phenomenological universalities; PZ—peripheral zone; QDA—quadratic discriminant analysis; RF—random forest; ROI—region of interest; SVM—support vector machine;
T2WI—T2-weighted imaging; TZ—transition zone; WG—whole gland). * One radiologist with less than 3 years of experience reported 2% of examinations. † Reported by or under the supervision of an expert
radiologist (>20 years). ‡ Inexperienced readers not included. § Minimum readers per scan.
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3.4. Risk of Bias Assessment

A summary of the QUADAS-2 assessment of included studies is shown in Figure 3.
Generally, a low risk of bias was observed for patient selection. The majority of studies
(n = 20) included consecutive patient cohorts with appropriate inclusion and exclusion crite-
ria [20–25,27–29,31–33,35,37,39–42,44,45]. However, in six studies the risk of bias for patient
selection was unclear due to an insufficient description of case selection [19,26,30,34,36,43],
and one study had a high risk of bias for patient selection due to a case–control design [38].
There was a high concern over the applicability of patient cohorts in eight studies featuring
biopsy-proven patient cohorts, where a radical prostatectomy reference standard was
used [24–26,28,29,32,33,38], due to the spectrum bias associated with patients who undergo
radical prostatectomy [46] and a lack of cases without prostate cancer. In addition, one
further study that only included patients who underwent radical prostatectomy or had a
negative mpMRI, and therefore lacked representation of benign false positive MR findings,
was also deemed to have a high applicability concern [38]. Patient applicability was unclear
in three studies where men were imaged following an initial negative TRUS biopsy only,
which differs to the modern-day pre-biopsy setting of MRI [20,41,44], and in one study
where baseline demographics were omitted [19]. In the remaining studies, concerns over
patient cohort applicability were deemed low [21–23,27,31,34–37,39,40,42,43,45]. The risk
of bias for the index test was low in all but six studies where it was deemed high due to the
lack of a pre-specified model cut-off value for calculating sensitivity and specificity [19,30]
or due to determination of the model cut-off value using the same test set data to which the
cut-off was subsequently applied, which likely overestimates the performance that would
be attained during prospective use [29,32,41]. The risk of bias for the index test was unclear
in one study when the radiologist was aware all cases contained cancer [24]. Concerns over
the applicability of the index test were generally low, however, applicability was unclear
in four studies where post-biopsy MRI examinations were considered [24,25,28,29] and
one study that featured a mixed-use of PI-RADS v1 and v2 scoring systems [39], neither of
which are common in current clinical practice.

The risk of bias was low for the reference standard used in 21 studies. However, one
study had a high risk of bias for the reference standard, which was 12-core systematic
TRUS biopsy without supplementation by other biopsy types [19], which is known to
miss clinically significant disease [6]. In the remaining five studies, the risk of bias was
unclear as TRUS biopsy was used to determine negative cases [34,36,38,45] or due to the
lack of histopathological follow-up of some MR negative cases [37]. Concerns over the
applicability of the study endpoint as defined by the reference standard were high in eight
studies [24,26,29,30,34,36,41,45], where the study endpoint did not include the condition
Gleason score ≥ 3 + 4; endpoints which did not include this condition were marked with a
high applicability concern due to their misalignment with generally accepted definitions of
clinically significant cancer [47].

All 27 studies were deemed to have a low risk of bias for study flow and timing,
with consistent use of reference standards for included patients and appropriate intervals
between MRI and obtaining histopathology.

A further quality assessment was conducted against the key considerations for authors,
reviewers, and readers of AI Manuscripts in radiology by Bluemke et al. [17]; a summary of
the quality assessment is shown in Table 3. The vast majority of studies adequately defined
image sets, used widely accepted reference standards for training, and described the
preparation of images. However, the remaining key considerations were only addressed
by small subsets of the included studies: only four studies used external test sets for
final statistical reporting [28,34,38,41], only four studies used multivendor images for
evaluation [19,23,34,38], only three studies justified dataset sizes using statistical sample
size calculations [34,36,38], only six out of 16 ROI-C studies (and all LL&C and PAT-C
studies) demonstrated how the AI algorithm makes decisions by reporting a model cut-off
value, and only three studies featured publicly available systems [39–41].



Cancers 2021, 13, 3318 12 of 27

Cancers 2021, 13, x FOR PEER REVIEW 13 of 28 
 

 

PAT-C studies) demonstrated how the AI algorithm makes decisions by reporting a 
model cut-off value, and only three studies featured publicly available systems [39–41]. 

 

 

Figure 3. QUADAS-2 risk of bias and applicability concerns summary for all included studies.Figure 3. QUADAS-2 risk of bias and applicability concerns summary for all included studies.



Cancers 2021, 13, 3318 13 of 27

Table 3. Summary of Key Considerations for Artificial Intelligence Studies in Radiology.

Study

Are All
Applicable
Image Sets
Defined?

Is an External
Test Set Used for
Final Statistical

Reporting?

Have
Multivendor
Images Been

Used to Evaluate
the AI

Algorithm?

Are the Size of
the Training,

Validation and
Test Sets
Justified?

Was the Algorithm
Trained Using a

Standard of
Reference That Is

Widely Accepted in
the Field?

Was the
Preparation of

Images for the AI
Algorithm

Adequately
Described?

Were the Results
of the AI

Algorithm
Compared with

Expert
Radiologists?

Was the Manner
in Which the AI

Algorithm Makes
Decisions

Demonstrated?

Is the AI
Algorithm

Publicly
Available?

ROI Classification (ROI-C)

Algohary [19] 7 7 3 7 7 3 3 7 7

Antonelli [20] 3 7 7 7 3 3 3 3 7

Bonekamp [21] 3 7 7 7 7 3 3 3 7

Dikaios [22] 3 7 7 7 3 3 3 3 7

Dinh [23] 3 7 3 7 3 3 3 3 7

Hambrock [24] 3 7 7 7 3 3 3 3 7

Iyama [25] 3 7 7 7 3 3 3 7 7

Li [45] 3 7 7 7 ? 3 3 7 7

Litjens [44] 3 7 7 7 3 3 3 ? 7

Niaf [26] 3 7 7 7 3 7 3 7 7

Niu [27] 3 7 7 7 3 3 3 7 7

Transin [28] 3 3 7 7 3 7 3 3 7

Wang [29] 3 7 7 7 3 3 3 7 7

Winkel [30] 7 7 7 7 3 3 3 7 7

Woźnicki [31] 3 7 7 7 3 3 3 7 7

Zhong [32] 3 7 7 7 3 3 3 7 7

Lesion Localization and Classification (LL&C)

Cao [33] 3 7 7 7 3 3 3 3 7

Gaur [34] 3 3 3 3 3 3 3 3 7

Giannini [35] 3 7 7 7 3 3 3 3 7

Greer [36] 3 7 7 3 3 3 3 3 7

Litjens [37] 3 7 7 7 3 3 3 3 7

Mehralivand [38] 3 3 3 3 ? ? 3 3 7
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Table 3. Cont.

Study

Are All
Applicable
Image Sets
Defined?

Is an External
Test Set Used for
Final Statistical

Reporting?

Have
Multivendor
Images Been

Used to Evaluate
the AI

Algorithm?

Are the Size of
the Training,

Validation and
Test Sets
Justified?

Was the Algorithm
Trained Using a

Standard of
Reference That Is

Widely Accepted in
the Field?

Was the
Preparation of

Images for the AI
Algorithm

Adequately
Described?

Were the Results
of the AI

Algorithm
Compared with

Expert
Radiologists?

Was the Manner
in Which the AI

Algorithm Makes
Decisions

Demonstrated?

Is the AI
Algorithm

Publicly
Available?

Schelb [39] 3 7 7 7 3 3 3 3 3

Schelb [40] 3 7 7 7 3 3 3 3 3

Thon [41] 3 3 7 7 ? 3 3 3 3 *

Zhu [42] 3 7 7 7 3 3 3 3 7

Patient Classification (PAT-C)

Deniffel [43] 3 7 7 7 3 3 3 3 7

(3—Yes, 7—No, ?—Unclear, AI—Artificial Intelligence). * commercially available.
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3.5. ROI Classification Summary of Results

Per-lesion performance for all 16 ROI-C studies is presented in Table 4. Three ROI-
C studies further reported per-patient performance, which is presented in Table 5. The
majority of ROI-C studies (n = 15) presented CAD systems based on traditional non-deep
learning machine learning algorithms with radiomic and clinical feature input [19–31,45],
while one study used a CNN to classify lesion-centered patches [32].

Of the 16 ROI-C studies, 11 reported standalone CAD performance, where the output
was thresholded to give a sensitivity and specificity [19–23,27–30,32,45]. Of those 11 studies,
three reported superior diagnostic accuracies for CAD compared to the radiologist, with
statistical significance, either by sensitivity [29], specificity [23], or both [27]. In contrast,
one study showed inferior sensitivity for CAD compared to the radiologist, with statistical
significance [28]; among ROI-C studies, only this study performed an evaluation using
externally obtained test data. The remaining seven studies showed no significant differ-
ences between CAD and radiologists in either sensitivity or specificity [19–22,30,32,45].
Methods used to threshold the output of CAD systems were reported in seven of the
11 studies [20–23,28,29,32]. Five studies avoided bias by not using the test cohort when
picking the cut-off value [20–23,28], while in two studies, the cut-off value was chosen
using Youden statistics [29] or the point of maximum accuracy [32] on the test cohort. Three
studies reported a lesion-level AUC only rather than thresholding their CAD systems’
output, with one study reporting a significantly higher AUC than readers [25] and two
studies reporting no significant difference [24,26].

An ensembled CAD system incorporating the radiologist’s reporting score was inves-
tigated in four studies [29,31,44,45], three of which showed significant improvement upon
the radiologist’s score alone. Li et al. [45] combined a CAD likelihood score with a PI-RADS
v2.1 score and a prostate-specific antigen (PSA) value, using a logistic regression classifier,
reporting an increased AUC compared to radiologist PI-RADS v2.1 assessment alone, with
statistical significance. In Litjens et al. [44], a CAD likelihood score was combined with a
PI-RADS v1 score, using a logistic regression classifier; they reported an increased speci-
ficity over radiologist assessment using PI-RADS v1 alone, with statistical significance. In
Wang et al. [29], a support vector machine classifier was used to combine radiomic features
and a PI-RADS v2 score; they found an increase in sensitivity over radiologist PI-RADS v2
assessment alone, with statistical significance. A further two studies compared radiologist
interpretation with and without knowledge of CAD scores [24,26], for which no significant
differences were demonstrated.
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Table 4. Per-Lesion Performance Comparison with 95% Confidence Intervals for Readers, CAD Systems and in Combination.

Study Endpoint Level Zone

Readers(s) Alone CAD System Alone Combination

Cut-Off SN % SP % AUC Chosen
Threshold SN % SP % AUC Interaction SN % SP % AUC

ROI Classification (ROI-C)

Algohary [19] D’Amico ≥
Intermediate Lesion WP PI-RADSv2, ≥3 71

(61–80)
67

(52–80) NR NR 63
(52–72)

91
(79–98) 0.75 NA NA NA NA

Antonelli [20]
GS 3 + 3 vs. 4
component

Index
Lesion

PZ Suspected
GS ≥ 3 + 4

72 40 NR Matched to reader
SP in training set

90 65 0.83 NA NA NA NA

TZ 82 44 NR 92 56 0.75 NA NA NA NA

Bonekamp [21] GS ≥ 3 + 4 Lesion WP PI-RADSv2, ≥4 88
(77–95)

50
(42–58) NR Matched to reader

SN in training set
97

(88–100)
58

(50–66) 0.88 NA NA NA NA

Dinh [23] GS ≥ 3 + 4 Lesion WP Likert (1–5), ≥3 100
(100–100)

14
(8–19)

0.84
(0.77–0.89)

CAD SN of 95% in
training set

96
(91–100)

44
(36–52)

0.88
(0.82–0.93) NA NA NA NA

Dikaios [22] GS ≥ 3 + 4 or
CCL ≥ 4 mm Lesion TZ PI-RADSv1, ≥3 92

(74–99)
37

(25–50)
0.74

(0.63–0.86)
Probability

threshold > 0.5 60 73 0.67
(0.55–0.79) NA NA NA NA

Hambrock [24] GS ≥ 3 + 3 and
>0.5 cm3 Lesion WP

Likelihood scale
(0–100), no

cut-off
NR NR 0.88

(0.85–0.93) NA NR NR 0.90
(0.83–0.96)

CAD scores
available to

radiologist for
interpretation

NR NR 0.91
(0.86–0.97)

Iyama [25]
GS ≥ 3 + 4 and

>10 mm vs.
BPH

Lesion TZ PI-RADSv2, no
cut-off NR NR 0.87

(0.81–0.93) NA NR NR 0.97
(0.94–0.99) NA NA NA NA

Li [45] GS ≥ 3 + 3 Index
Lesion WP PI-RADSv2.1,

≥4 91 68 0.85 NR 82 82 0.86
(0.75–0.94)

LR model of
PI-RADS, CAD
score and PSA

79 96 0.94

Litjens [44] GS ≥ 3 + 4 Lesion WP PI-RADSv1, ≥3 100
(98–100)

9
(0–19)

0.78
(0.70–0.85) NR NA NA NA

LR model of
PI-RADS and

CAD score

99
(98–100)

26
(0–60)

0.87
(0.81–0.93)

Niaf [26]
GS ≥ 3 + 3 and

>2 × 2 mm
in-plane

Lesion PZ
Likelihood
score (0–4),
no cut-off

NR NR 0.87
(0.81–0.92) NA NR NR 0.82

(0.73–0.90)

CAD scores
available to

radiologist for
interpretation

NR NR 0.89
(0.83–0.94)

Niu [27] GS ≥ 3 + 4 Lesion

PZ

PI-RADSv2, ≥4

79 75 0.76
(0.74–0.83) NR 87 89 0.89

(0.82–0.94) NA NA NA NA

TZ 73 77 0.73
(0.69–0.81) NR 88 81 0.87

(0.81–0.92) NA NA NA NA

Transin [28] GS ≥ 3 + 4 Lesion PZ PI-RADSv2, ≥3 97
(93–100)

37
(22–52)

0.74
(0.62–0.86)

CAD SN of 95% in
training set

89
(82–97)

42
(26–58)

0.78
(0.69–0.87) NA NA NA NA

Wang [29] GS ≥ 3 + 3 and
>0.5 cm3

Index
Lesion WP PI-RADSv2, ≥3 76

(67–84)
91

(87–94)
0.86

(0.83–0.90)
Youden statistics

on test set
90

(84–95)
88

(85–93)
0.95

(0.93–0.97)

SVM model of
PI-RADS and

CAD score

92
(87–96)

95
(93–99)

0.98
(0.95–0.99)

Winkel [30] GS ≥ 3 + 4 Lesion PZ PI-RADSv2, ≥3 100 53 0.60 NR 100 58 0.90 NA NA NA NA
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Table 4. Cont.

Study Endpoint Level Zone
Readers(s) Alone CAD System Alone Combination

Cut-Off SN % SP % AUC Chosen Threshold SN % SP % AUC Interaction SN % SP % AUC

Woźnicki [31] GS ≥ 3 + 4 Index
Lesion WP PI-RADSv2, ≥4 NR NR 0.69

(0.43–0.89) NA NA NA NA

Radiomics model
ensembled with

PI-RADS, PSAd and
DRE models

NR NR 0.84
(0.60–1.00)

Zhong [32] GS ≥ 3 + 4 Lesion WP PI-RADSv2, ≥4 86 48 0.71
(0.58–0.85)

Point of best
accuracy in test set 64 80 0.73

(0.58–0.88) NA NA NA NA

Lesion Localization and Classification (LL&C)

Cao [33] GS ≥ 3 + 4 Lesion WP PI-RADSv2, ≥3 81 NR NR
FP per patient in test

set matched to
radiologist (0.62)

79 NR 0.81 NA NA NA NA

Gaur [34] GS ≥ 3 + 3 Index
Lesion WP PI-RADSv2, ≥3 78 NR NR NR NA NA NA

CAD identified lesions
reviewed by
radiologist

68 NR NR

Giannini [35] GS ≥ 3 + 4 Lesion WP

PI-RADSv2, ≥3
and max

diameter ≥7
mm

72
(61–81) NR NR

Voxel likelihood of
malignancy ≥60%

and lesion candidate
≥ 100 voxels in size

81
(61–93) NR NR

CAD identified lesions
reviewed by
radiologist

76
(65–85) NR NR

Greer [36] GS ≥ 3 + 3 Index
Lesion WP PI-RADSv2, ≥3 78

(69–85) NR NR NR NA NA NA
CAD identified lesions

reviewed by
radiologist

78
(69–86) NR NR

Mehralivand
[38] GS ≥ 3 + 4 Lesion WP PI-RADSv2, ≥3 51

(46–57) NR 0.75 NR NA NA NA
CAD identified lesions

reviewed by
radiologist

52
(45–61) NR 0.78

Schelb [39] GS ≥ 3 + 4 Sextant WP
Mix of

PI-RADSv1/v2,
≥3

67
(55–78)

68
(62–73) NR

Point that most
closely matched

PI-RADS ≥ 3
performance in

training set

59
(47–70)

66
(61–72) NR NA NA NA NA

Schelb [40] GS ≥ 3 + 4 Sextant WP PI-RADSv2, ≥3 71
(65–76)

62
(60–65) NR

Iterative dynamic
threshold that most

closely matches
PI-RADS ≥ 3

performance in most
recent cases

70
(64–75)

66
(63–69) NR NA NA NA NA

Thon [41] GS ≥ 2 + 3 Lesion WP PI-RADSv2, no
cut-off NR NR 0.68

(0.59–0.76)
Youden statistics on

test set 47 75 0.64
(0.53–0.75) NA NA NA NA

Zhu [42] GS ≥ 3 + 4 Lesion WP PI-RADSv2, ≥3 77
(68–84) NR NR NR NA NA NA

Radiologist reported
with but not limited by
CAD probability map

89
(82–94) NR NR

(AUC—Area under the receiver operating characteristic curve; BPH—benign prostatic hyperplasia; CAD—computer-aided diagnosis; CCL—cancer core length; FP—false positive; GS—Gleason score;
LR—logistic regression; NR—not reported; PI-RADS—Prostate Imaging-Reporting and Data System; PZ—peripheral zone; ROI- region of interest; SN—sensitivity; SP—specificity; SVM—support vector
machine; TZ—transition zone; WP—whole prostate). Bold results indicate statistically significant differences to that of reader(s) alone, p-value < 0.05.
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Table 5. Per-Patient Performance Comparison with 95% Confidence Intervals for Readers, CAD Systems and in Combination.

Study Endpoint Zone
Reader(s) Alone CAD System Alone Combination

Cut-Off SN % SP % AUC Chosen Threshold SN % SP % AUC Interaction SN % SP % AUC

ROI Classification (ROI-C)

Bonekamp [21] GS ≥ 3 + 4 WP PI-RADSv2, ≥4 89
(76–96)

43
(33–54) NR Matched to reader

SN in training set
96

(85–99)
51

(40–62) NR NA NA NA NA

Dinh [23] GS ≥ 3 + 4 WP Likert (1–5), ≥3 100
(100–100)

9
(2–15)

0.88
(0.68–0.96)

CAD SN of 95% in
training set

100
(100–100)

40
(28–51)

0.95
(0.90–0.98) NA NA NA NA

Woźnicki [31] GS ≥ 3 + 4 WP PI-RADSv2, ≥4 91
(82–98)

28
(13–46) NR NR NA NA NA

Radiomics model
ensembled with
PI-RADS, PSAd
and DRE models

91
(81–98)

57
(38–74) NR

Lesion Localization and Classification (LL&C)

Gaur [34] GS ≥ 3 + 3 WP PI-RADSv2, ≥3 94
(91–96)

45
(38–52) 0.82 NR NA NA NA

CAD identified
lesions reviewed

by radiologist

82
(75–88)

72
(63–80) 0.83

Giannini [35] GS ≥ 3 + 4 WP
PI-RADSv2, ≥3

and max diameter
≥7 mm

81
(70–90)

75
(68–92) NR NR 96

(78–100) NR NR
CAD identified

lesions reviewed
by radiologist

91
(82–97)

78
(71–85) NR

Greer [36] GS ≥ 3 + 3 WP PI-RADSv2, ≥3 91
(87–95)

70
(62–79)

0.88
(0.83–0.92) NR NA NA NA

CAD identified
lesions reviewed

by radiologist

90
(85–95)

57
(47–66)

0.85
(0.79–0.90)

Litjens [37] GS ≥ 3 + 4 * WP PI-RADSv1, ≥3 ≈100 † ≈52 † NR NA NR NR 0.83 NA NA NA NA

Mehralivand [38] GS ≥ 3 + 4 WP PI-RADSv2, ≥3 82 NR 0.82 NR NA NA NA
CAD identified

lesions reviewed
by radiologist

84 NR 0.78

Schelb [39] GS ≥ 3 + 4 WP Mix of
PI-RADSv1/v2, ≥3

96
(80–100)

22
(10–39) NR

Point that most
closely matched

PI-RADS ≥3
performance in

training set

96
(80–100)

31
(16–48) NR NA NA NA NA

Schelb [40] GS ≥ 3 + 4 WP PI-RADSv2, ≥3 98
(94–100)

17
(11–24) NR

Iterative dynamic
threshold that most

closely matches
PI-RADS ≥ 3

performance in
most recent cases

99
(95–100)

24
(17–31) NR NA NA NA NA
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Table 5. Cont.

Study Endpoint Zone
Reader(s) Alone CAD System Alone Combination

Cut-Off SN % SP % AUC Chosen Threshold SN % SP % AUC Interaction SN % SP % AUC

Zhu [42] GS ≥ 3 + 4 WP PI-RADSv2, ≥3 84
(75–91)

56
(43–69)

0.83
(0.76–0.88) NR NA NA NA

Radiologist
reported with

but not limited
by CAD

probability map

93
(86–98)

66
(53–77)

0.89
(0.83–0.94)

Patient Classification (PAT-C)

Deniffel [43] GS ≥ 3 + 4 WP
PI-RADSv2, ≥3

and PSAd
≥0.15 ng/mL2

95
(84–100)

35
(19–52) NR CSPCa likelihood

≥ 0.2
100

(100–100)
52

(32–68)
0.85

(0.76–0.97) NA NA NA NA

(AUC—area under the receiver operating characteristic curve; CAD—computer-aided diagnosis; GS—Gleason score; NR—not reported; PI-RADS—Prostate Imaging-Reporting and Data System; ROI—region of
interest; SN—sensitivity; SP—specificity; WP—whole prostate). Bold results indicate statistically significant differences to that of the reader(s) alone, p-value >0.05. * 3 + 4 vs. benign, Gleason 3 + 3 excluded.
† Approximate values derived from study figures.
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3.6. Lesion Localization and Classification Summary of Results

Ten studies investigated the use of CAD systems for simultaneously localizing and
classifying lesions. Tables 4 and 5 show per-lesion and per-patient results, respectively. Six
studies evaluated traditional non-deep learning machine learning algorithms [34–38,42],
three studies evaluated CNNs [33,39,40], and one study evaluated the commercially avail-
able Watson ElementaryTM system [41].

Five studies’ primary objective was to investigate the standalone performance of
CAD systems for localizing and classifying lesions [33,37,39–41]. Of these, only the studies
presented by Schelb et al. [39,40] reported sensitivity and specificity by choosing a cut-
off determined without using test data. Neither study reported a statistically significant
difference in sensitivity or specificity between CAD and readers at both per-lesion and
per-patient level, on internal test cohorts.

Five studies investigated the role of CAD systems in assisting readers to localize
and classify suspicious lesions [34–36,38,42]. In four of those studies, readers could
only approve or reject lesions highlighted by the CAD system’s output voxel probability
map [34–36,38]. Gaur et al. [34] evaluated this paradigm on a multicenter external test
cohort featuring scans from five institutions based in four countries; they found that CAD
assistance significantly lowered the per-patient sensitivity and increased the per-patient
specificity compared to readers alone. Similarly, Mehralivand et al. [38] evaluated CAD-
assistance using a multicenter external test cohort collected from five institutions; they
found that CAD-assistance did not significantly improve per-patient sensitivity, while
specificity was not presented. In the other similar studies where readers were confined to
accept or reject CAD highlighted areas [35,36], one study showed an improved per-patient
sensitivity for CAD-assistance on an independent internal test cohort, with statistical sig-
nificance [35], and one study showed a reduced per-patient specificity for CAD-assistance
on an independent internal test cohort, with statistical significance [36]. Rather than re-
strict readers to choose from CAD highlighted areas only, Zhu et al. [42] compared the
unconstrained performance of readers before and after seeing the CAD system’s output;
they found that CAD-assisted diagnosis increased per-patient sensitivity, with statistical
significance, compared to readers alone, on an independent internal test cohort.

3.7. Patient Classification Summary of Results

The study by Deniffel et al. [43] was the only PAT-C study that met the selection
criteria. Their presented CAD system directly classified patients into those with and
without clinically significant cancer using a CNN classifier. At probability threshold ≥ 0.2,
CAD system per-patient sensitivity and specificity exceeded that of readers. However, since
the threshold was not pre-specified or determined using training data, the performance
may not be a true reflection of how the classifier would perform prospectively.

4. Discussion

This systematic review highlights the extensive efforts of research groups globally who
are seeking to address known issues in the prostate cancer diagnostic pathway through
the introduction of AI technologies. A combination of clinicians and algorithm developers
worked on all aspects of this systematic review to ensure accurate analysis and sufficient
critique of the information presented in the studies. Twenty-seven studies were included in
the final analysis. Studies were categorized as ROI-C, LL&C, and PAT-C. The key selection
criteria for inclusion was reported radiologist performance to which the performance of
CAD systems could be compared.

Among the 16 ROI-C studies, the study by Dinh et al. [23] was of a particularly high
quality based on its QUADAS-2 assessment. The generalized linear mixed model classifier-
based CAD system they presented showed superior performance compared to radiologist
Likert scoring on a consecutive patient cohort of size 129 with combined systematic and
targeted biopsy reference standard. A high sensitivity cut-off value was considered for
both the CAD system and radiologist to minimize missed clinically significant cancers;
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radiologist Likert scoring was thresholded using cutoff ≥3, while the CAD system was
thresholded using a cut-off value corresponding to 95% sensitivity in the training set. A
per-patient sensitivity of 100% (95% CI: 100–100%) and specificity of 9% (95% CI: 2–15%)
was reported for radiologist Likert scoring, while a per-patient sensitivity of 100% (95%
CI: 100–100%) and specificity of 40% (95% CI: 28–51%) was reported for the CAD system.
Therefore, CAD system use would result in 31% less unnecessary biopsies, while ensuring
no patients with clinically significant prostate cancer are missed. However, their perfor-
mance comparison considered an internal test set only. Conversely, the study by Transin
et al. [28] was the only ROI-C study to use an external test set; they evaluated the same
CAD system as Dinh et al., but found CAD system sensitivity to be 89% (95% CI: 82–97%)
which was significantly lower than the radiologist sensitivity of 97% (95% CI: 93–100%),
without an improvement in specificity.

Among LL&C studies, the study by Zhu et al. [42] was high quality as reflected
by its QUADAS-2 assessment. Further to this, we believe the CAD-assistance paradigm
evaluated in their study is the most likely to be clinically translatable. In their study, readers
were permitted to score all lesions, including those not highlighted by their artificial neural
network classifier-based CAD system. Per-patient sensitivity increased from 84% (95% CI:
75–91%) unassisted, at PI-RADS v2 threshold ≥3, to 93% (95% CI: 86–98%) CAD-assisted
and specificity increased from 56% (95% CI: 43–69%) to 66% (95% CI: 53–77%), on an
independent internal test cohort of size 153. It should be noted that their study considered
CAD-assistance for relatively inexperienced radiologists (1–2 years), where the impact
of CAD-assistance may be the greatest. The studies by Gaur et al. [34] and Mehralivand
et al. [38] must also be highlighted; both studies evaluated CAD using images acquired
from five centers based across multiple countries. Such studies have a large role to play
in providing supporting evidence for the clinical translation of CAD systems. These
studies reported similar diagnostic accuracy between radiologists with and without CAD
assistance, on patient cohorts of size 216 and 236, respectively, indicating the potential for
widely generalizable systems that can be clinically deployed.

Due to the marked heterogeneity in study designs, algorithms employed, datasets
evaluated upon, evaluation strategies, and performance metrics, it was not possible to per-
form a meta-analysis or to draw conclusions on whether any particular class of algorithms
outperformed others. Furthermore, deficiencies in the included studies meant we could
not conclude the readiness of any presented CAD system to be deployed clinically. We
now provide recommendations for future studies.

Firstly, CAD evaluation studies and underlying algorithms should be designed with a
clinically relevant question or use in mind. A specific use of CAD within the diagnostic
pathway will mandate the ideal characteristics of the patient cohort and reference standard
of both training and test sets and inform the appropriate thresholding and benchmark
for performance outcomes. The majority of studies included in this systematic review
did not indicate their intended use a priori. For ROI-C systems, it seems appropriate that
CAD could be used to further inform the decision to biopsy following lesion detection
by a radiologist. In this setting, a desirable CAD system would maintain high sensitivity
to minimize missed cancers, while improving the specificity of radiologist scoring to
reduce unnecessary biopsies, particularly for indeterminate lesions where the rate of
clinically significant cancer on biopsy is only 13–21% [7]. In comparison, LL&C systems
may be used by radiologists concurrently during reporting to highlight suspicious areas
with the hope of improving detection sensitivity. LL&C systems such as those presented
in this review, which matched the sensitivity of expert radiologists, can improve the
sensitivity of less experienced radiologists, and reduce missed cancers due to human error,
distraction, or fatigue. Alternatively, PAT-C may have a role to play as a first reader to
either prioritize examinations for radiologists to report or to identify negative cases that
may not need radiologist review at all. The intended use of the CAD system should be
reflected in the evaluation setting, and although knowledge of the stand-alone performance
of CAD systems may be helpful in providing context and confidence to radiologists in their
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underlying performance, assessment of the interaction between radiologists and the CAD
system should be made in line with the CAD system’s planned clinical use. Moreover, we
note that in Giannini et al., readers had variable changes in their diagnostic accuracy when
using CAD, likely reflecting individual readers’ trust in the CAD system versus their own
experience. Therefore, multiple-reader studies are preferred [35].

Secondly, test sets should be appropriate and well-curated in terms of size, diversity,
and relevance. Many included studies used small patient cohorts for evaluation, irre-
spective of evaluation strategy. The largest evaluation cohort among the included studies
was in the study by Cao et al. [33], where five-fold cross-validation was applied using
417 patients with 728 lesions, 442 of which were Gleason score ≥3 + 4. Studies should
determine the minimum sample size required to adequately power a study to detect some
clinically relevant effect size for CAD and to allow statistically valid comparisons [48];
among the studies included in this review, only Gaur et al. [34], Greer et al. [36], and
Mehralivand et al. [38] included such calculations. Notably, the majority of included stud-
ies used cross-validation of internal evaluation cohorts from a single center and MR scanner,
which prohibit understanding of the generalizability of the CAD system. Held-out test
sets completely independent of the training set are preferred to cross-validation/internal
validation, and should include diverse data from multiple centers and MR vendors, as in
Gaur et al. [34]. We note that those studies using external test cohorts did not demonstrate
the superior performance of CAD versus radiologists [28,34,38,41], as seen in some studies
using internal datasets [23,35,42]. The likely cause for less optimistic results of CAD evalu-
ated using external test cohorts is a generalization gap due to the varying appearances of
MRI obtained from scanners with different manufacturers, field strengths, and acquisition
parameters. It would be interesting to study the specific differences which cause the largest
generalization gaps, and present results for individual scanners in future work. In addition,
calibration of CAD systems to external MR data should also be considered to improve
performance on external test cohorts.

Thirdly, CAD evaluation studies should use a widely accepted and accurate histopatho-
logical reference standard. For biopsy naïve populations, a reference standard that com-
bines targeted biopsy with a biopsy technique that samples the gland frequently and
systematically, such as transperineal template prostate-mapping (TTPM) biopsy, is favored
over prostatectomy, due to the associated spectrum bias. However, few studies used a
TTPM biopsy reference standard as it is usually reserved for planned clinical trials, sug-
gesting the need for specific planned clinical trials for CAD system evaluation, as opposed
to the current practice of evaluating CAD systems using retrospective clinical data. In
addition, care should be taken when using MR-negative cases without histopathological
confirmation for CAD system training and evaluation. It is important to avoid discarding
such cases if MR-negative cases with histopathological confirmation are not available, to
avoid a spectrum bias towards radiologically abnormal MRIs; in these cases, long-term
follow-up or expert consensus reviews may be sufficient as a reference standard.

Fourthly, CAD evaluation studies should consider non-imaging data sources. Remark-
ably, only two studies used clinical data outside of the imaging and radiologist score [31,45].
Although the focus is often on the available MR data, non-imaging biomarkers such as
PSA density have been shown to be useful predictors of clinically significant cancer; incor-
porating such data when available, alongside MR data, may enhance algorithms [49,50].

Fifthly, the choice of performance measures used to evaluate CAD systems should
be pre-specified and hold appropriate clinical context for comparison to radiologists. Re-
grettably, some studies only reported an AUC, and others introduced bias by thresholding
the probabilistic output of their CAD systems using the test cohort or not specifying how
thresholds were chosen. The output of CAD systems should be thresholded without
knowledge of the test set, to produce an unbiased measure of sensitivity and specificity.
The choice of operating point will depend on the accepted risk threshold for a particular
population. However, logical clinical reasoning should be applied to achieve a desired
sensitivity or specificity for the particular use case. Alternative statistical methods such
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as decision curve analysis, used by Deniffel et al., may be appropriate if authors wish to
compare across a range of risk thresholds. Thresholds for LL&C algorithms may be best
chosen by the acceptable false-positive rate that still delivers a sufficiently high sensitivity
for clinically significant cancer. High false-positive rates were noted in multiple stud-
ies [34,35,39], and efforts to quantify an acceptable false-positive rate for prostate mpMRI
CAD may be helpful, as has been done in other applications of CAD [51].

Sixthly, more CAD systems must be made publicly available, to allow the most
promising CAD systems to be evaluated more extensively by the community. Among the
CAD systems presented and/or evaluated in this systematic review, only the deep learning
CAD system presented and evaluated in the studies by Schelb et al. [39,40] and the Watson
ElementaryTM system evaluated in the study by Thon et al. [41] have been made publicly
available. Alternatively, curation and sharing of large, diverse, and well-labelled datasets
would allow direct comparisons of algorithms and potentially expedite the development of
more robust and generalizable CAD systems. Thankfully efforts are underway for sharing
prostate imaging data between centers and commercial companies, and furthermore, well-
designed AI challenges in prostate MR may be a solution to evaluate and compare multiple
algorithms externally [52,53].

Finally, prospective evaluation of CAD systems is necessary to simulate clinical de-
ployments and avoid biases that can affect retrospective evaluation. In this systematic
review, we were not able to identify any prospective evaluation studies that met our se-
lection criteria. For impactful prospective evaluation, consideration about how the CAD
output is presented to clinicians and used within the diagnostic pathway is crucial. Notably,
Schelb et al. [40] simulated clinical deployment of their CAD system with retrospective
data and highlighted the considerations needed for ongoing quality assurance to maintain
and optimize performance over time at a single center; their study is a useful and practical
step towards true prospective evaluation.

There are some limitations to this review. Firstly, whilst we believe our search strategy
was comprehensive, there is a possibility that some relevant studies may not have been
included, in particular those studies that may have been published in the time between
our search and publication of this review. Secondly, the heterogeneity of studies dictated
our choice of narrative synthesis rather than meta-analysis, restricting direct comparisons
between study outcomes and proclamation of the superiority of particular algorithms
or a class of algorithms. In particular, the variability of individual studies’ definitions
of clinically significant cancer, which are likely to have had a large impact on reported
radiologist and CAD performance, was a major factor in our decision not to conduct
a meta-analysis or to compare studies directly. Finally, this systematic review focused
on diagnostic accuracy and did not discuss other important outcomes for CAD such as
improvements in reporting time or inter-reader agreement.

5. Conclusions

In conclusion, we found a lack of evidence to support the deployment of CAD systems
based on AI algorithms for the initial diagnosis of prostate cancer on MRI, presently. Of the
studies that met the selection criteria for this systematic review, none followed a prospective
study design, and a performance benefit from CAD was only seen in studies that performed
a retrospective evaluation using internal patient datasets. In the few studies that evaluated
CAD using externally obtained patient data, CAD performance was either inferior to or
on-par with radiologists alone. Future studies must show a performance benefit from CAD
prospectively in external, multicenter settings, and must avoid the methodological flaws
identified in the studies included in this systematic review. In addition, future studies
must be designed to answer clinically relevant questions and describe the specific clinical
use of the CAD system they present. Greater efforts by the community to build bespoke,
high-quality large public datasets to enable the robust external and prospective evaluation
of CAD required, will accelerate progress substantially.



Cancers 2021, 13, 3318 24 of 27

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13133318/s1, Supplementary Material: Adapted QUADAS-2 Tool with Additional
Signaling Questions.

Author Contributions: Conceptualization, T.S., P.M., D.A. and S.P.; methodology, T.S., P.M., S.M.,
D.A. and S.P.; formal analysis, T.S., P.M., S.M. and S.P.; data curation, T.S. and P.M.; writing—original
draft preparation, T.S. and P.M.; writing—review and editing, T.S., P.M., M.A., S.M, D.A, S.O. and
S.P.; supervision, S.P.; project administration, T.S. and P.M.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: S.M. receives funding from National Cancer Imaging Translation Accelerator
(NCITA), National Institute for Health Research (NIHR) and the University College London/ Uni-
versity College London Hospital (UCL/UCLH) Biomedical Research Centre. D.A. receives research
support from Philips and Siemens. S.P. received funding from the University College London/
University College London Hospital (UCL/UCLH) Biomedical Research Centre.

Appendix A

Table A1. MEDLINE Search Terms and Strategy.

# Search Term

1 exp Prostatic Neoplasms/
2 Prostat * Cancer *.mp.
3 Prostat * Neoplasm *.mp.
4 Prostat * Malignanc *.mp.
5 Prostat * Tumo ?r.mp.
6 Prostat * carcinoma *.mp.
7 1 or 2 or 3 or 4 or 5 or 6
8 exp Magnetic Resonance Imaging/
9 Magnetic Resonance Imaging.mp.
10 Magnetic Resonance.mp.
11 MRI.mp.
12 MR.mp.
13 8 or 9 or 10 or 11 or 12
14 exp Artificial Intelligence/
15 exp Diagnosis, Computer-assisted/
16 Artificial Intelligence.mp.
17 AI.mp.
18 Computer Assisted.mp.
19 Computer Diagnosis.mp.
20 Computer Aided Diagnosis.mp.
21 Computer Aided Detection.mp.
22 CAD *.mp.
23 Machine Learning.mp.
24 Deep Learning.mp.
25 Neural Network *.mp.
26 Convolutional Neural Network *.mp.
27 CNN.mp.
28 Support Vector Machine *.mp.
29 SVM.mp.
30 Automatic Classif *.mp.
31 14 o 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30
32 7 and 13 and 31
33 32 Limit to Human Studies
34 33 Limit to English Language

*—MEDLINE truncation to find variant word endings, ?—MEDLINE wildcard to find alternate spellings.
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