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Simple Summary: Online treatment monitoring is an important tool to ensure the safety and effec-
tiveness of hyperthermia cancer therapy. However, current solutions provide only sparse/inaccurate
data, demand extensive access to complex and expensive infrastructure, or are associated with
increased toxicity. In this study, we present a simulation-based evaluation of the feasibility of
electrical impedance tomography (EIT) for hyperthermia treatment monitoring. EIT is a low cost,
information-rich, non-invasive technique that could potentially be adapted and employed to recon-
struct conductivity changes and translate them to temperature- and perfusion-change maps. Using an
innovative reconstruction methodology that leverages (ideally personalized) treatment simulations,
physics-motivated constraints, multiple frequencies, measurement-derived compensation, and novel
numerical approaches, we investigated the impact of factors such as noise and reference model
accuracy on the temperature- and perfusion-reconstruction accuracy. Results suggest that EIT can
provide valuable real-time monitoring capabilities. As a next step, experimental confirmation under
real-world conditions is needed to validate our results.

Abstract: We present a simulation study investigating the feasibility of electrical impedance tomog-
raphy (EIT) as a low cost, noninvasive technique for hyperthermia (HT) treatment monitoring and
adaptation. Temperature rise in tissues leads to perfusion and tissue conductivity changes that can
be reconstructed in 3D by EIT to noninvasively map temperature and perfusion. In this study, we
developed reconstruction methods and investigated the achievable accuracy of EIT by simulating
HT treatmentlike scenarios, using detailed anatomical models with heterogeneous conductivity
distributions. The impact of the size and location of the heated region, the voltage measurement
signal-to-noise ratio, and the reference model personalization and accuracy were studied. Results
showed that by introducing an iterative reconstruction approach, combined with adaptive prior
regions and tissue-dependent penalties, planning-based reference models, measurement-based
reweighting, and physics-based constraints, it is possible to map conductivity-changes throughout
the heated domain, with an accuracy of around 5% and cm-scale spatial resolution. An initial ex-
ploration of the use of multifrequency EIT to separate temperature and perfusion effects yielded
promising results, indicating that temperature reconstruction accuracy can be in the order of 1 ◦C.
Our results suggest that EIT can provide valuable real-time HT monitoring capabilities. Experimental
confirmation in real-world conditions is the next step.
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1. Introduction

Noninvasive imaging techniques such as electrical impedance tomography (EIT) are
valuable tools for medical applications. EIT is used to image the electrical conductivity
of tissues in the human body. EIT usage was first suggested in the 1970s [1]. Despite
its relatively low cost, safety, and high temporal resolution, EIT has not been as widely
adopted as other medical imaging methods, such as magnetic resonance imaging (MRI)
and computed tomography (CT) [2,3].

The applications of functional EIT include pulmonary investigations [4], cardiac and
gastrointestinal tract monitoring, breast cancer screening, and functional brain imaging [5].
Multiple devices have been introduced for clinical research [6], mainly in applications with
functional imaging, such as bedside lung monitoring. Other applications, such as tem-
perature estimation where accurate quantitative conductivity (or change in conductivity)
reconstruction is needed, are more challenging compared with those in which only the
volume with high dielectric change must be reconstructed.

One of the main challenges in EIT is that image reconstruction from measured voltages
is an ill-posed problem [7]. Changes in the whole domain correspond to an infinite number
of degrees of freedom (DOF) that must be reconstructed from a limited number of electrode
measurements. Nevertheless, knowledge about distribution smoothness adds constraints,
and regularization methods can be employed to facilitate reconstruction. Another issue
with EIT is that impedances are affected by the entire volume rather than a single slice.
Therefore, 2D reconstructions are merely an approximation of the real 3D problem [8].
While linearization methods combined with prior knowledge about the conductivity distri-
bution and difference imaging have been used to further improve image reconstruction,
the problem is nonlinear. Nonlinear reconstruction methods are more sensitive to inaccu-
racies in electrode models and positions. The literature on reconstruction algorithms for
EIT [9] suggests that linear reconstruction methods should be combined with nonlinear
iterative approaches to improve overall accuracy. From an instrumentation perspective,
measurement noise, electrode positioning accuracy, signal generation, and sensing tech-
niques impact overall EIT quality [10]. Further advances in EIT require improvements in
both instrumentation and image reconstruction. Improvements are especially needed for
applications that require the quantitative imaging of conductivity.

A potential application of EIT is in hyperthermic oncology. Hyperthermia (HT) ther-
apy aims to selectively heat tumor tissue to temperatures ranging from 40 ◦C to 45 ◦C for a
duration of about one hour. It is typically used as an adjuvant to radio- and/or chemother-
apy in cancer treatment. In the case of deep-seated tumors, selective heating is usually
achieved through coherent interference of electromagnetic (EM) energy from multiple
radiating elements [11]. A significant challenge is noninvasive temperature monitoring in
deep-seated tissue. The achieved temperature is difficult to predict, but it is important for
tracking the achieved thermal dose in the tumor and avoiding potential treatment-limiting
hotspots in healthy tissue. Treatment planning [12,13], which involves patient-specific EM
simulation, optimization of energy deposition, and thermal prediction of the treatment,
has been introduced as a tool for improving the prediction of thermal distribution. How-
ever, high uncertainty about the actual temperatures (e.g., due to perfusion changes during
treatment) remains [14–16]. Research progress has been made in noninvasive monitoring
using magnetic resonance thermometry (MRT) [17], but the accuracy of measurement is
susceptible to patient movements, magnetic field drift over time, and limited sensitivity in
fatty tissues, among others. In addition, the cost associated with MRT and the integration
complexity with HT are high [18]. Alternatively, EIT can offer a low-cost, low-complexity
solution for estimating temperature increases and perfusion changes during HT treatment.

Temperature elevation impacts tissue conductivity in two different ways. First, tem-
perature changes the conductivity of intra- and extracellular fluids, which can be modeled
by a linear relationship and described by a temperature coefficient (Tc)—the ratio of relative
conductivity increases per degree centigrade. Second, in tissues in which thermoregulation-
induced perfusion changes (e.g., vasodilatory response) are high, fluid flow in the extracel-
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lular environment increases, resulting in additional tissue conductivity change. At lower
frequencies, current flows mainly in the extracellular region, whereas at higher frequencies,
current flow is more uniform across all tissue compartments. Multifrequency EIT is consid-
ered as a method to distinguish changes in conductivity directly related to temperature
(i.e., Tc-related part) from changes in conductivity due to perfusion increase [19]. Earlier
studies have achieved temperature estimation accuracies ranging from 1.5 ◦C to 5 ◦C [20].
The results of these and other studies [21–25] suggest that to enable clinical EIT for HT and
ablation treatment monitoring, improvements in conductivity reconstruction and temper-
ature estimation are essential and consequently require accurate models of temperature-
induced conductivity changes and the ability to distinguish temperature-related changes
from tissue changes or damage-related changes, both permanent and temporary.

Recently, there has been increased interest and progress in applying EIT as a monitor-
ing tool for thermal ablation, both in experimental and simulation studies [26–29], which
motivates revisiting EIT for HT monitoring. New tools for EIT simulations have been
introduced [30,31], and the computational power has increased considerably. Addition-
ally, developments in tissue segmentation [32], combined with knowledge about tissue
properties [33], enable the simulation of patient-specific treatment scenarios. Similarly,
more realistic anatomical models can be used to perform sensitivity analyzes to improve
the design of instruments. Most experimental studies in EIT are performed in tanks with
simple geometrical shapes and few objects with different conductivities; hence, results
cannot directly be translated to real human application. Since human anatomy is highly
heterogeneous and geometrically complex, accurate representation in a model requires high
resolution and many discretization elements. Notably, higher resolution negatively impacts
reconstruction accuracy since total error minimization involves residuum minimization for
more degrees of freedom, while the number of voltage electrode measurements remains
the same [34].

Accurate temperature and/or perfusion estimation requires accurate knowledge about
the relationship between temperature and conductivity, in addition to accurate conduc-
tivity imaging. In this paper, we focus on the achievable EIT reconstruction accuracy
by using existing tools, such as electrical impedance tomography and diffuse optical to-
mography reconstruction (EIDORS) [31]), in conjunction with high-resolution anatomical
models [35]. We aim to exploit HT treatment planning-based prior information and in-
vestigate the reconstruction of conductivity changes in the range expected for the given
application. We also identify potential practical issues specific to hyperthermic oncology
and their impact on the accuracy of conductivity change reconstruction to further improve
temperature estimation.

2. Materials and Methods

To investigate the potential application of EIT in HT treatment planning and treatment
monitoring, we performed simulations using the Virtual Population (ViP) Duke (age: 34,
height: 1.77 m, BMI: 22.4 kg/m2) and Glenn (age: 84, height: 1.73 m, BMI: 20.4 kg/m2)
anatomical models [35]. Two anatomical models were used to assess the impact of in-
tersubject variability, as well as the importance of using personalized reference models.
The models were discretized using a tetrahedral mesh in EIDORS v3.9. We first describe sin-
gle iteration reconstruction using EIDORS. In Section 2.2, we present novel reconstruction
approaches capable of overcoming the limitations of existing methods in our application
of interest, their implementation, and the investigation scenarios. While considering the
high heterogeneity of the human body, we then determined if the reconstruction accuracy
improved when using a tissue-dependent penalty (TiD) parameter. A sensitivity analysis
regarding the location and size of the simulated region was also performed.

In difference imaging, a reference model with an initial conductivity assignment
is required. The measured changes in the electrode voltages are used to reconstruct the
changes in conductivity from the reference model. As reference patient models may display
anatomical segmentation inaccuracies, we investigated their impact on the reconstruction
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accuracy by considering a scenario where a volume outside the prior region, i.e., the volume,
where an increased sensitivity is achieved by applying a penalty value [36], exhibited a
large deviation (∆σ) from the reference model conductivity (σre f ).

Noise in the measurement acquisition chain is also present in practical implementa-
tions. We assessed the impact of different electrode voltage noise levels (signal-to-noise
ratio, SNR) on reconstruction accuracy using different reconstruction parameter values.

Finally, a realistic bladder tumor HT treatment scenario was considered as an EIT
application case, using the two anatomical models (different body shapes and heating
patterns). The clinical value of treatment planning-based EIT and the importance of
personalizing the reference model were also assessed.

2.1. Single Iteration Reconstruction

EIDORS includes multiple algorithms for two- and three-dimensional (2D/3D) image
reconstruction. In this study, we used difference imaging reconstruction on a 3D body.
Single iteration reconstruction assumes small variations in conductivity, for which the
relationship between voltage and conductivity can be approximated linearly as follows:

y = Jx + n, (1)

where Jij =
∂yi
∂xj

is the Jacobian, x = σ− σre f is the difference of the actual conductivity dis-
tribution and the reference value, y = v− vre f is a vector with electrode voltage differences
of the actual measurement to the reference measurement, and n is the measurement noise.
Regularization techniques are used to solve this problem [36–38]. We used the one-step
linear Gauss–Newton method to estimate x̂ by minimizing the sum of quadratic norms for:

||y− Jx̂||2 + λ2||x||2. (2)

The solution of the above formulation is:

x̂ =
(

JTW J + λ2R
)−1

JTWy = By. (3)

To reduce computational time by decreasing the size of the matrix to be inverted, B can be
rewritten as follows:

B = PJT
(

JPJT + λ2V
)−1

, (4)

where P = R−1 and [R]ii =
[

JT J
]0.5

ii . Effectively, R is a diagonal regularization matrix scaled
with the sensitivity of each element and λ is a regularization parameter. V = W−1 = I rep-
resents difference imaging EIT with identical channels. Two important and frequently used
parameters in the reconstruction are the hyperparameter (λ) and the penalty parameter.
When known changes are likely to occur in a smaller subdomain, a penalty parameter
is used to implement an increased sensitivity in this region: [R]ii =

[
JT J
]0.5

ii [Penalty]ii,
for i in the subdomain. More details about derivations can be found in existing publica-
tions [36,37,39].

2.2. Pipeline and Simulation Setup

The ViP Duke model comprised of tissue properties from the IT’IS tissue database [33]
was imported into EIDORS. Only a 20 cm portion of the torso (620 k elements) was used
for further analysis.

Using difference imaging, we exploited prior information about the geometry and
the conductivity distribution. Hence, we focused on reconstructing the conductivity
change (∆σrec):

∆σrec = INV
(

vre f , v, σre f

)
, (5)
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where reference conductivity (baseline for EIT difference reconstruction) is σre f . INV is
the function to solve the inverse problem using v and vre f from the electrode voltages
calculated from solving the forward problem or from current injection measurements for σ,
respectively σre f . The actual conductivity change (∆σ = σ− σre f ) is referred to as “modified
conductivity”, since a range of conductivity change configurations will be created by modi-
fying the reference conductivity to investigate difference image reconstruction scenarios.

HT treatment planning workflows already include a tissue segmentation step. The seg-
mented anatomical model can be assigned tissue properties, while considering the EIT
frequency, to establish the reference model.

Difference imaging reconstruction is less sensitive to the modeling of the electrodes
and contact impedance, as we assume the same conditions are present in both reference
and additional measurements of the model to be reconstructed [9,40]. Therefore, we did
not investigate the impact of the electrode parameters in this study; however, changes in
the contact quality in experimental measurements will affect the reconstruction accuracy.

The reconstruction pipeline used in this study is shown in Figure 1. The reference
model includes the tissue conductivity assignments. In nonablative HT treatment, the target
region can reach temperatures of up to 45 ◦C. In addition to the direct temperature-related
conductivity change contribution modeled with temperature coefficients (∼2%/◦C), σ
can also change due to perfusion changes, thus altering the tissue extracellular fluid
distribution. From the reference model, modified models were created by changing the
tissue conductivity by up to 40%, a level similar to the experimental measurement study by
Gersing [25]. The reference conductivity was multiplied by a 3D Gaussian shape mimicking
heating during an HT treatment, as shown in Figure 2. At the end of the simulation pipeline,
we compared the reconstructed model conductivity with the modified model conductivity.

For current injection and measurement, we positioned electrodes in single nodes,
distributed as two rows of eight electrodes to form an interleaved arrangement. Current
injection was applied transversely through single pairs (1–8, 2–9, etc.) and the voltage
difference was calculated in all adjacent pairs (v34, v45, etc.) except for the electrodes
used for current injection. Injecting currents through transversal, nonadjacent electrodes
increases the current density, and hence, the sensitivity of EIT to changes in deeper tissues.
Theoretically, a larger number of electrodes should improve the reconstruction accuracy.
However, for the same injected current, which is limited by safety considerations, the volt-
age difference of more densely placed electrodes will be lower and, in practice, we will
obtain more voltage measurements with lower SNR. An additional drawback of using
numerous electrodes is the increased computational reconstruction effort. The torso model
and electrode placements used in this study are shown in Figure 2.

In HT applications, the prior region can be determined either from the volume with
highest HT power deposition or from a preliminary thermal simulation, which does not
have to exactly reproduce the real patient tissue parameters. Although prior regions
improve reconstruction by focusing on changes in a smaller volume, changes outside the
prior region may be attributed to changes inside the region.

Simulations were interpolated to a structured rectilinear grid. A spatial averaging
filter (cubic volume of 1.2 cm edge length) was applied to ∆σ (%), mimicking the expected
smoothness of the heat distribution in tissue. Finally, the reconstruction accuracy across
different tissues was analyzed.
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Figure 1. Illustration of the implemented reconstruction pipeline and the scenarios investigated in this study. Boxes with
continuous outlines represent data, while the dotted ones represent processes. First, the actual and the reference model are
generated, based on a discretized dielectric model of the patient and electrodes. Reconstruction proceeds through multiple
iterations of forward (FWD) and inverse (INV) problem solving. The reconstruction results have been analyzed to study
the impact of reconstruction approaches, noise, as well as reference model realism and accuracy.
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Figure 2. (a) FEM model of the Duke anatomical model torso with electrode locations indicated in
green; (b) slices of the modified model ∆σ(%) for a heated region in the liver; (c) locations and sizes
of the different heated region scenarios; (d) setup featuring changes outside the prior region.
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2.3. Investigation Scenarios
2.3.1. Tissue-Dependent Penalty

As the human body is highly heterogeneous, a wide range of low frequency σ values
can be found, from close to 0 S/m (internal air) to over 0.36 S/m (muscle) and 3 S/m (urine).
The prior region can encompass a multitude of tissues covering a broad σ range, which
makes adequate change detection throughout the entire range without overestimation or
underestimation challenging. Information from the reference model σre f allows for the
use of tissue-dependent penalty values, as constant penalty changes in low σ tissues are
overestimated and changes in tissues with high σ, such as muscle, are underestimated, since
the reconstruction algorithm minimizes the overall electrode voltage differences. In this
study, we compared the reconstruction accuracy in different tissues when using a constant
penalty value versus a tissue-dependent penalty in a single iteration reconstruction without
applying any averaging or smoothing filter.

2.3.2. Region Location and Size

It is necessary to compare the reconstruction accuracy for different heating locations
and sizes. The size of the region where the conductivity was changed should correspond
to the typical extent of focused heating in HT treatment. For the first investigated location,
spherical heating regions of different diameters were considered. A simulated heating was
applied to a spherical region, as illustrated in Figure 2, by multiplying the conductivity

inside the sphere with 1 + 0.4 · e−
r2

2R2 (r: radial distance, R = 3 cm, peak σ-increase of 40%).
Depending on the location, the region can contain more than one tissue type. The modified
regions are shown in Table 1 and illustrated in Figure 2. In these scenarios, we assumed
that the prior region is perfectly known, and corresponds to the heated region.

Table 1. Size and position of simulated heated region and the added air object for the case of changes outside the focus
region. See Figure 2 for the location of the origin (0, 0, 0).

Simulation P1 P2 P3 P4 P5 Air Object

Center (x, y, z) [mm] (−90, 20, 15) (−90, 20, 15) (−90, 20, 15) (−40, 50, 15) (30, 50, 15) (50, 30, 15)
Diameter [mm] 60 40 80 60 60 50

2.3.3. Impact of Inaccurate Reference Model

The reconstruction is sensitive to the accuracy of the reference model. Even if the
reference model is accurate at the beginning of the treatment, organ shifts and air movement
in the bowels can occur during the treatment, since the HT treatment duration is relatively
long. We simulated such a scenario, where in addition to the changes due to the simulated
heating, the modified model included a spherical region with a 50 mm diameter and
σ = 0 S/m (same as air), as illustrated in Figure 2. The setup corresponds to P1 (Table 1),
such that results can be compared with the ideal case of an accurate reference model (see
Sections 2.4 and 3.3.1 regarding the impact of not using a personalized reference anatomy).

In addition to the iterative approach with a fixed prior region, we also introduced
an adaptive prior region approach. An initial mask was obtained by reconstructing the
conductivity change without prior region and thresholding locations, where a high change
was obtained. Subsequently, the mask was used as a prior region and a relatively relaxed
penalty value of 0.1 was assigned before obtaining an adapted or more focal mask. On the
basis of the obtained reconstruction, three additional reconstruction iterations with a stricter
penalty value were performed in the usual manner. This adaptive approach increased the
reconstruction sensitivity to changes outside of the classic prior region. Both the change
in the simulated heated region and the unexpected change outside the prior region were
simultaneously reconstructed. To achieve this, five (1 + 1 + 3) iterations instead of three
were required.
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2.3.4. Voltage Measurement Noise

The reconstruction problem is ill-conditioned. Minor voltage differences in the elec-
trode measurements can lead to large changes in estimated conductivity. As a result,
electrode voltage measurement noise is expected to significantly corrupt the reconstruction
quality. Here, we investigated its impact on the conductivity reconstruction in the Duke
anatomical model with a large number of mesh elements. Specifically, we assessed the
impact of the noise level by adding noise with different SNR levels in setup P1. A noisy
voltage vector (vn) was generated by adding noise to the electrode voltages (v) from the
forward problem solution of the modified model (σ).

vn = v + n, (6)

where n is zero mean white Gaussian noise with standard deviation σn. The SNR is
calculated as follows:

SNR = 20 log
(

∆vrms

σn

)
, (7)

where ∆v = v− vre f .

2.4. Simulated HT Treatment Reconstruction

In this part of the study, we used a setup that mimicked the targeting of a bladder
tumor using locoregional HT, where heat was delivered to a larger region encompassing the
tumor (see Figure 3). This scenario provides increased realism and avoids the simplifying
symmetries of the previous sections.

The procedure for the simulation was as follows:

1. We performed two thermal simulations of a one-hour treatment (TOpt and TPess) using
the same specific absorption rate (SAR) distribution. The Pennes bioheat equation
(PBE) [41] with temperature-dependent perfusion models was used for the thermal
simulations (see Equation (8)). The applied power level was the same in both cases,
but the temperature-dependent perfusion models for muscle, fat, and tumor tissues
were different (see Figure 4), to illustrate the impact of perfusion uncertainty;

2. We translated the temperature increase to a modified conductivity map, which in-
cluded a component directly related to temperature (∆σtemp) and a perfusion-related
indirect component (∆σper f );

3. We reconstructed and analyzed the changes in conductivity based on the “ground
truth” temperature simulation (TPess), using the conductivity at 37 ◦C as the ref-
erence model (Scenario 1) or the conductivity for the “planned” TOpt (Scenario 2).
The reconstructed conductivity was then converted into a reconstructed temperature
estimation map.

The procedure is illustrated in Figure 5.
The PBE couples thermal diffusion with a heat-sink term that is proportional to the

local perfusion and to the difference between the local tissue temperature (T(t)) at time t
and the arterial blood temperature (Ta):

ρc
∂T
∂t

= ∇k∇T + wbρbcb(Ta − T) + qm + qext, (8)

where ρ represents density (kg/m3), c is the specific heat capacity (J/kg◦C), k is the thermal
conductivity (J/(s·m·◦C)), wb is the perfusion rate (kg/(s·m3)), ρb is the density of blood,
cb is the specific heat capacity of blood, qm is the metabolic heat generation rate (J/(s·m3)),
and qext is the electromagnetic power deposition. wb can be temperature dependent to
account for vasodilation.
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Figure 3. Simulated HT treatment in the Duke and Glenn anatomical models. Five modular applicator
elements were placed circumferentially around the tumor, and their phases and amplitudes were
optimized to preferentially heat the tumor. Two different anatomical models were used to investigate
the impact of anatomical variability, as well as the impact of using a nonpersonalized reference model
for reconstruction.
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Figure 4. Current flow at different frequencies and fluid distribution in the human body [42] (left);
optimistic and pessimistic perfusion models for muscle, fat, and tumor tissue [14,43] (right).

2.4.1. Change in Conductivity Due to Temperature Increase

The change in conductivity during a HT treatment can be modeled with two components:

∆σ(T) = ∆σtemp(T) + ∆σper f (T), (9)

where the change in conductivity directly due to the increase in temperature (∆T = T − Tre f )
is ∆σtemp(T) = Tc · ∆T, with the temperature coefficient Tc (we assume Tc = 2%/◦C in
all tissues).

The conductivity change due to perfusion depends on the tissue as well as the fre-
quency. At lower frequencies (kHz, LF), current flows mainly in the extracellular compart-
ment, whereas at higher frequencies (MHz, HF), current flow tends to be more uniform
across all tissue (see Figure 4).
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Figure 5. Conductivity changes reconstruction pipeline for two investigated EIT scenarios: EIT at-
tempts to reproduce the voltage measurement signal of the “actual” model by reconstructing tem-
perature and perfusion changes with regard to the reconstruction reference. (Scenario 1) uses the
conductivity at 37 ◦C as reconstruction reference, while (Scenario 2) uses the modified conductivity
as predicted by computational modeling of induced heating, perfusion response, and resulting con-
ductivity change (but wrongly assuming an “Optimistic” perfusion, while the “actual” conductivity
change is based on the “Pessimistic” perfusion model). Scenario 2 also employs masking based on
the predicted temperature increase (prior region) to improve reconstruction.

For the purpose of this study, a simple model representing the difference between high
and low frequency EIT and perfusion effects was constructed. Large uncertainties were
associated with the temperature dependence of the perfusion ∆σper f . However, as long as
the model reproduced the general magnitude and behavior in terms of perfusion impact on
conductivity and heating, it did not affect the generality of the study conclusions. To model
the different frequencies, we neglected other dispersive effects and assumed that:

GHF = GicHF + GecHF + GpHF, (10)

and
GLF = GecLF + GpLF, (11)

where GLF and GHF are the LF and HF conductance, respectively. Gic, Gec, Gp, correspond
to intracellular, extracellular (without the blood plasma), and plasma conductance. We used
the average human body volume ratio of these compartments from [42], as illustrated in
Figure 4, as the conductance ratio between compartments to model the perfusion impact
on conductance. Actual values are tissue-dependent.

The change in perfusion affects the total conductance by changing the relative contri-
butions of the three compartments; therefore, the plasma volume increases as the perfusion
increases. Assuming that the relative tissue volume change related to a perfusion increase
is small and the plasma conductivity is the principal contributor to the overall conductivity,
we obtain:

∆σper f (T) =
∆Vp(T)

Vtotal
(1 + Tc · ∆T), (12)

where ∆Vp(T) = Vp,0 ·
(√

ω(T)− 1
)

is the plasma volume change due to perfusion,

and ω(T) is the relative perfusion change. α =
Vp,0

Vtotal
is the relative amount of plasma prior

to heating, which is taken uniformly as 8% (see Figure 4), while in reality it varies across
tissues and individuals. The −1 accounts for the plasma volume prior to heating, which
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is already included in the ∆σtemp term. The square root approximates the relationship
between blood vessel cross-sectional area and perfusion increase and is obtained under the
assumption of a constant pressure drive and laminar flow [44].

Perfusion-related changes were considered for muscle, fat, and tumor tissues, par-
ticularly for prominent tissues with strong temperature dependence of perfusion and an
important impact on the predicted temperature, using the two perfusion models shown in
Figure 4, according to [14]. Tumor perfusion has a high associated uncertainty [14] due to
irregular vascularization.

Disentangling Temperature and Perfusion

Distinguishing ∆σtemp from ∆σper f to identify temperature and perfusion changes is
not the subject of this paper. However, a possible approach is provided here:

∆σ = ∆σtemp +∆σper f ,where ∆σtemp = Tc ·∆T and ∆σper f = α ·
(√

ω− 1
)
· (1 + Tc · ∆T).

If α is known at two frequencies for a tissue of interest (in this study, we assumed αLF = 24%
and αHF = 8% for all tissues), we obtain

∆σLF −
αLF
αHF
· ∆σHF =

(
1− αLF

αHF

)
· Tc · ∆T (13)

and
∆σLF − ∆σHF = (αLF − αHF) ·

(√
ω− 1

)
· (1 + Tc · ∆T). (14)

The former can be used to estimate ∆T, while the latter can be used to obtain ω (either
using the ∆T estimated using Equation (13), or ∆T from the simulation, or neglecting the
term Tc · ∆T in Equation (14)). In practice, αLF and αHF might not be known, as the exact
form of the temperature and perfusion dependences likely deviates from Equation (12),
and the reconstructed ∆σLF and ∆σHF contain reconstruction errors. For a brief analysis of
the latter, see Section 3.3.2.

2.4.2. Reconstruction Scenarios

Temperature predictions have uncertainties; hence, the need for online monitoring of
temperature during treatment. Here, we assumed that a temperature distribution (TPess)
corresponds to the actual thermal treatment administered to a patient with a bladder tumor.
Using the equations and assumptions above, we calculated the actual conductivity change
corresponding to TPess and the corresponding EIT voltages were used for reconstruction.
Two scenarios were considered: one without previous knowledge and one with an imper-
fect thermal simulation-based treatment plan. In Scenario 1 (see Figure 5), we reconstructed
conductivity changes using the values at 37 ◦C (no heating applied) as the reference con-
ductivity. In Scenario 2, temperature distributions from simulations using TOpt were used
to define the prior region for reconstruction; the incorrect perfusion information was used
to introduce uncertainty similar to expected outcomes in a real treatment. Despite not
using accurate perfusion values, Scenario 2 provided a better starting point than Scenario 1
for the reconstruction, as the conductivity difference to be reconstructed is smaller.

In both scenarios, we determined the prior region by thresholding TOpt at a temper-
ature above a temperature threshold (TMask). For Scenario 2, a TMask of 39 ◦C was used,
whereas for Scenario 1, no mask is applied. In Scenario 1, we expected changes in the
whole volume, whereas in Scenario 2, the prior region was smaller, as differences were
more localized. Suitable temperature thresholds were identified by studying the resulting
reconstruction accuracy in a range of setups. Higher thresholds prevent the reconstruction
outside the masked volume, resulting in an overall increased error, while lower thresholds
lead to underestimation of tumor heating, as the impedance changes are attributed to a
larger region.

To investigate the importance of using personalized reference models, reconstruc-
tion was performed again using the Duke reference model, but with a simulated HT
treatment measurement of Glenn (similar element placement, same steering parameters).
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As reconstruction with 16 elements was unsuccessful (see Section 3.3.1), eight-element
reconstruction was investigated further. Subsequently, changes in anatomy (Glenn has a
smaller cross-section area than Duke) were compensated by rescaling the voltages with the
ratio of the voltages prior to heating. The additional constraint of demanding a positive
temperature increase was imposed by zeroing all negative conductivity changes prior to
each reconstruction iteration (note: negative conductivity changes cannot be excluded
completely, e.g., due to geometry changes during treatment or perfusion redistribution;
performing the reconstruction step after zeroing does allow to account for some of that).
Finally, the expected temperature distribution smoothness was mimicked by convolution
with a Gaussian filter (radius: 1 cm; chosen based on the characteristic lengths of the PBE
Green’s function in muscle, bone, fat, and tumor at the initial temperature).

For the analysis of the reconstruction accuracy, the conductivity change in the heated
reference model was compared with the conductivity change in the reconstruction.

Both the LF and the HF EIT cases were simulated. In the LF case, the contribution of
perfusion to the conductivity change is higher. Thus, the same temperature distribution
resulted in a higher total change in conductivity. Ultimately, EIT at multiple frequencies was
used to distinguish conductivity changes related to Tc from indirect conductivity changes
related to perfusion changes and to monitor both the temperature and the perfusion
distribution. In this study, we focused on the feasibility of conductivity reconstruction,
and only briefly considered multifrequency EIT-enabled contribution separation.

3. Results
3.1. Reconstruction Time

A typical reconstruction for a setup with ∼6E5 tetrahedral elements, 16 electrodes,
and 182 voltage measurements requires less than 5 min on a personal computer with an Intel
i7-4770 processor (3.4 GHz, 4 cores). If less than three iterations are used, the reconstruction
speed can be further accelerated. In view of the characteristic heating time in hyperthermic
oncology, this provides sufficient temporal resolution.

3.2. Investigation Scenarios
3.2.1. Tissue-Dependent Penalty

Second order polynomials were fitted to the scatter plots of actual conductivity change
(∆σ = σ− σre f ; in %, relative to nonheated baseline conductivity) vs. reconstructed con-
ductivity (∆σrec = σrec − σre f ). Figure 6 shows the results from a single iteration without
any averaging filter after the reconstruction. The fits were performed separately for all
tissues present in the heated regions. Results showed that a constant penalty value applied
to all the tissues leads to an overestimation for low σ tissues and an underestimation in
the reconstruction of the high σ tissues. Tissue-dependent penalty values improve the
reconstruction across all tissues.
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Figure 6. (a) “Tissue-dependent Penalty” and “Fixed Penalty” values. (b) Plot by tissue of the fitted
relationship between reconstructed (∆σrec) versus reference (∆σ) changes in conductivity using “Fixed
Penalty” (dashed line) and “Tissue-dependent Penalty” (solid line).
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3.2.2. Multiple Regions

For scenario P1 from Table 1, Figure 7 shows the ∆σrec (%) versus ∆σ (%), mean, and± stan-
dard deviation after computing a sliding histogram every 1% of ∆σ. The results for all other
cases are shown as the error in conductivity reconstruction (∆σerr = ∆σrec − ∆σ in %) from
the modified ∆σ (%). The magnitude of the deviations of the reconstructed conductivity
changes from the actual changes, as well as their variability, are similar and moderate (well
below 10%) in all cases. The largest deviation from the target is observed in the case of
smaller region (P2), which corresponds to the situation with the highest dielectric contrast
at the heating region surface.

3.2.3. Impact of Inaccurate Reference Model

When investigating the impact of changes outside the prior region, which is also
equivalent to an inaccurate reference model conductivity, both the penalty parameter and
the hyperparameter values are important. The hyperparameter shows the reliance of the
reconstructed model on the reference model σ. The penalty, however, impacts how much
the reconstruction focuses on changes within the prior region and how much it relies on the
absence of no changes outside of the prior region. Since both of these parameters are related
to the accuracy of the reference model, results for different values of these parameters are
presented in Figure 8.
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Figure 7. (a) Reconstructed conductivity ∆σrec (%) for the P1 setup from Figure 2 and (b) its deviation
from the actual conductivity change (∆σerr = ∆σrec − ∆σ) for all the setups P1–P5, as shown in
Table 1 and illustrated in Figure 2, (right), using three iterations, tissue-dependent (TiD) penalty,
and Hp = 0.01.

Initially, we observed that the reconstruction error resulting from the important
conductivity changes outside the prior region can be large when using the same penalty
and hyperparameter values, such as for the ideal case. Relaxing those parameters reduced
the standard deviation of the error, but the reconstructed conductivity still did not follow
the expected change across the whole range. After introducing adaptive prior regions,
an improvement of the results was obtained, as shown for TiD penalties in Figure 8. Refer to
Section 3.3.1 regarding reconstruction using a nonpersonalized reference anatomical model.
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Figure 8. Reconstructed deviation in an inaccurate reference model (large inserted air sphere) for a
fixed prior region using three iterations (left) and an adaptive prior region using 1 + 1 + 3 iterations
(right)—note the different scale in the upper left graph.

3.2.4. Voltage Measurement Noise

Figure 9 shows the results for heating scenario P1, when voltage measurements with
different levels of SNR are mimicked. Since we wanted to focus on the impact of noise,
the prior region was fixed and there were no changes outside the prior region in the
reference model. The SNR was calculated with respect to the voltage difference, not the
absolute voltages. As expected, noise strongly deteriorated the reconstruction accuracy,
especially with low hyperparameter values. In the reconstruction algorithm, this gives
more weight to the voltage measurements, which have poor SNR in this case, and less to
the reference conductivity in the regularization part.
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Figure 9. Impact of electrode voltage SNR (see Section 2.3.4 for the SNR calculation) on the recon-
struction accuracy using three iterations for four levels of SNR (10, 20, 30, 40 dB), and in the 20 dB SNR
case for varying combinations of reconstruction parameters (hyperparameter and penalty)—note the
different scale in the 10 dB SNR case.

3.3. Simulated HT Treatment Reconstruction

Slice views of simulated HT treatment temperatures, conductivity maps, and recon-
structions are shown for Scenario 1 and 2 (Duke model, LF EIT) in Figure 10. Simulations
were performed using the Duke and Glenn anatomical models for LF and HF EIT, using
reconstruction Scenarios 1 and 2, resulting in a total of eight cases. For all these cases, we
also calculated the estimated temperature change error (Terr = Trec− Tactual) for fat, muscle,
tumor, and all tissues combined by using the reconstructed conductivity (see Figure 11).
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Trec was calculated using the inverse of the function ∆σ(T) that was used to translate the
temperature distribution to a modified conductivity map (see Section 2.3). This only served
to provide an interpretable error metric for analysis purposes. In practical applications,
the uncertainties associated with the temperature dependence of conductivity prevented
reliable inversion and multifrequency EIT measurements instead permitted direct tem-
perature reconstruction by separating direct temperature-related from perfusion-related
conductivity changes (see Section 3.3.2).

In Scenario 1, there was higher error across the whole range of change, as a result
of the much larger conductivity changes (up to 55%) and the large required prior region.
In Scenario 2, we observed an improved reconstruction accuracy, except for the tumor.
Even though there were relatively high changes in tumor conductivity (up to 20%), tumor
volume was relatively small and the reconstruction attributed the associated impedance
changes to small conductivity changes in a larger volume. As a result, changes in tumor
conductivity were only partially reconstructed for Scenario 2.

HF reconstruction resulted in lower temperature prediction errors compared to the
LF case. This was mainly due to the smaller range of the conductivity change that
required reconstruction.

Similar observations were made for the Duke and Glenn anatomical models, with
slightly better results for Glenn, perhaps due to his smaller body size. The heating pattern
in Glenn was more focused compared to Duke, resulting in a smaller region of significant
conductivity changes and thus a smaller prior region, facilitating reconstruction.

Figure 10. Reconstruction results from realistic HT treatment modeling (LF, Duke anatomical model): (a) axial slice from the
thermal simulation with the optimistic perfusion model (TOpt), (b) axial slice from thermal simulation with the pessimistic
perfusion model (TPess) and (f) difference between TPess and TOpt; (c,d) reconstructed temperature results from Scenario
1 (Trec 1, using the reference conductivity at 37 ◦C) and Scenario 2 (Trec 2, using the reference conductivity ∆σ(TOpt)), as
calculated from the reconstructed ∆σrec in (h,i), respectively; (e) temperature estimation error for both scenarios; (g) ∆σ(TPess)

with its direct temperature-related (∆σtemp) and the perfusion-related ∆σper f contributions.
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Figure 11. (a) Reconstructed mean and standard deviation of conductivity (∆σerr) and (b) estimated
temperature error (Terr). Reconstructions were performed for the Duke and Glenn anatomical models,
for low frequency (LF) and high frequency (HF) current injection, using the conductivity map at
37 ◦C as the reference (baseline for EIT difference reconstruction) or the one predicted by thermal
simulations with the (inaccurate) optimistic perfusion model (TOpt). Mean and standard deviation of
temperature error for muscle, fat, tumor, the prior region mask, and all tissues combined are shown.
TiD penalty and Hp = 0.01 were used.

For the simulated HT treatment on the Duke model, Table 2 shows the electrode volt-
age levels obtained by solving the forward problem when injecting a 1 mA current at the
stimulating electrodes. The injection current was limited by safety constraints. For frequen-
cies above 100 kHz, the stimulating current should not exceed 10 mA regardless of the pulse
shape. In a practical implementation, depending on the SNR and the acquisition system
capabilities, the conductivity-change-induced reconstruction-relevant voltage differences
can be of a similar magnitude as the noise.

Table 2. Mean and standard deviation of the electrode voltages (vre f ) and voltage differences at each
iteration of reconstruction for two cases (reconstruction using reference conductivity, σre f , at 37 ◦C
and TOpt).

Electrode Voltages Levels at 1 mA Injection Current

Simulation vre f |∆v| at Iteration

1 2 3

Reference 37 ◦C 5.1 ± 4.8 mV 390 ± 370 µV 42 ± 45 µV 1.7 ± 1.7 µV
Reference TOpt 4.7 ± 4.5 mV 30 ± 26 µV 0.9 ± 0.8 µV 0.9 ± 0.8 µV

The results presented in Table 2 also show that in Scenario 2 the remaining difference
between the reference and reconstruction-based voltage in the second and third iteration
was much smaller than for Scenario 1. This was a consequence of using TOpt as a starting
guess, which was closer than Scenario 1 to the target distribution. In fact, in Scenario 2,
the first iteration would be sufficient. Nevertheless, three iterations were maintained,
in case of important conductivity changes within or outside the prior region, which cannot
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be excluded in advance. The expected electrode voltages and voltage changes are important
for defining the hardware requirements.

3.3.1. Personalized Reference Model

When the voltages from a simulated Glenn HT treatment were reconstructed using
a Duke reference model, no meaningful results were obtained (Figure 12). Matching the
impedances from 16 contacts and 192 voltage measurements resulted in overfitting or
extreme conductivity variations that rely on compensation to achieve accurate impedance
matches. Thus, reconstruction from eight electrodes was performed. While this produced
inferior results when using a subject-specific reference model (lower reconstruction reso-
lution and accuracy), it considerably improved reconstruction using a nonpersonalized
reference (Figure 12). Further improvements were obtained when (i) rescaling voltages
based on the measurable preheating voltages to compensate for anatomical differences
(see Figure 13), (ii) constraining conductivity changes to be positive, and (iii) smoothing
the temperature distribution based on the characteristic thermal length (∼1 cm). The latter
two improvements are not specific to using personalized reference models.

Figure 12. (a) Conductivity reconstruction error (∆σerr = ∆σrec − ∆σ in %) using 16, 12, or 8 elec-
trodes, when the actual treatment (along with the extraction of the measurement voltages) is applied
to the Duke model, (b) actual heating on Glenn, (c,d) reconstruction is performed using the Duke
model as reconstruction reference, to study nonpersonalized reconstruction of heating on Glenn.
While avoiding the generation of patient-specific models for reconstruction considerably reduces
the involved effort, an important factor in a clinical environments, it also results in reduced recon-
struction accuracy. As hyperthermia QA guidelines recommend personalized treatment planning
for deep-seated tumors, personalized models are frequently available already. The important recon-
struction errors in (a) reflect the use of the Duke conductivity distribution at 37 ◦C as reconstruction
reference, while the reconstruction approaches in (c,d) employ nonpersonalized, Duke-based treat-
ment planning (incl. thermal modeling) instead. (c) displays reconstruction results obtained using
16 electrodes with or without voltage-rescaling to compensate for the absence of a personalized
reference model. (d) displays reconstruction results obtained when reducing the number of elec-
trodes to 8, using voltage-rescaling, introducing constraints (non-negative temperature changes),
and applying Green’s-function-based smoothing. These measures result in increasingly accurate
temperature increase estimations.
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Figure 13. (a) Preheating impedance Zij per electrode pair (in Ω) and (b) impedance reduction due
to heating (in %). Upper and lower triangle values correspond to the Duke and Glenn anatomical
models, respectively. The numbering follows Figure 2.

3.3.2. Temperature and Perfusion Mapping

Figure 14 illustrates the perfusion and temperature increase maps obtained using the
multifrequency approach from Section 2.4.1 (shown for the Duke case, using the optimistic
perfusion model as the reconstruction reference; see Section 2.4). The two-frequency re-
construction resulted in a superior reconstruction of the temperature maps (error < 2 ◦C),
when compared to the single frequency one. The perfusion reconstruction showed im-
portant deviations in the tumor. The superiority of the temperature mapping over the
perfusion mapping could be related to the differing conductivity reconstruction error mag-
nitudes at the two frequencies. Equation (13) adds different weights to the reconstructions
at the two frequencies, such that the two errors are compensated when computing the
temperature map, while Equation (14) subtracts the two without weighting, such that part
of the conductivity reconstruction error remains and affects the perfusion mapping.

Figure 14. Reconstruction results from multifrequency EIT on Duke and Glenn: (a) cross-sectional
view of the temperature error distribution; (b) reconstructed perfusion versus underlying perfusion
plotted separately for muscle, fat, and tumor tissues.

3.3.3. Summary of Temperature Reconstruction Accuracy

Table 3 summarizes the impact of the reconstruction approach and scenario on re-
construction accuracy. It illustrates the improvements relative to the prior state-of-the-art
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(baseline) afforded by the newly introduced iterative approach, adaptive prior regions,
and tissue-dependent penalties. The mean and standard deviation of the reconstruction
error in the masked prior region are reported (note that the prior region changes when
adaptive prior regions are used). The crucial improvements afforded by the use of planning-
based reference models, measurement-based reweighting, and physics-based constraints
are not reflected in the table, as the chosen metrics to not allow for a direct comparison
across changing anatomies—the relevant information can instead be found in Figure 12.
For the generic scenarios, in which the conductivity was changed in a given spherical
region, the conductivity reconstruction accuracy was converted to an equivalent tempera-
ture accuracy by dividing by Tc = 2%/◦C. The limitations of the reconstruction accuracy
estimations are discussed in Table 4.

Table 3. Summary of the impact of the reconstruction approach (parameters, iterations, adaptive
penalties and prior regions, reference model) and scenario (generic local σ change, detailed treat-
ment scenario, perfusion changes, EIT frequency/frequencies) on the reconstruction accuracy (mean
and standard deviation in the prior region). For the realistic HT therapy heating pattern scenarios,
the worst case from the investigated Glenn and Duke scenarios is reported. Accuracy of nonpersonal-
ized reconstruction scenarios is not reported here, since the chosen metrics are not applicable.

Temperature Estimation Accuracy

Condition Accuracy (Mean/Stddev ◦C)

Ideal: generic local (spherical) σ change

1-iter., No Penalty, Hp = 0.01 −3.9/4.9 ◦C

1-iter., Penalty = 0.001, Hp = 0.01 (baseline) −0.6/1.7 ◦C

1-iter., Penalty = TiD, Hp = 0.01 −0.6/1.4 ◦C

3-iter., Penalty = TiD, Hp = 0.01 −0.1/1.1 ◦C

Nonideal: noise/σ change outside prior region

3-iter., Penalty = TiD, Hp = 0.01, σ change outside
prior region

Unusable with Fixed prior region;
0/2.4 ◦C with Adaptive prior region

3-iter., Penalty = 0.01, Hp = 0.1, SNR = 20 dB −0.4/3 ◦C

Hyperthermia treatment scenarios, temperature increase and perfusion changes

3-iter., Penalty = TiD, HP = 0.01, Ref 37 ◦C 0.2/1.8 ◦C (LF)
−0.1/1.4 ◦C (HF)

3-iter., Penalty = TiD, HP = 0.01, personalized Ref TOpt
−0.3/1.1 ◦C (LF)
−0.1/0.5 ◦C (HF)

3-iter., Penalty = TiD, HP = 0.01, Multifrequency −0.1/0.3 ◦C

Figure 10 suggests that under ideal conditions and when using personalized reference
models, a spatial reconstruction accuracy in the centimeter-range is achievable, which is
similar to the inherent thermal length-scale (diffusion related characteristic length of the
PBE Green’s function [45]). However, Figure 12 suggests that imperfections, such as the use
of nonpersonalized models, reduce the achievable spatial accuracy to multiple centimeters.
The ability of detecting highly localized temperature features, e.g., near important cooling
arteries, has not been assessed.

4. Discussion

In this study, we investigated the potential application of EIT as a low-cost, noninva-
sive technique for HT treatment monitoring.

For estimation accuracy, if only changes in conductivity associated with Tc are con-
sidered, a 2% deviation from the actual conductivity leads to 1 ◦C error in temperature.
Due to the presence of perfusion-related conductivity changes, the total conductivity sen-
sitivity to temperature is higher, which can facilitate temperature mapping, if accurate



Cancers 2021, 13, 3297 20 of 24

information about the temperature dependence of perfusion is provided. However, the re-
lation between the conductivity error and the temperature or perfusion estimation error
becomes more complex. In the absence of well-known temperature–perfusion relation-
ships, distinguishing between perfusion and temperature changes using multifrequency
EIT is crucial. To simultaneously map perfusion and temperature changes, the use of
more than two measurement frequencies and postprocessing techniques should be further
investigated, considering the limited accuracy of conductivity map reconstruction and the
limited knowledge about α.

Using a tissue-dependent penalty along with adaptive prior regions are key to achiev-
ing conductivity mapping in highly heterogeneous anatomical models. Information from
thermal simulations can be used to further improve the accuracy, as shown in the simulated
HT treatment scenario. Under ideal conditions, reconstruction in a simulated HT treatment
achieves a mean deviation in the order of 1 ◦C (see Figure 11) in the heated domain. Having
a good reference model is important, and a priori personalized models should be used.
When using a nonspecific anatomical reference, fewer measurement electrodes should be
used and voltages should be rescaled based on preheating measurements. An extreme
scenario was investigated to assess local reference model inaccuracies (e.g., passing air
bubble). Regarding local reference model inaccuracies (e.g., passing air bubble), an extreme
scenario was investigated. We found that using adaptive prior regions in combination
with a tissue-dependent penalty successfully enabled reconstruction. Nonablative HT is
a relatively long treatment (∼40–60 min) and the heating time constant is in the order of
minutes. Therefore, changes during treatment, except for body movements, occur slowly
compared with the potential voltage acquisition speed. Continuous monitoring can be
combined with continuous prior region adaptation to handle slow tissue environment
changes and to adapt the reference model.

Measurement noise is problematic as the number of cells in the model to be recon-
structed is large compared to the number of voltage measurements. Figure 9 illustrates the
quantifiable impact of SNR on the reconstruction error from 40 dB to 10 dB SNR, while keep-
ing the same reconstruction parameters results in an increase of the reconstruction error by
an order of magnitude. The SNR can be improved by averaging multiple acquisitions, and
voltage measurements with poor SNR should be detected.

The combination of HT treatment planning with EIT has multiple advantages: Treat-
ment planning typically includes imaging and segmentation for personalized treatment
optimization, and a personalized reference model is important for the reconstruction.
Electromagnetic and thermal simulations from HT planning can be used in EIT to de-
termine the region where changes in conductivity are expected and which can serve as
a prior region. A good reference model for the heated state also facilitates reconstruc-
tion (smaller ∆σ). In turn, EIT-reconstructed changes in conductivity converted to perfu-
sion/temperature changes can be used for an online adaptation of the treatment plan and
of the applied parameters.

For the simulated HT scenarios with the Duke and Glenn ViP models, additional
investigations were performed that are not presented in this paper due to space constraints.
The following parameters were varied: masking threshold level (37–40 ◦C), hyperparameter
value (0.0001–1), and the number of electrodes (8–32) and electrode rows (2–4). The masking
threshold affects the reconstruction of regions with relatively high changes that are left
outside the mask, if too high, or the accuracy of high temperature region reconstruction,
if too low. The impact of the hyperparameter is dependent on the masking threshold
and the mask and penalty values; however, in most of the cases, 0.01 was considered a
good choice. Increasing both the number of rows and electrodes did not yield significant
improvements compared to two rows with 16 electrodes and resulted in smaller voltage
differences between nearby electrodes, making the system more susceptible to noise and
measurement uncertainty in practical implementations.

Table 4 lists study limitations that should be considered.
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Table 4. List of limitations in this study and their implications.

Limitation Discussion

Generality

The present study focused on two anatomies, one realistic tumor location in addition to a few spherical
heating cases, a fixed exposure element type and placement, and stable EIT electrode placement. While
the reconstruction parameters were not particularly tweaked to obtain the presented results, it is
important to investigate whether these parameters are indeed generalizable.

Anatomical model
accuracy

Personalized anatomical model generation—or intersubject variability, if presegmented models are
used—affect the simulation fidelity and are likely to be one of the main sources of reconstruction errors.

Constant Tc

A constant Tc = 2%/◦C was used in this study. However, reported values in tissue vary between
0.6–2.1%/◦C; refs. [14,46] with a typical value around 2.0%/◦C. Although it is unclear how much is
measurement-accuracy-related, large intertissue or intersubject variability affects the reconstruction.

Frequency and
temperature
dependence of
conductivity

There is a high degree of uncertainty associated with the temperature dependence of perfusion and
electric conductivity. However, since this study focused on conductivity change reconstruction,
this uncertainty does not affect our conclusions. If multifrequency EIT can separate direct temperature
effects from perfusion-related ones, the uncertainty is reduced to that of Tc.

Inaccurate
conductivity values

The reference model and the model to be reconstructed use tissue properties from a tissue properties
database; however, uncertainty and variability associated with these properties affect the achievable
reconstruction accuracy. EIT prior to therapy application can help obtain more accurate property maps.

Nonlocal changes of
perfusion and local
vascular cooling

Although we assumed that increased blood flow circulation occurred in the heated region, nonlocal
effects, such as whole-body thermoregulation, convective transport by medium-sized blood vessels,
and the stealing effects or blood-flow reduction in a tissue resulting from an increase in neighboring
tissue were not considered. Additionally, the localized cooling by sufficiently large blood vessels is not
considered by the employed PBE, which assumes distributed perfusion.

Fixed body
core temperature

In our simulations, we assumed that body-core temperature was constant. However, the high energy
delivery during HT therapy can result in a body-core temperature increase which affects overall
tissue temperature.

Electrode modeling
and positioning

We modeled point electrodes with precisely known locations. The impact of inaccurate electrode
positioning and compensation methods have already been studied [47–49]. We assume that accurate
placement of electrodes can be assured during treatment. Replacing the point electrodes with extended
electrodes will affect the current density in the vicinity of the electrode, and thus the reconstruction
sensitivity in that region; this is easily handled and not the subject of this study, which focused on EIT for
deep heating monitoring.

Fixed patient geometry

We assumed that the patient geometry did not change between the treatment model creation and the
treatment administration. Precise and reproducible patient positioning is required in the clinic, and it is
already a requirement for high-quality HT treatment administration. Changes in the internal organ
geometry have been investigated in this study, and are handled using adaptive prior regions.
Nevertheless, large changes were shown to deteriorate the reconstruction accuracy.

Reconstruction
parameter choice

Further investigations are necessary to determine if the reconstruction parameters identified in this study
also provide the best reconstruction results across other scenarios.

5. Conclusions

In this study, we investigated the feasibility of EIT difference imaging for detecting
conductivity changes during HT therapy. Realistic scenarios were considered for the prac-
tical implementation of EIT in HT monitoring. We implemented an iterative reconstruction
in which the reference model was updated for each iteration. The results suggest that a
single iteration may be sufficient if there are only small changes.

By using highly heterogeneous anatomical models, we showed that a tissue-dependent
penalty parameter improves reconstruction accuracy throughout the modeled volume.
We also showed that reconstruction performance has no apparent dependence on the
location and extent of the heated region when placing heated spheres with sizes typical of
HT heating volumes in relevant torso treatment locations.

Simulated HT treatment with realistic heating patterns revealed large errors in the
reconstruction, mainly due to conductivity changes within most of the volume. Using
simulated treatment plans as references yields better reconstructions, despite modeling-
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inherent inaccuracies (e.g., of the tissue parameters). A personalized reference model is thus
required; however, a nonspecific reference model can be used if the number of electrodes is
reduced and a rescaling of voltages based on preheating measurements is performed.

In view of real-world limitations, we considered the impact of voltage measure-
ment noise and strong localized inaccuracies in the reference model (large air bubble).
Both can lead to significant errors, if reconstruction parameters for ideal conditions (no
noise, accurate reference model) are used. However, important improvements can be
achieved by relaxing reconstruction parameters and introducing prior region adaptation in
the reconstruction.

For the successful application of EIT to monitor temperature and perfusion during
HT therapy, all factors contributing to the deterioration of the accuracy must be addressed
and mitigated. Essentially, accurate reference models (geometry and conductivity) and
accurate impedance measurements are required. The results indicate that a temperature
estimation accuracy in the order of 1 ◦C is achievable under the considered conditions
and assumptions based on the novel methodologies in this study (iterative reconstruction
with adaptive prior regions, planning-based references, measurement-based reweighting,
tissue-dependent penalties, and positive heating constraints). The achievable mapping
accuracy will depend on how well multifrequency EIT measurements can be leveraged
to distinguish direct temperature-related impedance changes from changes caused by
perfusion adaptation.

As a next step, experimental realization and validation of the presented approach
is required. Initial work could focus on the reconstruction of heating distributions when
applying HT ex vivo, where perfusion changes are irrelevant and measurement access is
better. Subsequent work would then shift to in vivo situations and rely on strategically
placed thermometry catheters, or information from MR thermometry and MR perfusion
mapping. Compatibility issues associated with the presence of EIT electrodes during HT
application must be considered.
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