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Simple Summary: Prediction of the malignancy and invasiveness of ground glass nodules (GGNs)
from computed tomography images is a crucial task for radiologists in risk stratification of early-stage
lung adenocarcinoma. In order to solve this challenge, a two-stage deep neural network (DNN) was
developed based on the images collected from four centers. A multi-reader multi-case observer study
was conducted to evaluate the model capability. The performance of our model was comparable or
even more accurate than that of senior radiologists, with average area under the curve values of 0.76
and 0.95 for two tasks, respectively. Findings suggest (1) a positive trend between the diagnostic
performance and radiologist’s experience, (2) DNN yielded equivalent or even higher performance
in comparison with senior radiologists, and (3) low image resolution reduced the model performance
in predicting the risks of GGNs.

Abstract: This study aims to develop a deep neural network (DNN)-based two-stage risk stratification
model for early lung adenocarcinomas in CT images, and investigate the performance compared
with practicing radiologists. A total of 2393 GGNs were retrospectively collected from 2105 patients
in four centers. All the pathologic results of GGNs were obtained from surgically resected specimens.
A two-stage deep neural network was developed based on the 3D residual network and atrous
convolution module to diagnose benign and malignant GGNs (Task1) and classify between invasive
adenocarcinoma (IA) and non-IA for these malignant GGNs (Task2). A multi-reader multi-case
observer study with six board-certified radiologists’ (average experience 11 years, range 2–28 years)
participation was conducted to evaluate the model capability. DNN yielded area under the receiver
operating characteristic curve (AUC) values of 0.76 ± 0.03 (95% confidence interval (CI): (0.69,
0.82)) and 0.96 ± 0.02 (95% CI: (0.92, 0.98)) for Task1 and Task2, which were equivalent to or
higher than radiologists in the senior group with average AUC values of 0.76 and 0.95, respectively
(p > 0.05). With the CT image slice thickness increasing from 1.15 mm ± 0.36 to 1.73 mm ± 0.64, DNN
performance decreased 0.08 and 0.22 for the two tasks. The results demonstrated (1) a positive trend
between the diagnostic performance and radiologist’s experience, (2) the DNN yielded equivalent
or even higher performance in comparison with senior radiologists, and (3) low image resolution
decreased model performance in predicting the risks of GGNs. Once tested prospectively in clinical
practice, the DNN could have the potential to assist doctors in precision diagnosis and treatment of
early lung adenocarcinoma.
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1. Introduction

Lung cancer is the leading cause of cancer-related deaths globally, with almost one-
quarter of all cancer deaths [1]. The popularization of low-dose computed tomography (CT)
screening reduced the mortality of lung cancer significantly [2]. Early lung cancer screening
through detection and diagnosis of pulmonary nodules on CT scans is an essential and
effective method. A large fraction of ground glass nodules (GGNs) are detected on the
screening of CT images. As the biopsy of GGNs is a difficult task for interventional
physicians, CT imaging is one of the optimal diagnosis measures for GGNs, especially for
small ones. Most malignant GGNs are histopathologically confirmed as early-stage lung
adenocarcinomas. According to the classification of the International Association for the
Study of Lung Cancer/American Thoracic Society/European Respiratory Society, early-
stage lung adenocarcinomas consist of pre-invasive lesions involving atypical adenomatous
hyperplasia and adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA),
and invasive adenocarcinoma (IA) [3]. The 5-year disease-free survival rates of patients
diagnosed with AIS and MIA are close to 100%, which are higher than that of IA patients
(40%–85%) [4]. Therefore, a precise diagnosis of GGNs facilitates the classification of low-
and high-risk individuals (i.e., patients with benign and malignant GGNs, respectively),
thereby avoiding overdiagnosis or overtreatment for early lung adenocarcinoma [5]. It
is also possible to make a personalized clinical care plan and select the optimal surgical
treatment for patients with different pathological types (i.e., IA and non-IA patients).

To diagnose and discriminate the subtypes of lung adenocarcinoma, some studies
proposed and developed a quantitative imaging method to quantify the image features
of GGNs for discrimination model development [6,7]. The quantitative imaging features
can depict the properties of GGNs in shape, CT value distribution, and texture aspects [8].
To improve the performance, the radiomics model was developed to extract thousands of
image features to decode the CT imaging phenotypes of GGNs [9–11]. The radiomics model
consists of tumor segmentation, feature extraction and selection, classifier training/testing,
and performance evaluation processes [12]. The CT-based radiomics feature reflects the
internal heterogeneity of GGNs well.

Meanwhile, an end-to-end convolutional neural network (CNN) was applied to
build deep neural network (DNN) models to classify the subtypes of GGNs [13,14]. The
DNN model derives high dimensional hierarchy imaging features from the internal and
surrounding regions of GGNs on CT images without tumor segmentation and handcrafted
feature extraction [15–17]. Machine learning and DNNs have been successful in predicting
tumor molecular features, treatment response, and prognosis in the oncology of lung cancer.
Previous studies have developed computer-aided detection/diagnosis (CADe/CADx)
models to detect nodules on CT images and evaluate the histopathologic type of GGNs by
using DNNs [16,18]. Compared with the CT-based radiomics model, a DNN-based model
improves the detection and classification performance significantly.

To develop a highly efficient DNN-based CAD model, several studies have employed
state-of-the-art deep learning architectures in the computer vision domain to extract tumor
features directly from CT images and generate features adaptive to a given lung cancer risk
stratification problem. Among these DNN architectures, ResNet and DenseNet are the most
popular in lung cancer diagnosis [18,19]. Since there is a lack of large and general enough
datasets, a number of studies used a transfer learning technique to build DNN models.
Several studies applied a multi-task learning strategy to reduce overfitting for limited
datasets, e.g., combining classification and segmentation tasks to develop multi-task DNN
models. Moreover, based on the dimensions of input images, the DNNs can be categorized
as 2D, 2.5D, and 3D. As anatomical structures of GGNs appear as a 3D shape on CT scans,
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the development and application of a 3D DNN may be an optimal way to predict the risk
of early-stage lung adenocarcinoma.

Hence, this study developed a two-stage DNN model to diagnose benign and ma-
lignant GGNs (Task1) and classify between IA and non-IA tumors (Task2) by using a
3D convolutional neural network. Then, the histopathologically confirmed GGNs col-
lected from four centers were used to train and test the DNN. Finally, a multi-reader
multi-case (MRMC) observer study was conducted to evaluate the model performance by
comparing the performance of six radiologists and the DNN in early lung adenocarcinoma
risk stratification.

1.1. Related Works

To predict the risk of early-stage lung adenocarcinoma, researchers have developed
various CADx models by using CT images. Gao et al. [20] analyzed CT findings (i.e., lesion
boundary, average CT value, etc.) of GGNs to develop classification models. Although the
application of the CT signs is feasible to classify different pathology types of GGNs, the
evaluation features rely heavily on the radiologist’s subjective interpretation.

Quantitative CT imaging or radiomics feature analysis has been developed to quantify
the image features of GGNs because of its ability to decode imaging phenotypes of the intra-
tumor heterogeneity [12,21–23]. Zhao et al. [24] developed a radiomics-based nomogram,
which incorporates both a radiomics signature and mean CT value, for differentiation of
pre-invasive lesions from invasive lesions that appear as GGNs. Although the human-
engineered radiomics features are effective to predict the invasiveness of GGNs with small
datasets, radiomics model development is time consuming and human labor intensive
(e.g., tumor segmentation) which limits its repeatability and application. Still, tumor
segmentation and feature extraction processes need the radiologist’s subjective intervention
(i.e., GGN boundary delineation) and a pre-defined handcrafted image feature extractor,
which may cause subjective biases.

DNN is another promising tool for early-stage lung adenocarcinoma risk stratifica-
tion [16]. Wang et al. [25] proposed a 3D CNN-based classification framework consisting
of nodule detection and cancer classification to diagnose pre-invasive and invasive GGNs.
Gong et al. [18] developed a residual learning-based CNN model to classify between IA and
non-IA GGNs, which improved the classification performance. Wang et al. [26] proposed a
multi-task deep learning model with both segmentation and classification networks, which
showed that the segmentation can better facilitate the classification of pulmonary GGNs.
Overall, as an end-to-end architecture, the DNN model not only achieves higher prediction
accuracy compared with a radiomics model, but also saves human labor in delineating the
GGN boundary. Thus, it is more applicable and repeatable than a radiomics model.

Recently, the combined radiomics and deep learning models were investigated to
develop a multiple feature fusion model for GGN classification. Wang et al. [27] proposed
a combined deep learning and radiomics classification model to classify IA from non-IA,
which showed higher performance in comparison with a single feature-based model. Hu
et al. [28] compared and integrated the deep learning and radiomics features to develop
a CADx model to classify benign and malignant, which also demonstrated that a fusion
model can improve classification performance. Although fusion of deep learning and
radiomics features is feasible to improve the model performance, extracting radiomics
features also needs a large amount of labor and its application is more difficult due to the
complex model design.

All the aforementioned studies are either involved classifying between benign and
malignant GGN or predicting invasiveness of IA. As a multi-phase task, the lung adenocar-
cinoma risk can be more comprehensively predicted by using a stage-wise risk stratification
model. Thus, a two-stage DNN model is developed to predict malignancy and invasiveness
of GGNs due to the high accuracy and good repeatability of deep learning. Since achieving
a highly accurate DNN model requires a large amount of training data, we collected GGNs
from four centers to build a robust deep learning model. Moreover, conducting an observer
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study can better compare and evaluate the performance of the DNN and radiologists
with different levels of experience. An MRMC observer study with six radiologists’ par-
ticipation was conducted. To our knowledge, there has not yet been a two-stage DNN
model to stratify the risk of lung adenocarcinoma with large multi-center datasets and an
MRMC study.

1.2. Contributions

Our contributions can be summarized as follows: (1) In this study, we proposed
and developed a DNN model to stratify the risk of early lung adenocarcinoma by using
CT images. The two-stage model not only classified between benign and malignant
GGNs, but also predicted the invasiveness of malignant tumors by differing IA from
non-IA. (2) By conducting an MRMC observer study, our result demonstrates that the
deep learning model performed equivalent to or even better than senior radiologists in
predicting the risk of GGNs. (3) Analyzing the DNN performance changes on CT images
with different resolutions, we found that the low resolution of CT images decreased the
model performance.

The rest of the paper is organized as follows. Section 2 introduces the detail of the
dataset and proposed two-stage DNN model. Section 3 presents the experimental results.
Section 4 discusses the characteristics and limitations of this study. Section 5 concludes
the paper.

2. Materials and Methods
2.1. Datasets

A total of 2393 GGNs collected from 2105 patients in four centers were used to develop
the DNN model. There were 1476, 431, 284, and 202 GGNs in the training dataset (center
1: Fudan University Shanghai Cancer Center), tuning dataset (center 2: Huzhou Central
Hospital), validation dataset 1 (center 3: Taizhou Municipal Hospital), and validation
dataset 2 (center 4: Shanghai Pulmonary Hospital), respectively. Table 1 summarizes
and lists the characteristics of patients in the four datasets. The inclusion criteria were:
(1) GGN with a diameter in the range [3 mm, 30 mm] on the chest CT image, (2) the
surgically histopathologically confirmed tumor was benign or stage I lung adenocarcinoma
(involving AIS, MIA, and IA), (3) available CT examination within one month before
surgery, and (4) available CT image in digital imaging and communications in medicine
format. The exclusion criteria were: (1) lack of CT scan, (2) history of neoadjuvant systemic
therapy or other therapy, (3) histopathologically confirmed GGN was not identifiable on CT
image, and (4) history of cancer before surgery. The details of the CT scanner manufacturer
and convolutional kernel are shown in Appendix B Table A1. Each GGN was treated as an
independent primary lesion, as well as the case with multi-focal GGNs. The center position
of each GGN was marked by reviewing the histopathology report and CT scans obtained
before and after surgery. The X, Y, and Z coordinates of the center point in the 3D image
matrix were recorded to locate the position of GGNs on the CT scan.

The institutional review boards (IRBs) in four centers approved this multi-center study,
and the requirements for informed consent forms were waived due to its retrospective
nature. This study was conducted in accordance with the Declaration of Helsinki and
approved by the IRB of Fudan University Shanghai Cancer Center (protocol code: 2103232-
24), Huzhou Central Hospital (protocol code: 20180738-01), Taizhou Municipal Hospital
(protocol code: LW013), and Shanghai Pulmonary Hospital (protocol code: K18-204Y).
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Table 1. Clinical characteristics of the patients in the training, tuning, and validation datasets.

Characteristic
Training
Dataset

(n = 1476)

Tuning
Dataset
(n = 431)

Validation
Dataset 1
(n = 284)

Validation
Dataset 2
(n = 202)

Mean Age, y
(SD) 53.8 (±11.0) 54.3 (±11.8) 57.9 (±11.1) 54.7 (±10.7)

Sex, No. (%)
Male 409 (31.4) 129 (35.3) 103 (39.2) 57 (32.6)

Female 893 (68.6) 236 (64.7) 160 (60.8) 118 (67.4)

WHO pathological type, No. (%)
Benign/AAH 206 (13.9) 73 (16.9) 38 (13.4) 79 (39.1)

AIS 623 (42.2) 77 (17.9) 55 (19.4) 53 (26.2)
MIA 261 (17.7) 8 (1.9) 64 (22.5) 33 (16.3)
IA 386 (26.2) 273 (63.3) 127 (44.7) 37 (18.3)

Location, No. (%)
RUL 543 (36.8) 157 (36.4) 118 (41.5) 80 (39.6)
RML 110 (7.5) 31 (7.2) 17 (6.0) 14 (6.9)
RLL 270 (18.3) 76 (17.6) 48 (16.9) 27 (13.4)
LUL 384 (26.0) 109 (25.3) 71 (25.0) 53 (26.2)
LLL 169 (11.4) 58 (13.5) 30 (10.6) 28 (13.9)

Nodule type on CT scan, No. (%)
pGGN 1093 (74.1) 308 (71.5) 102 (35.9) 175 (86.6)
mGGN 383 (25.9) 123 (28.5) 182 (64.1) 27 (13.4)

Diameter (mm), No. (%)
(3,10] 888 (60.2) 258 (59.9) 135 (47.5) 164 (81.2)
(10,20] 452 (30.6) 143 (33.2) 120 (42.3) 36 (17.8)
(20,30] 136 (9.2) 30 (6.9) 29 (10.2) 2 (1.0)

Abbreviations and definitions: WHO = World Health Organization; AAH = atypical adenomatous hyperplasia;
AIS = adenocarcinoma in situ; MIA = minimally invasive adenocarcinoma; RUL = right upper lobe; RML = right
middle lobe; RLL = right lower lobe; LUL = left upper lobe; LLL = left lower lobe; pGGN = pure ground glass
opacity nodule; mGGN = mixed ground glass nodule.

2.2. Two-Stage DNN Model Development
2.2.1. Image Pre-Processing

A two-stage DNN model was developed to build the risk stratification scheme of
GGNs. Figure 1 shows the flowchart of the proposed two-stage DNN model. To build
the two-stage DNN model, the 3D CT image was firstly resampled with a voxel size of
1 mm × 1 mm × 1 mm by using a cubic spline image interpolation algorithm. Then, the CT
values of each scan were normalized to [0, 255] by applying a window range of [−1024HU,
400HU]. A 32 mm × 32 mm × 32 mm cubic of each GGN was cropped from a normalized
3D image based on the coordinate values of the center point. The gray value of each

cropped 3D patch was transformed into [−1, 1] by using a scale mapping of
I3D_patch−128

128 .
Appendix B Figure A1 illustrates the flowchart of the image pre-processing step.
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Figure 1. The workflow of model development. (a) Schematic workflow of the study for training and external validation of
a CT image-based DNN model. (b) Flowchart of the proposed two-stage DNN model. The stage I DNN model was used
to classify benign and malignant GGNs. The stage II DNN model was used to predict the invasiveness risk of malignant
tumors. FUSCC = Fudan University Shanghai Cancer Center. HZCH = Huzhou Central Hospital. TZMH = Taizhou
Municipal Hospital. SHPH = Shanghai Pulmonary Hospital.

2.2.2. Data Augmentation

A series of data augmentation techniques were applied to increase the number of
samples in the training dataset. These techniques were as follows: (1) shifting the center
point of GGNs with an increment of [−3, 3] voxels in each axis, (2) rotation of the 3D patch
by 90◦ increments in three axes, (3) reordering the axes, (4) left–right flipping. To improve
the performance of the DNN, the data augmentation process was performed on the fly
during the model training process.

2.2.3. DNN Model

Then, a two-stage DNN model was developed by using a sequential convolutional
neural network, which was embedded with a residual network (ResNet) and multi-level
concatenated atrous pyramid convolution module [29,30]. Appendix B Figure A2 illustrates
the architecture of the proposed 3D ResNet-based DNN model. In brief, it consisted of five
ResNet blocks and one fully connected layer. In the five ResNet blocks, the former three
blocks embedded the atrous convolution structure into the residual block. The details of
our proposed DNN model are summarized in Appendix A. Appendix B Figure A3 shows
the training accuracy and loss curves for Task1 and Task2, respectively.

The two-stage DNN was implemented using Python 3.7.6 based on the Pytorch 1.5.0
deep learning library, and trained the 3D ResNet on a workstation with 1 NVIDIA GTX
1070 GPU. The source code is open source, at https://github.com/GongJingUSST/GNN_
RiskStratification_DNN, 8 November 2020.

https://github.com/GongJingUSST/GNN_RiskStratification_DNN
https://github.com/GongJingUSST/GNN_RiskStratification_DNN
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2.3. MRMC Observer Study Design

An observer study was also conducted to compare the performance of the DNN
with six radiologists by testing with validation dataset 2. The six board-certified radiol-
ogists from Fudan University Shanghai Cancer Center (Shanghai, China) were enrolled
in this MRMC observer study. These radiologists were divided into three groups based
on their chest CT imaging interpretation experience, namely, the senior group, middle
group, and junior group, respectively. In each group, two radiologists participated in this
observer study and each radiologist independently read the CT image without discussion.
The senior group enrolled two radiologists who had over 15 years of experience, namely,
Reader1 (S.W. with 16 years of experience and 11 years of experience specifically in chest
CT interpretation) and Reader2 (H.Z. with 28 years of experience). The middle group
enrolled two radiologists who had at least five years of imaging diagnostic experience,
namely, Reader3 (H.L. with 11 years of experience) and Reader4 (T.W. with five years of
experience). The other two radiologists, namely, Reader5 (T.H. with three years of experi-
ence) and Reader6 (M.L. with two years of experience) were enrolled in the junior group.
Table 2 listed the reference standard of diagnostics for the two tasks. All readers were
aware that all the patients had pathologically confirmed primary lung adenocarcinoma or
other benign lesions, but were blinded to the specific histopathological diagnosis and other
clinical information to determine the risk of GGNs within five minutes for each case.

Table 2. The reference standards of imaging diagnosis for two tasks. To score the malignancy risk
and invasive risk of each GGN, two diagnostic reference standards were developed by grading the
risk with five grades.

Task1 Task2

Reference Standard of Diagnosis Score Reference Standard of Diagnosis Score

Highly suspicious normal/benign 1 Highly unlikely IA 1
Moderately suspicious benign 2 Moderately unlikely IA 2

Indeterminate/probably benign 3 Indeterminate 3
Moderately suspicious malignant 4 Moderately suspicious IA 4

Highly suspicious malignant 5 Highly suspicious IA 5

2.4. Statistical Analysis and Performance Evaluation

The performance of the proposed DNN model was comprehensively evaluated by us-
ing eight performance metrics, namely, accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, odds ratio, F1 score (F1 = 2×Precision×Recall

Precision+Recall ), weighted av-

erage F1 score (F1avg =
nbengign/non−IA×F1bengign/non−IA+nmalignant/IA×F1malignant/IA

nbengign/non−IA+nmalignant/IA
), and Matthews

correlation coefficient. The prediction probabilities produced by the DNN model were
converted to binary results by using a default decision threshold value of 0.5 as the cut-off.

The area under the receiver operating characteristic (ROC) curve (AUC) and Co-
hen’s kappa value were also computed to evaluate the model performance. A maxi-
mum likelihood-based ROC fitting program (ROCKIT, http://metz-roc.uchicago.edu/
MetzROC/software/, 21 October 2013, University of Chicago) was applied to compute
AUC values and generate ROC curves. Python programming software was used to com-
pute the performance evaluation metrics and statistical analysis. Several publicly available
packages used in this study included SimpleITK, Scikit-learn, SciPy, Matplotlib, NumPy,
and Pandas.

3. Results
3.1. Patient Characteristics

A total 2393 GGNs collected from four centers were enrolled in this study. The
characteristics of 2105 patients from four centers are listed in Table 1. Among the four
datasets, no statistically significant difference was observed for sex or age (p > 0.05). The

http://metz-roc.uchicago.edu/MetzROC/software/
http://metz-roc.uchicago.edu/MetzROC/software/
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numbers of GGNs with different pathological type, nodule type, location, and diameter are
summarized in Table 1.

3.2. DNN Model Validation and Effect of Slice Thickness on Performance

CT scans collected from four centers had different spatial resolutions, especially in
slice thickness. Comparing the pixel spacing of CT slices in the four datasets, no significant
differences were observed between them (p > 0.05), but the slice thicknesses of CT scans in
validation datasets 1 and 2 were significantly different (p < 0.05). Figure 2 compares the
slice thickness of the four datasets and ROC curves for the two tasks by testing validation
datasets 1 and 2, respectively. From the violin plots of slice thickness for the four datasets,
it could be seen that the slice thickness of the training dataset and validation dataset 2 was
significantly lower than that of the tuning dataset and validation dataset 1 (p < 0.00001).
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DNN models trained on validation dataset 2 yielded AUC values of 0.76 ± 0.03
(95% confidence interval (CI) = 0.69–0.82) and 0.96 ± 0.02 (95% CI = 0.92–0.98) for Task1
and Task2, which were significantly higher than models trained on validation dataset 1 of
0.68 ± 0.04 (95% CI = 0.59–0.76) and 0.74 ± 0.03 (95% CI = 0.67–0.79) (p < 0.00001). Table 3
lists and summarizes the performance evaluation metrics for two classification tasks by
using validation datasets 1 and 2. Appendix B Figure A4 illustrates the heat maps of the
deep image features for the proposed DNN model. It can be seen that the DNN model
extracted different deep image features for Task1 and Task2. The DNN model mainly
focused on the internal regions of GGNs, especially the solid regions.

Table 3. Performance evaluation metrics for two classification tasks by using validation datasets 1
and 2, respectively.

Evaluation
Metric

Task1 Task2

VD1 VD2 VD1 VD2

Accuracy (%) 81.6 75.2 63.8 91.9
Sensitivity (%) 90.7 83.7 86.6 81.1
Specificity (%) 21.6 62 39.5 96.5

PPV (%) 88.5 77.4 60.4 90.9
NPV (%) 25.8 71 73.4 92.2

OR 2.7 8.4 4.2 118.6
F1 (%) 89.6 80.5 71.2 85.7

F1avg (%) 80.9 74.9 61.6 91.7
MCC (%) 13.2 47.1 29.7 80.3

Abbreviations and definitions: VD = validation dataset; PPV = positive predictive value; NPV = negative
predictive value; OR = odds ratio; MCC = Matthews correlation coefficient.
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3.3. MRMC Comparison Using an Independent Dataset

Figure 3 illustrates and compares the two tasks’ ROC curves of the DNN model
and six readers by testing on validation dataset 2. In the comparison test of Task1, the
senior group, middle group, and junior group yielded average AUC values of 0.76, 0.69,
and 0.66, respectively. In the comparison test of Task2, these three radiologist groups
obtained average AUC values of 0.95, 0.93, and 0.84, respectively. With an increase in
radiologist experience, the AUC values improved accordingly in the two classification
tasks. The bar plots of accuracy for the DNN model and six readers in Task1 and Task2
are shown in Figure 4. With an increase in diameter, the benign–malignant classification
performance was significantly improved. However, the accuracy of invasiveness predic-
tion changed with the radiologist’s experience. No obvious correlation between GGN
diameter and IA/non-IA prediction performance was found in Task2. The confusion ma-
trix of the two tasks generated by the DNN and six readers is shown in Appendix B
Table A2. Table 4 compares the performance metrics of the proposed DNN and six
readers by testing on validation dataset 2. These comparison indicators revealed that
the DNN achieved equivalent or slightly higher performance in comparison with se-
nior radiologists, and a positive trend between GGN risk prediction performance and
radiologist’s experience.
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Figure 3. Comparisons of ROC curves and AUC values generated by DNN model and six readers (Table 2). (a) The Task1
ROC curves of DNN model and six readers. (b) The Task2 ROC curves of DNN model and six readers.
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Figure 4. Bar plots of accuracy for DNN model and six readers performing Task1 and Task2,
respectively. “Overall” denotes the accuracy of the overall dataset. “≤10 mm” denotes the accuracy
for GGNs with a diameter smaller than 10 mm. “>10 mm” denotes the accuracy for GGNs with a
diameter larger than 10 mm. (a) The accuracy of Task1. (b) The accuracy of Task2.

Table 4. Performance comparisons of the proposed DNN and six readers by testing on validation dataset 2.

Evaluation
Index

Task1 Task2

DNN R1 R2 R3 R4 R5 R6 DNN R1 R2 R3 R4 R5 R6

Accuracy (%) 75.2 69.8 71.3 64.4 60.9 62.4 61.4 91.9 83.7 78.0 80.5 82.9 63.4 67.5
Sensitivity (%) 83.7 83.7 92.7 94.3 52.0 85.4 76.4 81.1 48.6 91.9 94.6 45.9 100.0 59.5
Specificity (%) 62.0 54.4 38.0 17.7 74.7 26.6 38.0 96.5 98.8 72.1 74.4 98.8 47.7 70.9

PPV (%) 77.4 74.1 69.9 64.1 76.2 64.4 65.7 90.9 94.7 58.6 61.4 94.4 45.1 46.8
NPV (%) 71.0 68.3 76.9 66.7 50.0 53.8 50.8 92.2 81.7 95.4 97.0 81.0 100.0 80.3

F1 (%) 80.5 78.6 79.7 76.3 61.8 73.4 70.7 85.7 64.3 71.6 74.5 61.8 62.2 52.4
F1avg (%) 74.9 71.6 68.4 57.4 61.1 58.6 60.0 91.7 81.9 78.9 81.3 80.8 63.9 68.4
MCC (%) 47.1 40.2 37.9 19.2 26.5 14.8 15.5 80.3 60.3 58.8 63.5 58.1 46.4 28.7

Abbreviations and definitions: PPV = positive predictive value; NPV = negative predictive value; MCC = Matthews correlation coefficient;
R = reader.

3.4. Cohen’s Kappa Statistic and Difference Significance Test

Cohen’s kappa values were calculated to measure the inter-rater reliability of the DNN
and the six readers compared with the ground truth (GT) of the histopathological results.
For the six readers, the binary classification results were generated by categorizing the
prediction score of “3” into the high-risk group (i.e., malignant group or IA group). The



Cancers 2021, 13, 3300 11 of 19

Cohen’s kappa values and p-values for the DNN model and the six readers are presented
in Figure 5. Compared with the GT of GGNs, the DNN model and senior group obtained
relatively high agreement and consistency decreased with radiologist’s experience. The
results suggested no statistically significant difference between the results of the DNN
model and senior group (p > 0.05).

Cancers 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

Figure 4. Bar plots of accuracy for DNN model and six readers performing Task1 and Task2, respec-
tively. “Overall” denotes the accuracy of the overall dataset. “≤10 mm” denotes the accuracy for 
GGNs with a diameter smaller than 10 mm. “>10 mm” denotes the accuracy for GGNs with a diam-
eter larger than 10 mm. (a) The accuracy of Task1. (b) The accuracy of Task2. 

Table 4. Performance comparisons of the proposed DNN and six readers by testing on validation 
dataset 2. 

Evaluation  
Index 

Task1 Task2 
DNN R1 R2 R3 R4 R5 R6 DNN R1 R2 R3 R4 R5 R6 

Accuracy (%) 75.2 69.8 71.3 64.4 60.9 62.4 61.4 91.9 83.7 78.0 80.5 82.9 63.4 67.5 
Sensitivity (%) 83.7 83.7 92.7 94.3 52.0 85.4 76.4 81.1 48.6 91.9 94.6 45.9 100.0 59.5 
Specificity (%) 62.0 54.4 38.0 17.7 74.7 26.6 38.0 96.5 98.8 72.1 74.4 98.8 47.7 70.9 

PPV (%) 77.4 74.1 69.9 64.1 76.2 64.4 65.7 90.9 94.7 58.6 61.4 94.4 45.1 46.8 
NPV (%) 71.0 68.3 76.9 66.7 50.0 53.8 50.8 92.2 81.7 95.4 97.0 81.0 100.0 80.3 

F1 (%) 80.5 78.6 79.7 76.3 61.8 73.4 70.7 85.7 64.3 71.6 74.5 61.8 62.2 52.4 
F1avg (%) 74.9 71.6 68.4 57.4 61.1 58.6 60.0 91.7 81.9 78.9 81.3 80.8 63.9 68.4 
MCC (%) 47.1 40.2 37.9 19.2 26.5 14.8 15.5 80.3 60.3 58.8 63.5 58.1 46.4 28.7 

Abbreviations and definitions: PPV = positive predictive value; NPV = negative predictive value; 
MCC = Matthews correlation coefficient; R = reader. 

3.4. Cohen’s Kappa Statistic and Difference Significance Test 
Cohen’s kappa values were calculated to measure the inter-rater reliability of the 

DNN and the six readers compared with the ground truth (GT) of the histopathological 
results. For the six readers, the binary classification results were generated by categorizing 
the prediction score of “3” into the high-risk group (i.e., malignant group or IA group). 
The Cohen’s kappa values and p-values for the DNN model and the six readers are pre-
sented in Figure 5. Compared with the GT of GGNs, the DNN model and senior group 
obtained relatively high agreement and consistency decreased with radiologist’s experi-
ence. The results suggested no statistically significant difference between the results of the 
DNN model and senior group (p > 0.05). 

(a) (b）

DNN - 0.58 0.59 0.26 0.17 0.03 <0.0001

Reader1 0.74 - 0.95 0.47 0.41 0.06 0.0002

Reader2 0.59 0.43 - 0.75 0.6 0.23 0.001

Reader3 0.19 0.08 0.39 - 0.75 0.18 0.0003

Reader4 0.09 0.08 0.17 0.08 - 0.11 0.0002

Reader5 0.04 0.02 0.18 0.52 0.79 - 0.01

Reader6 0.008 0.007 0.04 0.15 0.23 0.28 -

D
N

N

R
ea

de
r1

R
ea

de
r2

R
ea

de
r3

R
ea

de
r4

R
ea

de
r5

R
ea

de
r6

GT - 0.80 0.55 0.55 0.60 0.52 0.35 0.28 

DNN 0.47 - 0.62 0.48 0.56 0.49 0.31 0.30 

Reader1 0.36 0.36 - 0.27 0.35 0.71 0.17 0.22 

Reader2 0.34 0.29 0.44 - 0.53 0.25 0.46 0.26 

Reader3 0.32 0.40 0.39 0.48 - 0.33 0.54 0.27 

Reader4 0.19 0.21 0.17 0.18 0.22 - 0.16 0.36 

Reader5 0.15 0.34 0.37 0.35 0.43 0.20 - 0.22 

Reader6 0.14 0.19 0.13 0.07 0.25 0.24 0.22 -

G
T

D
N

N

R
ea

de
r1

R
ea

de
r2

R
ea

de
r3

R
ea

de
r4

R
ea

de
r5

R
ea

de
r6

 

Figure 5. The Cohen’s kappa values and p-values for DNN model and six readers. The statistical values contained in a
solid line triangle on the bottom left corner represent Task1 testing results. The statistical values contained in a dashed line
triangle on top right corner represent Task2 testing results. (a) The Cohen’s kappa values for two tasks. (b) The p-values for
two tasks.

4. Discussion

Management of GGNs is essential for lung adenocarcinoma diagnosis and treat-
ment [31]. Non-invasive CT-based risk stratification of early-stage lung adenocarcinoma
provides a potential tool to detect the patients with high-risk malignant and invasive
tumors [32]. Unlike the one-stage CT radiomics classification model reported in the litera-
ture [10], this study proposed an end-to-end two-stage risk stratification model by using a
DNN algorithm, which directly decoded the CT imaging phenotypes of GGNs without
manually marked tumor boundaries. The two-stage model not only classified benign and
malignant GGNs, but also predicted the invasiveness of malignant tumors by distinguish-
ing IA from non-IA. Thus, our stage-wise risk stratification model provided valuable risk
assessment for lung adenocarcinoma, which can help doctors in their management decision
making, such as CT follow-up interval, optimal time of biopsy, and appropriate surgical
strategy selection.

This multi-center study collected CT scans performed on different scanners in four
centers. Thus, the robustness and stability of the proposed model was evaluated on multiple
cohorts. Appendix B Figure A5 compares and shows the accuracies of different models
by testing on validation dataset 2. Compared with the previous studies [16,18,26,33]
and the state-of-the-art pre-trained models, the proposed DNN model showed higher
performance in predicting malignancy and invasiveness of GGNs. An MRMC observer
study was conducted to further validate and evaluate the performance of the DNN model.
The results demonstrated that diagnosis performance had a positive correlation with the
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experience of the radiologist. The DNN model performed equivalently or even better in
comparison with the senior radiologists with over 15 years of experience. Meanwhile, the
AUC value of the DNN was significantly higher than the junior radiologists (p < 0.05). By
evaluating the Cohen’s kappa values, prediction results of the DNN model showed the
highest consistency with histopathologically confirmed results. Therefore, the DNN model
could provide radiologists a risk indicator for their decision making, which may improve
their confidence and accuracy, especially for junior radiologists.

Another finding of this study was that the performance of the DNN model decreased
with the increased slice thickness of CT scans. This reflected the fact that the slice thickness
of CT scans affected the DNN performance. In both Task1 and Task2, the AUC value
of validation dataset 1 (mean slice thickness: 1.73 mm ± 0.64) was lower than that of
validation dataset 2 (mean slice thickness: 1.15 mm ± 0.36) (p < 0. 00001). Although a few
quantitative assessment indicators of validation dataset 1 in Table 3 are a little higher than
those of validation dataset 2, the overall evaluation of validation dataset 2’s performance
was higher. The performance difference may be because high slice thickness decreased the
CT image details. All CT images were resampled to the same voxel spacing, but CT scans
with high slice thickness sampled fewer image pixels and provided less information on 3D
GGNs for the DNN model. Hence, to improve the model performance, it was necessary to
feed and train the DNN with thin-section CT images.

In this study, all the patients enrolled in our dataset underwent thoracic surgery,
and the pathologic results of GGNs were obtained from surgically resected specimens.
Since regular follow-up examinations were recommended for patients diagnosed with
low-risk GGNs in the clinic, most of these surgery patients were diagnosed with high
malignancy risk and were suitable for surgery by the chest oncologist. Therefore, the
benign GGNs involved in this study were difficult to distinguish from malignant tumors.
Compared with the results of Task1, the performance on Task2 generated by the DNN
and the six readers were higher. This suggested that using CT scans at one time point to
predict the malignancy of GGNs was a more difficult task than classification of IA and
non-IA GGNs. In Task1, the accuracy generated by using GGNs with diameter smaller than
10 mm was lower than that for GGNs with diameter larger than 10 mm. It was speculated
that this might be due to the increased heterogeneity of the GGN in the CT image as the
tumor grows.

Despite the promising results, this study had several limitations. First, although this
study collected CT scans from four centers, the comparative radiologist study was still
limited to retrospective data from one center. The generalizability and robustness of the
proposed DNN model needs to be evaluated by using a more diverse and larger dataset
with different institutions, regions, and races. Second, while the two-stage DNN model
was developed based on the 3D patch of GGNs (i.e., 32 mm × 32 mm × 32 mm), an entire
CT scan and other clinical information (i.e., smoking, medical history, gene information,
etc.) [34], which provided additional diagnostic information, has not yet been used to better
estimate the risk of GGNs. Follow-up CT scans are also very valuable for GGN diagnosis,
but only CT images before surgery were used to develop the DNN model [35]. Aggre-
gating the multi-type diagnosis information of the patient may improve the classification
performance further. Third, radiologists read the CT scans under time constraints and
blinding to other information in the MRMC study, which was different from a real clinical
situation. Thus, insufficient time for the radiologists may have reduced the six readers’
efficiency and performance. Although the performance of the DNN model and radiologists
was compared and evaluated in the MRMC study, the correlation and discrepancy were
not explored. In a future study, we will continue to explore and investigate the correlations
and differences between deep image features and the characteristics defined by radiolo-
gists. Lastly, whether using our proposed DNN model can help radiologists improve the
diagnosis performance and how to apply it in clinical practice were not investigated in
this study.
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5. Conclusions

In conclusion, a two-stage risk stratification for early lung adenocarcinomas was
proposed and developed in this study. Our results revealed (1) a positive trend between the
diagnostic performance and radiologist’s experience, (2) the DNN performed equivalently
or even better than senior radiologists with over 15 years of experience, and (3) low resolu-
tion of CT images decreased the DNN’s performance. The deep learning method illustrated
a promising way to realize the risk stratification of GGNs, which may supplement future
approaches to GGN diagnosis and support assisted- or second-read workflows.
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Appendix A

The detailed description of the DNN model.
In order to develop a DNN model, a number of layers, including convolutional layers,

max-pooling layers, and fully connected (FC) layers, were used to build a sequential CNN.
With the number of layers increasing, the DNN encountered the problem of the vanish-
ing/exploding gradient. To address this issue, a residual network (ResNet) introduced a
technique called “skip connection” by skipping training from a few layers and connecting
directly to the output. The architecture of ResNet was an effective tool to improve the
DNN’s performance and is applied in many medical image classification or segmentation
fields. In this study, a 3D ResNet was used to develop the DNN model for two-stage risk
stratification of GGNs.

To expand the reception field without increasing the number of parameters and
dimensional size, a 3D atrous convolution was used to build the ResNet block. Then, the
proposed DNN obtained a multi-scale of feature maps and expanded the depth of layers
by combing atrous convolution with ResNet architecture. The two-stage DNN used A) the
architecture of 3D ResNet to build the classification models for two tasks, respectively.

In brief, it consisted of five ResNet blocks and one FC layer. In the five ResNet blocks,
the former three blocks embedded the atrous convolution structure into the residual block,
and were called B) the multi-level concatenated atrous pyramid convolution (MLAPC)
module. In each MLAPC block, two standard convolution layers with a 3 × 3 × 3 con-
volution kernel and a dilation rate of r = 1 and two atrous convolution layers with a
3 × 3 × 3 convolution kernel and a dilation rate of r = 2 were used to obtain feature maps
of different receptive fields. The batch normalization (BN) layer and the rectified linear
unit (ReLU) were placed after each convolution layer in sequence. At the bottom of the
MLAPC block, these multi-scale image features extracted by the MLAPC module were
concatenated before sending to the next module. The max-pooling layer was connected
with each ResNet block to reduce the dimension of features. The other two ResNet blocks

https://github.com/GongJingUSST/GNN_RiskStratification_DNN
https://github.com/GongJingUSST/GNN_RiskStratification_DNN
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consisted of two standard convolution layers with a 3 × 3 × 3 convolution kernel and a
dilation rate of r = 1, two BN layers, and two ReLUs. The FC layer and a softmax activa-
tion function were used to build the classification head to output the risk probability of
each task.

The proposed DNN model performed two classification tasks of the GGN risk strat-
ification process, and used cross-entropy to define the loss function for each task. An
adaptive moment estimation (Adam) optimizer was used to minimize the cross-entropy
loss between the model outputs and target classification labels. To train the two-stage
DNN, Adam optimizers were configured with a learning rate of 0.001 and weight decay of
1.0 × 10−4 for two tasks. In the optimization process, the learning rates of the parameter
group were decayed after 200 and 100 epochs by gamma values of 0.1 and 0.5 for the two-
stage DNNs. For each stage of DNN model training, the training dataset was resampled
with a sample number ratio of 1:1 for the two classes by using the data augmentation
techniques. In the training process, a batch size of 64 was set to update the parameters.
To improve the robustness of the DNN, a mix-up data augmentation technique with an α

value of 0.5 was applied to train the models. We stopped the training early after 200 epochs.
No dropout operation was used in the network.
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Table A1. The statistics of the manufacturer and convolutional kernel for CT images in our datasets.

Dataset Manufacturer Manufacturer
Model Name

Convolutional
Kernel Number

Training
Dataset

(NCT = 1302)

Philips Brilliance 64
B 59
L 6

SIEMENS

SOMATOM
Definition AS

B31f 146
B70f 1

SOMATOM
Definition AS

B31f 135
B75f 1

Sensation 40 B31f 1

Sensation 64

B30f 174
B31f 718
B50f 1
B70f 59

TOSHIBA Aquilion ONE FC08 1

Tuning
Dataset

(NCT = 365)

Philips Brilliance 16
B 2
L 293

TOSHIBA

Aquilion FC51 1
FC52 24

Aquilion ONE
FC51 34
FC52 8
FC86 2

United Imaging
Healthcare uCT 528 B_SHARP_C 1
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Table A1. Cont.

Dataset Manufacturer Manufacturer
Model Name

Convolutional
Kernel Number

Validation
Dataset 1

(NCT = 263)

GE MEDICAL
SYSTEMS

LightSpeed VCT
BONEPLUS 17

CHST 88
STANDARD 2

LightSpeed16
BONEPLUS 28

LUNG 33
STANDARD 44

Optima CT540 BONEPLUS 37
LUNG 14

Validation
Dataset2

(NCT = 175)

Philips

Brilliance 40 C 11

Ingenuity Flex C 1
YA 1

iCT 256
B 38
L 3

SIEMENS SOMATOM
Definition AS+ B31f 106

United Imaging
Healthcare

uCT 510 B_SOFT_C 11
uCT 760 B_SHARP_AB 4

Table A2. The confusion matrix of two tasks generated by DNN and six readers.

Model
Task1 Task2

Ground
Truth

Predicted
Benign

Predicted
Malignant

Ground
Truth

Predicted
Non-IA

Predicted
IA

DNN
Benign 49 30 Non-IA 83 3

Malignant 20 103 IA 7 30

Reader1
Benign 43 36 Non-IA 85 1

Malignant 20 103 IA 19 18

Reader2
Benign 30 49 Non-IA 62 24

Malignant 9 114 IA 3 34

Reader3
Benign 14 65 Non-IA 64 22

Malignant 7 116 IA 2 35

Reader4
Benign 59 20 Non-IA 85 1

Malignant 59 64 IA 20 17

Reader5
Benign 21 58 Non-IA 41 45

Malignant 18 105 IA 0 37

Reader6
Benign 30 49 Non-IA 61 25

Malignant 29 94 IA 15 22

References
1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA. Cancer J. Clin. 2020, 70, 7–30. [CrossRef]
2. Aberle, D.R.; Adams, A.M.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M. Reduced Lung-

Cancer Mortality with Low-Dose Computed Tomographic Screening—The National Lung Screening Trial Research Team. N.
Engl. J. Med. 2011, 365, 395–409. [CrossRef] [PubMed]

3. Travis, W.D.; Brambilla, E.; Noguchi, M.; Nicholson, A.G.; Geisinger, K.R.; Yatabe, Y.; Beer, D.G.; Powell, C.A.; Riely, G.J.; Van
Schil, P.E.; et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory
Society International Multidisciplinary Classification of Lung Adenocarcinoma. J. Thorac. Oncol. 2011, 6, 244–285. [CrossRef]
[PubMed]

4. Ye, T.; Deng, L.; Wang, S.; Xiang, J.; Zhang, Y.; Hu, H.; Sun, Y.; Li, Y.; Shen, L.; Xie, L.; et al. Lung Adenocarcinomas Manifesting as
Radiological Part-Solid Nodules Define a Special Clinical Subtype. J. Thorac. Oncol. 2019, 14, 617–627. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21590
http://doi.org/10.1056/NEJMoa1102873.Reduced
http://www.ncbi.nlm.nih.gov/pubmed/21714641
http://doi.org/10.1097/JTO.0b013e318206a221
http://www.ncbi.nlm.nih.gov/pubmed/21252716
http://doi.org/10.1016/j.jtho.2018.12.030
http://www.ncbi.nlm.nih.gov/pubmed/30659988


Cancers 2021, 13, 3300 18 of 19

5. MacMahon, H.; Naidich, D.P.; Goo, J.M.; Lee, K.S.; Leung, A.N.C.; Mayo, J.R.; Mehta, A.C.; Ohno, Y.; Powell, C.A.; Prokop, M.;
et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017.
Radiology 2017, 284, 228–243. [CrossRef] [PubMed]

6. Hu, X.; Ye, W.; Li, Z.; Chen, C.; Cheng, S.; Lv, X.; Weng, W.; Li, J.; Weng, Q.; Pang, P.; et al. Non-Invasive Evaluation for Benign
and Malignant Subcentimeter Pulmonary Ground-Glass Nodules (≤1 cm) Based on CT Texture Analysis. Br. J. Radiol. 2020, 93,
20190762. [CrossRef] [PubMed]

7. Chae, H.-D.; Park, C.M.; Park, S.J.; Lee, S.M.; Kim, K.G.; Goo, J.M. Computerized Texture Analysis of Persistent Part-Solid
Ground-Glass Nodules: Differentiation of Preinvasive Lesions from Invasive Pulmonary Adenocarcinomas. Radiology 2014, 273,
285–293. [CrossRef]

8. Li, M.; Narayan, V.; Gill, R.R.; Jagannathan, J.P.; Barile, M.F.; Gao, F.; Bueno, R.; Jayender, J. Computer-Aided Diagnosis of
Ground-Glass Opacity Nodules Using Open-Source Software for Quantifying Tumor Heterogeneity. Am. J. Roentgenol. 2017, 209,
1216–1227. [CrossRef]

9. Mei, X.; Wang, R.; Yang, W.; Qian, F.; Ye, X.; Zhu, L.; Chen, Q.; Han, B.; Deyer, T.; Zeng, J.; et al. Predicting Malignancy of
Pulmonary Ground-Glass Nodules and Their Invasiveness by Random Forest. J. Thorac. Dis. 2018, 10, 458–463. [CrossRef]

10. Beig, N.; Khorrami, M.; Alilou, M.; Prasanna, P.; Braman, N.; Orooji, M.; Rakshit, S.; Bera, K.; Rajiah, P.; Ginsberg, J.; et al.
Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology
2018, 180910. [CrossRef]

11. Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper,
S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107.
[CrossRef]

12. Fan, L.; Fang, M.J.; Li, Z.B.; Tu, W.T.; Wang, S.P.; Chen, W.F.; Tian, J.; Dong, D.; Liu, S.Y. Radiomics Signature: A Biomarker for the
Preoperative Discrimination of Lung Invasive Adenocarcinoma Manifesting as a Ground-Glass Nodule. Eur. Radiol. 2018, 1–9.
[CrossRef] [PubMed]

13. Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A.
Classification and Mutation Prediction from Non–Small Cell Lung Cancer Histopathology Images Using Deep Learning. Nat.
Med. 2018, 24, 1559–1567. [CrossRef]

14. Wang, S.; Zhou, M.; Liu, Z.; Liu, Z.; Gu, D.; Zang, Y.; Dong, D.; Gevaert, O.; Tian, J. Central Focused Convolutional Neural
Networks: Developing a Data-Driven Model for Lung Nodule Segmentation. Med. Image Anal. 2017, 40, 172–183. [CrossRef]
[PubMed]

15. Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-End
Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography. Nat. Med. 2019, 25,
954–961. [CrossRef] [PubMed]

16. Zhao, W.; Yang, J.; Sun, Y.; Li, C.; Wu, W.; Jin, L.; Yang, Z.; Ni, B.; Gao, P.; Wang, P.; et al. 3D Deep Learning from CT Scans Predicts
Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Cancer Res. 2018, 78, 6881–6889. [CrossRef]

17. Wang, J.; Chen, X.; Lu, H.; Zhang, L.; Pan, J.; Bao, Y.; Su, J.; Qian, D. Feature-Shared Adaptive-Boost Deep Learning for
Invasiveness Classification of Pulmonary Subsolid Nodules in CT Images. Med. Phys. 2020, 47, 1738–1749. [CrossRef]

18. Gong, J.; Liu, J.; Hao, W.; Nie, S.; Zheng, B.; Wang, S.; Peng, W. A Deep Residual Learning Network for Predicting Lung
Adenocarcinoma Manifesting as Ground-Glass Nodule on CT Images. Eur. Radiol. 2020, 30, 1847–1855. [CrossRef]

19. Xia, X.; Gong, J.; Hao, W.; Yang, T.; Lin, Y.; Wang, S.; Peng, W. Comparison and Fusion of Deep Learning and Radiomics Features
of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan. Front. Oncol. 2020, 10,
418. [CrossRef]

20. Gao, F.; Sun, Y.; Zhang, G.; Zheng, X.; Li, M.; Hua, Y. CT Characterization of Different Pathological Types of Subcentimeter
Pulmonary Ground-Glass Nodular Lesions. Br. J. Radiol. 2019, 92, 20180204. [CrossRef]

21. Son, J.Y.; Lee, H.Y.; Kim, J.-H.; Han, J.; Jeong, J.Y.; Lee, K.S.; Kwon, O.J.; Shim, Y.M. Quantitative CT Analysis of Pulmonary Ground-
Glass Opacity Nodules for Distinguishing Invasive Adenocarcinoma from Non-Invasive or Minimally Invasive Adenocarcinoma:
The Added Value of Using Iodine Mapping. Eur. Radiol. 2016, 26, 43–54. [CrossRef]

22. Li, Q.; Fan, L.; Cao, E.T.; Li, Q.C.; Gu, Y.F.; Liu, S.Y. Quantitative CT Analysis of Pulmonary Pure Ground-Glass Nodule Predicts
Histological Invasiveness. Eur. J. Radiol. 2017, 89, 67–71. [CrossRef]

23. Gong, J.; Liu, J.; Hao, W.; Nie, S.; Wang, S.; Peng, W. Computer-Aided Diagnosis of Ground-Glass Opacity Pulmonary Nodules
Using Radiomic Features Analysis. Phys. Med. Biol. 2019, 64, 135015. [CrossRef] [PubMed]

24. Zhao, W.; Xu, Y.; Yang, Z.; Sun, Y.; Li, C.; Jin, L.; Gao, P.; He, W.; Wang, P.; Shi, H.; et al. Development and Validation of a
Radiomics Nomogram for Identifying Invasiveness of Pulmonary Adenocarcinomas Appearing as Subcentimeter Ground-Glass
Opacity Nodules. Eur. J. Radiol. 2019, 112, 161–168. [CrossRef] [PubMed]

25. Wang, S.; Wang, R.; Zhang, S.; Li, R.; Fu, Y.; Sun, X.; Li, Y.; Jiang, X.; Guo, X.; Zhou, X.; et al. 3D Convolutional Neural Network
for Differentiating Pre-Invasive Lesions from Invasive Adenocarcinomas Appearing as Ground- Glass Nodules with Diameters
≤3 cm Using HRCT. Quant. Imaging Med. Surg. 2018, 8, 491–499. [CrossRef] [PubMed]

26. Wang, D.; Zhang, T.; Li, M.; Bueno, R.; Jayender, J. 3D Deep Learning Based Classification of Pulmonary Ground Glass Opacity
Nodules with Automatic Segmentation. Comput. Med. Imaging Graph 2021, 88, 101814. [CrossRef]

http://doi.org/10.1148/radiol.2017161659
http://www.ncbi.nlm.nih.gov/pubmed/28240562
http://doi.org/10.1259/bjr.20190762
http://www.ncbi.nlm.nih.gov/pubmed/32686958
http://doi.org/10.1148/radiol.14132187
http://doi.org/10.2214/AJR.17.17857
http://doi.org/10.21037/jtd.2018.01.88
http://doi.org/10.1148/radiol.2018180910
http://doi.org/10.1158/0008-5472.CAN-17-0339
http://doi.org/10.1007/s00330-018-5530-z
http://www.ncbi.nlm.nih.gov/pubmed/29967956
http://doi.org/10.1038/s41591-018-0177-5
http://doi.org/10.1016/j.media.2017.06.014
http://www.ncbi.nlm.nih.gov/pubmed/28688283
http://doi.org/10.1038/s41591-019-0447-x
http://www.ncbi.nlm.nih.gov/pubmed/31110349
http://doi.org/10.1158/0008-5472.CAN-18-0696
http://doi.org/10.1002/mp.14068
http://doi.org/10.1007/s00330-019-06533-w
http://doi.org/10.3389/fonc.2020.00418
http://doi.org/10.1259/bjr.20180204
http://doi.org/10.1007/s00330-015-3816-y
http://doi.org/10.1016/j.ejrad.2017.01.024
http://doi.org/10.1088/1361-6560/ab2757
http://www.ncbi.nlm.nih.gov/pubmed/31167172
http://doi.org/10.1016/j.ejrad.2019.01.021
http://www.ncbi.nlm.nih.gov/pubmed/30777206
http://doi.org/10.21037/qims.2018.06.03
http://www.ncbi.nlm.nih.gov/pubmed/30050783
http://doi.org/10.1016/j.compmedimag.2020.101814


Cancers 2021, 13, 3300 19 of 19

27. Wang, X.; Li, Q.; Cai, J.; Wang, W.; Xu, P.; Zhang, Y.; Fang, Q.; Fu, C.; Fan, L.; Xiao, Y.; et al. Predicting the Invasiveness of Lung
Adenocarcinomas Appearing as Ground-Glass Nodule on CT Scan Using Multi-Task Learning and Deep Radiomics. Transl.
Cancer Res. 2020, 9, 1397. [CrossRef] [PubMed]

28. Hu, X.; Gong, J.; Zhou, W.; Li, H.; Wang, S.; Wei, M.; Peng, W.; Gu, Y. Computer-Aided Diagnosis of Ground Glass Pulmonary
Nodule by Fusing Deep Learning and Radiomics Features. Phys. Med. Biol. 2021, 66, 065015. [CrossRef]

29. Hu, J.; Chen, Y.; Yi, Z. Automated Segmentation of Macular Edema in OCT Using Deep Neural Networks. Med. Image Anal. 2019,
55, 216–227. [CrossRef]

30. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef]

31. Pedersen, J.H.; Saghir, Z.; Wille, M.M.W.; Thomsen, L.H.H.; Skov, B.G.; Ashraf, H. Ground-Glass Opacity Lung Nodules in the Era
of Lung Cancer CT Screening: Radiology, Pathology, and Clinical Management. Oncology 2016, 30, 266–274. [CrossRef] [PubMed]

32. Nemec, U.; Heidinger, B.H.; Anderson, K.R.; Westmore, M.S.; VanderLaan, P.A.; Bankier, A.A. Software-Based Risk Stratification
of Pulmonary Adenocarcinomas Manifesting as Pure Ground Glass Nodules on Computed Tomography. Eur. Radiol. 2018, 28,
235–242. [CrossRef] [PubMed]

33. Hao, P.; You, K.; Feng, H.; Xu, X.; Zhang, F.; Wu, F.; Zhang, P.; Chen, W. Lung Adenocarcinoma Diagnosis in One Stage.
Neurocomputing 2019, 392, 245–252. [CrossRef]

34. Hattori, A.; Hirayama, S.; Matsunaga, T.; Hayashi, T.; Takamochi, K.; Oh, S.; Suzuki, K. Distinct Clinicopathologic Characteristics
and Prognosis Based on the Presence of Ground Glass Opacity Component in Clinical Stage IA Lung Adenocarcinoma. J. Thorac.
Oncol. 2019, 14, 265–275. [CrossRef] [PubMed]

35. Robbins, H.A.; Katki, H.A.; Cheung, L.C.; Landy, R.; Berg, C.D. Insights for Management of Ground-Glass Opacities from the
National Lung Screening Trial. J. Thorac. Oncol. 2019, 14, 1662–1665. [CrossRef]

http://doi.org/10.21037/tlcr-20-370
http://www.ncbi.nlm.nih.gov/pubmed/32953512
http://doi.org/10.1088/1361-6560/abe735
http://doi.org/10.1016/j.media.2019.05.002
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.1016/S0020-0255(00)00086-4
http://www.ncbi.nlm.nih.gov/pubmed/26984222
http://doi.org/10.1007/s00330-017-4937-2
http://www.ncbi.nlm.nih.gov/pubmed/28710575
http://doi.org/10.1016/j.neucom.2018.11.110
http://doi.org/10.1016/j.jtho.2018.09.026
http://www.ncbi.nlm.nih.gov/pubmed/30368010
http://doi.org/10.1016/j.jtho.2019.05.012

	Introduction 
	Related Works 
	Contributions 

	Materials and Methods 
	Datasets 
	Two-Stage DNN Model Development 
	Image Pre-Processing 
	Data Augmentation 
	DNN Model 

	MRMC Observer Study Design 
	Statistical Analysis and Performance Evaluation 

	Results 
	Patient Characteristics 
	DNN Model Validation and Effect of Slice Thickness on Performance 
	MRMC Comparison Using an Independent Dataset 
	Cohen’s Kappa Statistic and Difference Significance Test 

	Discussion 
	Conclusions 
	
	
	References

