cancers

Systematic Review

Artificial Intelligence Compared to Radiologists for the Initial
Diagnosis of Prostate Cancer on Magnetic Resonance Imaging;:
A Systematic Review and Recommendations for Future Studies

Tom Syer 1'(, Pritesh Mehta 2*, Michela Antonelli 3, Sue Mallett !, David Atkinson 1), Sébastien Ourselin 3 and

Shonit Punwani 1*

check for

updates
Citation: Syer, T.; Mehta, P;
Antonelli, M.; Mallett, S.; Atkinson,
D.; Ourselin, S.; Punwani, S. Artificial
Intelligence Compared to
Radiologists for the Initial Diagnosis
of Prostate Cancer on Magnetic
Resonance Imaging: A Systematic
Review and Recommendations for
Future Studies. Cancers 2021, 13, 3318.
https://doi.org/10.3390/
cancers13133318

Academic Editors: Reza Forghani,
Rajiv Gupta and Farhad Maleki

Received: 28 May 2021
Accepted: 30 June 2021
Published: 1 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Centre for Medical Imaging, Division of Medicine, Bloomsbury Campus, University College London,
London WC1E 6DH, UK; t.syer@ucl.ac.uk (T.S.); sue.mallett@ucl.ac.uk (5.M.); d.atkinson@ucl.ac.uk (D.A.)
Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences,
Bloomsbury Campus, University College London, London WC1E 6DH, UK; pritesh.mehta.17@ucl.ac.uk
School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences and Medicine,

St Thomas’” Campus, King’s College London, London SE1 7EH, UK; michela.antonelli@kcl.ac.uk (M.A.);
sebastien.ourselin@kcl.ac.uk (5.0.)

*  Correspondence: shonit.punwani@gmail.com

1t Joint First Author.

Simple Summary: Radiologists interpret prostate multiparametric magnetic resonance imaging
(mpMRI) to identify abnormalities that may correspond to prostate cancer, whose status is later
confirmed by MR-guided targeted biopsy. Artificial intelligence algorithms may improve the di-
agnostic accuracy achievable by radiologists alone, as well as alleviate pressures on the prostate
cancer diagnostic pathway caused by rising case incidence and a shortage of specialist radiologists
to read prostate mpMRI. In this review article, we considered studies that compared the diagnostic
accuracy of radiologists, artificial intelligence algorithms, and where possible, a combination of
the two. Our review found insufficient evidence to suggest the clinical deployment of artificial
intelligence algorithms at present, due to flaws in study designs and biases caused by performance
comparisons using small, predominantly single-center patient cohorts. Several recommendations are
made to ensure future studies bear greater clinical impact.

Abstract: Computer-aided diagnosis (CAD) of prostate cancer on multiparametric magnetic reso-
nance imaging (mpMRI), using artificial intelligence (Al), may reduce missed cancers and unnecessary
biopsies, increase inter-observer agreement between radiologists, and alleviate pressures caused by
rising case incidence and a shortage of specialist radiologists to read prostate mpMRI. However,
well-designed evaluation studies are required to prove efficacy above current clinical practice. A
systematic search of the MEDLINE, EMBASE, and arXiv electronic databases was conducted for
studies that compared CAD for prostate cancer detection or classification on MRI against radiologist
interpretation and a histopathological reference standard, in treatment-naive men with a clinical
suspicion of prostate cancer. Twenty-seven studies were included in the final analysis. Due to
substantial heterogeneities in the included studies, a narrative synthesis is presented. Several studies
reported superior diagnostic accuracy for CAD over radiologist interpretation on small, internal
patient datasets, though this was not observed in the few studies that performed evaluation using
external patient data. Our review found insufficient evidence to suggest the clinical deployment of
artificial intelligence algorithms at present. Further work is needed to develop and enforce method-
ological standards, promote access to large diverse datasets, and conduct prospective evaluations
before clinical adoption can be considered.

Keywords: artificial intelligence; computer-aided diagnosis; machine learning; deep learning; mag-
netic resonance imaging; PRISMA-DTA; prostate cancer; QUADAS-2; systematic review
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1. Introduction

International guidelines recommend multiparametric magnetic resonance imaging
(mpMRI) for biopsy naive men with suspected prostate cancer for lesion localization prior
to MR-guided targeted biopsies [1,2]. Predominantly, radiologists interpret and report
mpMRI using the Prostate Imaging-Reporting and Data System (PI-RADS) [3] or Likert-
impression scale [4]; sensitivities ranging between 81-90% and specificities ranging between
64-81% have previously been reported for clinically significant prostate cancer detection
on mpMRI, by radiologists, in treatment-naive men [5]. Crucially, mpMRI followed by
MR-guided targeted biopsy improves the detection of clinically significant prostate cancer
and reduces the over-diagnosis of clinically insignificant prostate cancer, compared to
non-targeted transrectal ultrasound-guided (TRUS) biopsies [6]. However, improvements
to the prostate cancer diagnostic pathway are needed to identify the small proportion of
men whose clinically significant prostate cancer is missed by radiologists reading mpMRI,
to reduce the large number of men who undergo unnecessary biopsies due to false positives
on mpMR]I, and to increase the inter-observer agreement between radiologists of varying
experience [5,7-9].

Computer-aided diagnosis (CAD) systems that use artificial intelligence (Al) are ac-
tively being researched for use in a variety of medical image analysis tasks [10]. The most
common roles performed by CAD systems for MRI-based prostate cancer diagnosis are in
lesion classification, lesion detection and segmentation, and patient classification [11]. Pro-
vided clinical efficacy of systems can be demonstrated, clinical deployment to the prostate
cancer diagnostic pathway can be envisioned as (i) companion systems for radiologists dur-
ing their clinical read, (ii) second reader systems that provide an independent diagnosis, or
(iii) patient triage systems that create a clinical workflow based on patient risk. In addition
to anticipated improvements in diagnostic accuracy and reporting consistency between
readers/centers, CAD systems can alleviate pressures caused by rising case incidence and
a shortage of specialist radiologists to read prostate mpMRI [12].

Earlier reviews of CAD systems for MRI-based prostate cancer diagnosis have focused
on the technical aspects and potential applications of systems [11,13]. By contrast, this
systematic review considers whether sufficient evidence exists to suggest clinical deploy-
ment of CAD for prostate MRI. In order to translate systems from research to clinical use,
they must demonstrate an advantage over current clinical practice and provide enhanced
clinical outcomes. Therefore, clinical readiness of CAD systems should be determined
through comparison of their performances to the performance of radiologists, who are the
current clinical standard. Accordingly, the key selection criteria for study inclusion in this
systematic review is reported radiologist performance to which the performance of CAD
is compared.

Our review found insufficient evidence to suggest the clinical deployment of Al CAD
systems for prostate MRI, at present, due to methodological flaws in studies identified using
quality assessment frameworks, and biases caused by performance comparisons using
small, predominantly single-center patient cohorts. While several studies reported superior
performance for CAD over radiologist interpretation on small, internal patient datasets, this
was not observed in the few studies that performed evaluation using external patient data.
Our review concludes that further work is needed to develop and enforce methodological
standards, promote access to large diverse datasets, and conduct prospective evaluations
before clinical adoption can be considered.

2. Materials and Methods

This review was carried out according to the preferred reporting items for systematic
review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guidance [14]
and performed by both clinical experts and algorithm developers to ensure accurate
analysis and sufficient critique of the information presented in studies.
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2.1. Literature Search

A systematic search of the literature was undertaken by two reviewers independently
that included both a clinician and an algorithm developer with an interest in prostate MRI
CAD. The search was performed within the MEDLINE, EMBASE, and arXiv electronic
databases, and the OpenSIGLE repository to explore possible unpublished grey literature.
Search terms and strategy were developed by considering previous systematic reviews of
Al in medical imaging found in the Cochrane Database of Systematic Reviews, National
Institute of Health Research (NIHR) Health Technology Assessment (HTA) database, and
the Database of Abstracts of Reviews of Effects (DARE). The search terms and strategy used
for MEDLINE are shown in Table A1 (Appendix A); alterations were made to suit each
electronic database. Once eligible studies were identified, the Science Citation Index was
used to identify further studies which cited those found using the original search terms,
and references were manually screened to identify any further studies that may have been
missed. All studies were considered up until the date of the search: 25 March 2021.

2.2. Selection Criteria

Studies were included if (i) they evaluated CAD for prostate cancer detection or
classification on MRI, (ii) CAD performance was compared to radiologist interpretation
and against a histopathological reference standard, (iii) the evaluation patient cohort
was treatment-naive, and (iv) a full-text article was available. Studies were excluded
if (i) MRI sequences other than T1-weighted imaging, T2-weighted imaging, diffusion-
weighted imaging, or dynamic contrast-enhanced imaging were used, (ii) the comparator
radiologist(s) did not have access to at least axial T2-weighted imaging and diffusion-
weighted imaging with apparent diffusion coefficient map for reporting, and (iii) the
patient cohort used for testing was less than thirty patients.

2.3. Data Extraction

Studies were initially screened by relevance of title and abstract; full texts of the
remaining studies were read independently by the two reviewers. Studies that met the
selection criteria were included; any disagreements between the two reviewers were solved
by reaching a consensus or consulting a third expert reviewer if necessary.

Extracted data were categorized broadly into patient and study characteristics, radiol-
ogist and CAD system characteristics, and diagnostic performance. Sensitivity, specificity,
and area under the receiver operating characteristic curve (AUC) were extracted at both
per-lesion and per-patient levels, with 95% confidence intervals where available. Where
multiple CAD systems were assessed in the same study, the results corresponding to
highest performing system were considered. In studies where the requisite performance
statistics were not reported, the performance statistics were calculated from the available
data if possible, and attempts were made to contact authors if data were missing or unclear
from their article.

2.4. Risk of Bias Assessment

In light of the lack of standardized and validated quality assessment tools for assessing
studies concerning Al in medical imaging, we used an adapted version of the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool with additional signaling
questions from the preliminary QUADAS-C tool [15,16] and a published editorial outlining
key considerations when assessing radiology research on Al [17]. The QUADAS-2 adapted
tool and additional signaling questions are shown in the Supplementary Materials.

2.5. Data Synthesis

Due to substantial heterogeneities in CAD system applications, study designs, al-
gorithms employed, patient cohorts used for evaluation, evaluation strategies, and per-
formance metrics, it was decided that analysis would be by narrative synthesis rather
than statistical pooling. Meta-analysis is not recommended for diagnostic test accuracy
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studies where the patient cohorts and test settings significantly differ between studies and
would likely produce a biased result [18]. Publication bias was not assessed as there are no
recommended methods for diagnostic accuracy studies [18].

3. Results
3.1. Literature Search

A PRISMA flow diagram of the systematic search is shown in Figure 1. A total of
27 studies were included in the final analysis [19-43]. The 27 studies, and by extension,
the CAD systems presented or evaluated within them, were categorized as either ROI
Classification (ROI-C), Lesion Localization and Classification (LL&C), or Patient Classi-
fication (PAT-C); the categories are shown diagrammatically in Figure 2. ROI-C refers to
(n = 16) studies where CAD systems classified pre-defined regions of interest (ROI), e.g.,
manually contoured lesions [19-32,44,45], LL&C refers to (n = 10) studies where CAD
systems performed simultaneous lesion localization and classification [33-42], and PAT-C
refers to (n = 1) studies where CAD systems classified patients directly [43].

Included

Records identified though Additional records identified
database searching through other sources
(n=1816) (n=147)
Y

Records after duplicates removed

(n=1742)
Y
Articles titles screened > Artlctli(:,lz (;)écrzél.;dn?:gafter
(n=1742) (n=1268)
\ 4
Article abstracts Articles excluded after
reviewed > abstract review
(n=474) (n=401)
Y
Full-texts reviewed R Articles excludgd after
> full-text review
(n=73) (n=46)
Y
Final included studies
(n=27)

Figure 1. PRISMA flow diagram of the systematic search.
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Figure 2. Workflow of typical prostate cancer AI CAD systems. Systems are categorized as ROI Classification (ROI-C), Lesion
Localization and Classification (LL&C), or Patient Classification (PAT-C). Blue indicates mpMRI input, yellow indicates
manual processes, white indicates automated processes, and green indicates intermediate or final outputs. ROI = region of
interest. CNN = convolutional neural network. ML = machine learning. ML* here refers to ML algorithms exclusive of
CNN:s, such as support vector machines, random forest, logistic regression, and artificial neural networks.

3.2. Patient and Study Characteristics

Patient and study characteristics are summarized in Table 1. Studies were published
between 2013 and 2021 from groups spanning Asia, Europe, and the USA. All 27 included
studies used a retrospective study design. The median size of patient cohorts used for
evaluation was 98 (range 30 to 417, n = 26) for studies where the size of the evaluation
patient cohort was reported [19-29,31-45]. Most studies (1 = 18) considered clinically sus-
pected patient cohorts [20-23,27,31,34—45], while fewer studies (1 = 9) considered patient
cohorts with biopsy-proven prostate cancer [19,24-26,28-30,32,33]. Histopathological refer-
ence standards used in studies were one or a combination of the following: transperineal
template prostate-mapping (TTPM) biopsy, in-bore targeted biopsy, TRUS targeted biopsy,
TRUS saturation biopsy, TRUS systematic biopsy, or radical prostatectomy. The majority
of studies (n = 22) collected scans using 3T MR scanners [19-21,23-25,29-34,36-45], while
fewer studies (n = 4) used 1.5T MR scanners [22,26,27,35]; one further study used 3T mainly
but included one scan acquired at 1.5T [28]. Evaluation using multicenter data was com-
pleted in three studies [19,34,38], and only three studies used multivendor MRI data for
evaluation [19,23,34].
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Table 1. Patient and Study Characteristics.

No. of

Pre- or Post-

Field

o

n

Study Year Country Patients Age, Years PSA, ng/mL Patient Population Biopsy MRI Strength, T  Centers/Vendors Reference Standard
ROI Classification (ROI-C)
Algohary [19] 2020 USA 115 NR NR Biopsy proven Pre-biopsy 3 4/2 TRUS (12-core)
Antonelli [20] 2019 UK 134 64 (43-83) 7.4 (2.5-30.3) Clinically suspected Pre-biopsy 3 1/1 TTMB +/— TB
Bonekamp [21] 2018 Germany 133 63 (58-71) 7.5 (5.4-11) Clinically suspected Pre-biopsy 3 1/1 TB
Dikaios [22] 2015 UK 85 63 * (45-77) 8.7 *(0.2-39) Clinically suspected Pre-biopsy 15 1/1 TTMB
Dinh [23] 2018 France 129 67 (IQR 61-70) 7.3 (IQR 5.1-11.5) Clinically suspected Pre-biopsy 3 1/2 TRUS (4-core) + TB
Hambrock [24] 2013 Netherlands 34 64 * (53-74) 7.5*(3.4-21.8) Biopsy proven Post-biopsy 3 1/1 RP
Iyama [25] 2017 Japan 60 70 * (55-81) 10.4 * (5-160) Biopsy proven Unclear 3 1/1 RP
Li [45] 2021 China 62 65*(SD 9.4) NR Clinically suspected Pre-biopsy 3 1/1 TRUS (12-core)/RP
Litjens [44] 2015 Netherlands 107 66 (48-83) 13 (1-56) Clinically suspected Pre-biopsy 3 1/1 TB
Niaf [26] 2014 France 30 62 (45-70) 7.4 (4.6-40) Biopsy proven Post-biopsy 1.5 1/1 RP
Niu [27] 2017 China 184 59 (42-79) 12.0 (4-98.3) Clinically suspected Pre-biopsy 1.5 1/1 TRUS (12-core) + TB
Transin [28] 2019 France 74 66 (IQR, 62-69) 7.4 (IQR 5.7-11) Biopsy proven Post-biopsy 3/158 1/1 RP
Wang [29] 2017 China 54 74 (IQR, 66-78) 23.6 (IQR, 12.5-56.1) Biopsy proven Post-biopsy 3 1/1 RP
Winkel [30] 2020 Switzerland 40 ** 69*(SD87)t 7*(SD11.2)t Biopsy proven Pre-biopsy 3 1/1 TRUS (12/18 core) + TB
WozZnicki [31] 2020 Germany 40 69 (IQR 63-72) 8.2 (IQR 6.8-11.9) Clinically suspected Pre-biopsy 3 1/1 TRUS (12-core) + TB
Zhong [32] 2019 USA 30 NR (43-80) * 79*SD125) 1 Biopsy proven Mix 3 1/1 RP
Lesion Localization and Classification (LL&C)
Cao [33] 2019 USA 417 NR NR Biopsy proven Pre-biopsy 3 1/1 RP
Gaur [34] 2018 USA 216 62 * (42-79) 8.1 *(0.3-31.9) Clinically suspected Pre-biopsy 3 5/3 RP/TRUS (12/24-core)
Giannini [35] 2017 Italy 89 67 (63-73) 7.5(6.2-11.0) Clinically suspected Pre-biopsy 15 1/1 TB/Saturation biopsy -
Greer [36] 2018 USA 163 62 * (43-83) 9.8 * (1.5-84.6) Clinically suspected Pre-biopsy 3 1/1 RP/TRUS (12-core)
Litjens [37] 2014  Netherlands 347 NR NR Clinically suspected Pre-biopsy 3 1/1 TB
Mehralivand [38] 2020 Multiple 236 NR NR Clinically suspected Pre-biopsy 3 5/NR RP/TRUS (12-core)
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Table 1. Cont.

Study Year Country Pljt(;.ef\fs Age, Years PSA, ng/mL Patient Population gfs;’g; II:/([)IS{tI. Strfrileglgl, T Centersn/i/en dors Reference Standard
Schelb [39] 2019 Germany 62 64 (IQR 60-69) 6.9 (IQR 5.1-8.9) Clinically suspected Pre-biopsy 3 1/1 TRUS + TB
Schelb [40] 2020 Germany 259 61 (IQR 61-72) 7.2 (IQR 5.2-10.0) Clinically suspected Pre-biopsy 3 1/1 TB + Saturation biopsy
Thon [41] 2017 Germany 79 65 * (48-80) NR Clinically suspected ¥ Pre-biopsy 3 1/1 TB

Zhu [42] 2019 China 153 66 (IQR 30-73) 12.3 (IQR 7.9-21) Clinically suspected Pre-biopsy 3 1/1 TRUS (12/13-core) + TB
Patient Classification (PAT-C)
Deniffel [43] 2020 Canada 50 64 * (SD 8.4) 7.2 (IQR 5.2-11.2) Clinically suspected Pre-biopsy 3 1/1 TB +/— TRUS (12-core)

(Age and PSA median (min-max range) reported unless stated otherwise; IQR—interquartile range; MRI—magnetic resonance imaging; NA—not applicable; NR—not reported; PSA—prostate-specific antigen;
RP—radical prostatectomy; SD—standard deviation; T—tesla; TB—targeted biopsy; TTMB—transperineal template prostate-mapping biopsy; TRUS—transrectal ultrasound-guided biopsy)* Mean t Includes
training and test set { Previous negative systematic biopsy § Only one scan using 1.5T " PSA and MRI surveillance were used in patients with negative mpMRI who did not undergo biopsy ** Lesions reported.
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3.3. Reader and CAD System Characteristics

Reader and CAD system characteristics are summarized in Table 2. In the majority
of studies (n = 26), readers scored suspicious lesions using mpMRI [20-45], while in one
study, biparametric MRI (bpMRI) was used [19]. In 15 studies, patient cases were reported
by a single reader [19-23,28,32,33,37-40,42—44], while in the remaining 12 studies, patient
cases were reported by more than one reader [24-27,29-31,34-36,41,45]; where multiple
readers reported on each patient, the presented reader performance is either an average
of reader performance or based on the consensus view of readers. Reader experience
varied significantly across studies; in studies where reader performance was stratified by
experience level, details of the most experienced reader group were extracted. Considerable
heterogeneity was observed in the machine learning algorithms employed by the CAD
systems: five studies presented convolutional neural networks (CNN) [32,33,39,40,43], one
study evaluated the commercially available Watson Elementary™ system [41], while the
remaining 21 studies presented or evaluated CAD systems based on traditional machine
learning algorithms [19-22,24,25,35-38,41,45]. Across the studies, a variety of methods
were used to construct datasets for training and evaluation. Six studies used random
splitting [19,30-32,39,43], five studies used temporal splitting [21-23,40,45], five studies
used leave-one-patient-out (LOPO) cross-validation [24-26,29,37], four studies used an
independent internal testing cohort [35,36,42,44], four studies obtained external data for
testing [28,34,38,41], two studies used five-fold cross-validation [20,33], and one study did
not report how they separated data for training and evaluation [27].
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Table 2. Reader and CAD System Characteristics.

Study Reader Characteristics CAD System Characteristics
MRI ReNa(:ie(;: s Reader Experience, Years Algorithm Input Sequences Discriminative Features Evaluation Strategy

ROI Classification (ROI-C)

ROI radiomic features

Algohary [19] bp 1 7-25 QDA T2WI, ADC (intra-tumoral and peri-tumoral) Randomly split test cohort
Antonelli [20] mp 1 10 (>100 MRIs/year) PZ: LinR, TZ: NB ADC, DCE, PSAd ROI radiomic features, PSAd Five-fold CV
Bonekamp [21] mp 1 >3* RF T2WI, ADC, DWI (b1500) ROI radiomic features Temporally split test cohort
Dikaios [22] mp 1 7 (300—400 MRIs/year) LogR T2WI, ADC, DCE ROI radiomic features Temporally split test cohort
Dinh [23] mp 1 0.25-17 GLMM ADC, DCE ROI radiomic features Temporally split test cohort
Hambrock [24] mp 41 NR (>100 MRIs) LDA ADC, DCE ROI radiomic features LOPO CV
Iyama [25] mp 2 7 LogR T2WI, ADC ROI radiomic features LOPO CV
Li [45] mp 2 >5 LogR T2WI, ADC, DWI (b1000), DCE ROt radi“/’;licsif)‘fe‘f;essfl'RADS Temporally split test cohort
Litjens [44] mp 1 2-20 LogR PDI, T2WI, %%% DWI (b800), RF likelihood, PI-RADS v1 score Internal independent test cohort
Niaf [26] mp 5% 1-7 SVM T2WI, DWI (b600), DCE ROI radiomic features LOPO CV
Niu [27] mp 2 14 LogR T2WI, ADC ROI radiomic features NR
Transin [28] mp 1 20 GLMM ADC, DCE ROI radiomic features External test cohort
Wang [29] mp 2 10 SVM T2WI, ADC, DWI (b1500), DCE ~ RO! radiom?;iig‘r‘zes' PI-RADS LOPO CV
Winkel [30] mp 2 >5 RF T2WI, ADC, DCE ROI radiomic features Randomly split test cohort
ROI/WG radiomic features,
Woznicki [31] mp 2 >7 Ensemble (SVM, LogR) T2WI, ADC PI-RADS v2 score, PSAd, DRE Randomly split test cohort
findings
Zhong [32] mp 1 >10 (>500 MRIs/year) CNN T2WI, ADC CNN learned features Randomly split test cohort
Lesion Localization and Classification (LL&C)
Cao [33] mp 1 >10 (>1000 MRIs/ year) CNN T2WI, ADC CNN learned features Five-fold CV
Gaur [34] mp 2 NR (500-2000 MRIs/year) RF T2WI, ADC, DWI (b1500) Voxel radiomic features Multicenter external test cohort
Giannini [35] mp 3 2—4 (120-200 MRIs/year) SVM T2WI, ADC, DCE Voxel radiomic features Internal independent test cohort
Greer [36] mp 2 NR (<500-2000 MRIs/year) RF T2WI, ADC, DWI (b2000) Voxel radiomic features Internal independent test cohort
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Table 2. Cont.

CAD System Characteristics

Study Reader Characteristics
MRI ReNa?i.e(;z s Reader Experience, Years Algorithm Input Sequences Discriminative Features Evaluation Strategy
Stage 1: voxel radiomic features
i PDI, T2WI, ADC . !
+ , , , .
Litjens [37] mp 1 20 RF DWI (b800), DCE Stage 2..cand1date LOPO CV
radiomic features
. <1->3 or Lo .

Mehralivand [38] mp 1 <100->300 MRIs /year RF T2WI, ADC, DWI (b1500) Patch-based radiomic features Multicenter external test cohort
Schelb [39] mp 1 >3 * CNN T2WI, ADC, DWI (b1500) CNN learned features Randomly split test cohort
Schelb [40] mp 1 >3 * CNN T2WI, ADC, DWI (b1500) CNN learned features Temporally split test cohort

Thon [41] mp 2 NR Watson ElementaryTM T2WI, ADC, DCE Voxel radiomic features External test cohort
Zhu [42] mp 1 1-2 (200 MRIs/year) ANN T2WI, ADC, DCE Voxel radiomic features Internal independent test cohort
Patient Classification (PAT-C)
Deniffel [43] mp 1 3-15 CNN T2WI, ADC, DWI (b1600) CNN learned features Randomly split test cohort

(ADC—apparent diffusion coefficient; ANN—artificial neural network; b—b-value; bp—biparametric; CAD—computer-aided diagnosis; CNN—convolutional neural network; CV—cross-validation; DCE—
dynamic contrast-enhanced imaging; DWI—diffusion-weighted imaging; GLMM—generalized linear mixed model; LinR—linear regression; LogR—logistic regression; LOPO—leave-one-patient-out;
mp—multiparametric; MRI—magnetic resonance imaging; NB—naive Bayes; NR—not reported; PDI—proton density image; PI-RADS—Prostate Imaging-Reporting and Data System; PSAd—prostate
specific antigen density; PUN—phenomenological universalities; PZ—peripheral zone; QDA—quadratic discriminant analysis; RE—random forest; ROI—region of interest; SVM—support vector machine;
T2WI—T2-weighted imaging; TZ—transition zone; WG—whole gland). * One radiologist with less than 3 years of experience reported 2% of examinations. t Reported by or under the supervision of an expert

radiologist (>20 years). } Inexperienced readers not included. § Minimum readers per scan.
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3.4. Risk of Bias Assessment

A summary of the QUADAS-2 assessment of included studies is shown in Figure 3.
Generally, a low risk of bias was observed for patient selection. The majority of studies
(n =20) included consecutive patient cohorts with appropriate inclusion and exclusion crite-
ria [20-25,27-29,31-33,35,37,39-42,44,45]. However, in six studies the risk of bias for patient
selection was unclear due to an insufficient description of case selection [19,26,30,34,36,43],
and one study had a high risk of bias for patient selection due to a case—control design [38].
There was a high concern over the applicability of patient cohorts in eight studies featuring
biopsy-proven patient cohorts, where a radical prostatectomy reference standard was
used [24-26,28,29,32,33,38], due to the spectrum bias associated with patients who undergo
radical prostatectomy [46] and a lack of cases without prostate cancer. In addition, one
further study that only included patients who underwent radical prostatectomy or had a
negative mpMRI, and therefore lacked representation of benign false positive MR findings,
was also deemed to have a high applicability concern [38]. Patient applicability was unclear
in three studies where men were imaged following an initial negative TRUS biopsy only,
which differs to the modern-day pre-biopsy setting of MRI [20,41,44], and in one study
where baseline demographics were omitted [19]. In the remaining studies, concerns over
patient cohort applicability were deemed low [21-23,27,31,34-37,39,40,42,43,45]. The risk
of bias for the index test was low in all but six studies where it was deemed high due to the
lack of a pre-specified model cut-off value for calculating sensitivity and specificity [19,30]
or due to determination of the model cut-off value using the same test set data to which the
cut-off was subsequently applied, which likely overestimates the performance that would
be attained during prospective use [29,32,41]. The risk of bias for the index test was unclear
in one study when the radiologist was aware all cases contained cancer [24]. Concerns over
the applicability of the index test were generally low, however, applicability was unclear
in four studies where post-biopsy MRI examinations were considered [24,25,28,29] and
one study that featured a mixed-use of PI-RADS v1 and v2 scoring systems [39], neither of
which are common in current clinical practice.

The risk of bias was low for the reference standard used in 21 studies. However, one
study had a high risk of bias for the reference standard, which was 12-core systematic
TRUS biopsy without supplementation by other biopsy types [19], which is known to
miss clinically significant disease [6]. In the remaining five studies, the risk of bias was
unclear as TRUS biopsy was used to determine negative cases [34,36,38,45] or due to the
lack of histopathological follow-up of some MR negative cases [37]. Concerns over the
applicability of the study endpoint as defined by the reference standard were high in eight
studies [24,26,29,30,34,36,41,45], where the study endpoint did not include the condition
Gleason score > 3 + 4; endpoints which did not include this condition were marked with a
high applicability concern due to their misalignment with generally accepted definitions of
clinically significant cancer [47].

All 27 studies were deemed to have a low risk of bias for study flow and timing,
with consistent use of reference standards for included patients and appropriate intervals
between MRI and obtaining histopathology.

A further quality assessment was conducted against the key considerations for authors,
reviewers, and readers of Al Manuscripts in radiology by Bluemke et al. [17]; a summary of
the quality assessment is shown in Table 3. The vast majority of studies adequately defined
image sets, used widely accepted reference standards for training, and described the
preparation of images. However, the remaining key considerations were only addressed
by small subsets of the included studies: only four studies used external test sets for
final statistical reporting [28,34,38,41], only four studies used multivendor images for
evaluation [19,23,34,38], only three studies justified dataset sizes using statistical sample
size calculations [34,36,38], only six out of 16 ROI-C studies (and all LL&C and PAT-C
studies) demonstrated how the Al algorithm makes decisions by reporting a model cut-off
value, and only three studies featured publicly available systems [39—-41].
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Figure 3. QUADAS-2 risk of bias and applicability concerns summary for all included studies.
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Table 3. Summary of Key Considerations for Artificial Intelligence Studies in Radiology.
Are‘ All Is an External Mull;lii‘;ldor Aéleet}ll,reaisri;sg(if W;rsa:::(? Ings(i)rr::;m Pre‘[/)‘;iZtti}:); of werf)ft l:l(:(?R:;ults gasvﬁilﬁ;:ﬁ Is the‘: Al
Study IAppllce;ble Te'st Set Us‘ec! for Images Been Validation and Standard of Images fqr the AI Algorlthm‘ Algorithm Makes Algon‘thm
mage Sets Final Statistical Used to Evaluate Test Sets Reference That Is Algorithm Compared with Decisions Publicly
Defined? Reporting? the‘AI Justified? Widely Ac'cepted in Adeqt‘lately ]::xper‘t Demonstrated? Available?
Algorithm? the Field? Described? Radiologists?
ROI Classification (ROI-C)
Algohary [19] X X v X X v v X X
Antonelli [20] v X X X 4 v v v X
Bonekamp [21] v X X X X v v v X
Dikaios [22] v X X X 4 v v v X
Dinh [23] v X v X v v v v X
Hambrock [24] v X X X v v v v X
Iyama [25] v X X X v v v X X
Li [45] v X X X ? v v X X
Litjens [44] v X X X 4 4 v ? X
Niaf [26] v X X X 4 X v/ X X
Niu [27] v X X X 4 v v X X
Transin [28] v v X X v X v v X
Wang [29] v X X X 4 v v X X
Winkel [30] X X X X v/ v/ v/ X X
Woznicki [31] 4 X X X 4 v v X X
Zhong [32] v X X X v/ v/ v/ X X
Lesion Localization and Classification (LL&C)
Cao [33] v X X X 4 v v v X
Gaur [34] v v v v v v v 4 X
Giannini [35] v X X X 4 v v v X
Greer [36] v X X v v v v v X
Litjens [37] v X X X 4 v v v X
Mehralivand [38] 4 4 v v ? ? 4 v X
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Table 3. Cont.

Have Are the Size of Was the Algorithm Was the Were the Results Was the Manner
Are All Is an External Multivendor the Trainin Trained Using a Preparation of of the AI in Which the Al Is the AI
Stud Applicable Test Set Used for Images Been Validation ar%,d Standard of Images for the Al Algorithm Aleorithm Makes Algorithm
y Image Sets Final Statistical Used to Evaluate Test Sets Reference That Is Algorithm Compared with gDecisions Publicly
Defined? Reporting? the Al Justified? Widely Accepted in Adequately Expert D trated? Available?
Algorithm? ustieds the Field? Described? Radiologists? emonstrated:
Schelb [39] 4 X X v v v v v
Schelb [40] v X X X v v v v v
Thon [41] v v X X ? v v v v
Zhu [42] v X X X 4 4 v 4 X
Patient Classification (PAT-C)
Deniffel [43] v X X X v v v 4 X

(v—Yes, X—No, ?—Unclear, Al—Artificial Intelligence). * commercially available.
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3.5. ROI Classification Summary of Results

Per-lesion performance for all 16 ROI-C studies is presented in Table 4. Three ROI-
C studies further reported per-patient performance, which is presented in Table 5. The
majority of ROI-C studies (1 = 15) presented CAD systems based on traditional non-deep
learning machine learning algorithms with radiomic and clinical feature input [19-31,45],
while one study used a CNN to classify lesion-centered patches [32].

Of the 16 ROI-C studies, 11 reported standalone CAD performance, where the output
was thresholded to give a sensitivity and specificity [19-23,27-30,32,45]. Of those 11 studies,
three reported superior diagnostic accuracies for CAD compared to the radiologist, with
statistical significance, either by sensitivity [29], specificity [23], or both [27]. In contrast,
one study showed inferior sensitivity for CAD compared to the radiologist, with statistical
significance [28]; among ROI-C studies, only this study performed an evaluation using
externally obtained test data. The remaining seven studies showed no significant differ-
ences between CAD and radiologists in either sensitivity or specificity [19-22,30,32,45].
Methods used to threshold the output of CAD systems were reported in seven of the
11 studies [20-23,28,29,32]. Five studies avoided bias by not using the test cohort when
picking the cut-off value [20-23,28], while in two studies, the cut-off value was chosen
using Youden statistics [29] or the point of maximum accuracy [32] on the test cohort. Three
studies reported a lesion-level AUC only rather than thresholding their CAD systems’
output, with one study reporting a significantly higher AUC than readers [25] and two
studies reporting no significant difference [24,26].

An ensembled CAD system incorporating the radiologist’s reporting score was inves-
tigated in four studies [29,31,44,45], three of which showed significant improvement upon
the radiologist’s score alone. Li et al. [45] combined a CAD likelihood score with a PI-RADS
v2.1 score and a prostate-specific antigen (PSA) value, using a logistic regression classifier,
reporting an increased AUC compared to radiologist PI-RADS v2.1 assessment alone, with
statistical significance. In Litjens et al. [44], a CAD likelihood score was combined with a
PI-RADS v1 score, using a logistic regression classifier; they reported an increased speci-
ficity over radiologist assessment using PI-RADS v1 alone, with statistical significance. In
Wang et al. [29], a support vector machine classifier was used to combine radiomic features
and a PI-RADS v2 score; they found an increase in sensitivity over radiologist PI-RADS v2
assessment alone, with statistical significance. A further two studies compared radiologist
interpretation with and without knowledge of CAD scores [24,26], for which no significant
differences were demonstrated.
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Table 4. Per-Lesion Performance Comparison with 95% Confidence Intervals for Readers, CAD Systems and in Combination.
Readers(s) Alone CAD System Alone Combination
Stud Endpoint
ny ndpoin Level  Zone Cut-Off SN % SP % AUC Chosen SN % SP % AUC Interaction SN % SP % AUC
Threshold
ROI Classification (ROI-C)
D’Amico > . 71 67 63 91
Algohary [19] Intermediate Lesion WP PI-RADSv2, >3 (61-80) (52-80) NR NR (52-72) (79-98) 0.75 NA NA NA NA
Antonelli [20] GS3+3vs. 4 Index % Suspected 72 40 NR Matched to reader 90 65 0.83 NA NA NA NA
component Lesion TZ GS>3+4 82 44 NR SP in training set 92 56 0.75 NA NA NA NA
. . 88 50 Matched to reader 97 58
Bonekamp [21] GS>3+4 Lesion WP PI-RADSv2, >4 (77-95) (42-58) NR SN in training set (88-100) (50-66) 0.88 NA NA NA NA
. i ) 100 14 0.84 CAD SN of 95% in 9 44 0.88
Dinh [23] G5=23+4  Lesion WP Likert(I-5.23  (1o100)  (s-19)  (0.77-0.89) training set (91-100)  (36-52)  (0.82-0.93) NA NA NA NA
- GS>3+4or . 92 37 0.74 Probability 0.67
Dikaios [22] CCL>4mm  resion  TZ  PERADSVL >3 ;)79 (05350)  (0.63-086) threshold > 0.5 60 73 (0.55-0.79) NA NA NA NA
o CAD scores
Likelihood scale X
) GS >3 +3and . 0.88 0.90 available to 091
Hambrock [24] 50.5 cm? Fesion WP (Ojﬁ?g’ffn © NR NR (0.85-0.93) NA NR NR (0.83-096)  radiologist for NR NR (0.86-0.97)
interpretation
GS >3 +4and
- = . PI-RADSV2, no 0.87 0.97
Iyama [25] >1OBI{)III:III vS. Lesion TZ cut-off NR NR (0.81-0.93) NA NR NR (0.94-0.99) NA NA NA NA
LR model of
Li [45] GS>3+3 Index —y,  PERADSv2, 91 68 0.85 NR 82 82 0.86 PI-RADS, CAD 79 9% 0.94
Lesion >4 (0.75-0.94)
score and PSA
LR model of
N . . 100 9 0.78 3 99 26 0.87
Litjens [44] GS>3+4 Lesion WP  PI-RADSv1, >3 (98-100) (0-19) (070-0.85) NR NA NA NA PI-RADS and (98-100) (0-60) (0.81-0.93)
CAD score
- CAD scores
>
Niaf [26] Gif ><3 > r?lf: ¥ Lesion  PZ gélgre;%ﬁc)l NR NR 0.87 NA NR NR 0.82 available to NR NR 0.89
; ’ (0.81-0.92) (0.73-0.90) radiologi