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Simple Summary: The childhood tumor, neuroblastoma, has a broad clinical presentation. Risk
assessment at diagnosis is particularly difficult in molecularly heterogeneous high-risk cases. Here we
investigate the potential of imaging mass spectrometry to directly detect intratumor heterogeneity on
the protein level in tissue sections. We show that this approach can produce discriminatory peptide
signatures separating high- from low- and intermediate-risk tumors, identify 8 proteins aassociated
with these signatures and validate two marker proteins using tissue immunostaining that have
promise for further basic and translational research in neuroblastoma. We provide proof-of-concept
that mass spectrometry-based technology could assist early risk assessment in neuroblastoma and
provide insights into peptide signature-based detection of intratumor heterogeneity.

Abstract: Risk classification plays a crucial role in clinical management and therapy decisions in chil-
dren with neuroblastoma. Risk assessment is currently based on patient criteria and molecular factors
in single tumor biopsies at diagnosis. Growing evidence of extensive neuroblastoma intratumor het-
erogeneity drives the need for novel diagnostics to assess molecular profiles more comprehensively
in spatial resolution to better predict risk for tumor progression and therapy resistance. We present a
pilot study investigating the feasibility and potential of matrix-assisted laser desorption/ionization
mass spectrometry imaging (MALDI-MSI) to identify spatial peptide heterogeneity in neuroblas-
toma tissues of divergent current risk classification: high versus low/intermediate risk. Univariate
(receiver operating characteristic analysis) and multivariate (segmentation, principal component anal-
ysis) statistical strategies identified spatially discriminative risk-associated MALDI-based peptide
signatures. The AHNAK nucleoprotein and collapsin response mediator protein 1 (CRMP1) were
identified as proteins associated with these peptide signatures, and their differential expression in
the neuroblastomas of divergent risk was immunohistochemically validated. This proof-of-concept
study demonstrates that MALDI-MSI combined with univariate and multivariate analysis strategies
can identify spatially discriminative risk-associated peptide signatures in neuroblastoma tissues.
These results suggest a promising new analytical strategy improving risk classification and providing
new biological insights into neuroblastoma intratumor heterogeneity.
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1. Introduction

Neuroblastoma is a pediatric cancer arising in approximately 1 of 100,000 children
under 15 years of age in Germany [1]. It is the most common malignant solid tumor
diagnosed in infants with a median age at diagnosis of 17 months [2]. The tumor derives
from neural crest cells of sympathoadrenal lineage, and can develop anywhere in the
sympathetic nervous system. About 65% of primary tumors arise in the adrenal medulla
or lumbar sympathetic ganglia, while the rest arise in the neck, chest and pelvis. Clinical
behavior and outcome is highly diverse, ranging from low-risk disease with the highest rate
of spontaneous regression in all cancers to treatment-refractory lethal disease progression
or treatment-resistant relapse occurring in high-risk disease despite aggressive multimodal
treatment [3,4]. Consequentially, neuroblastoma treatment recommendations range from
mere observation or surgical resection alone to very aggressive therapy protocols including
high-dose chemotherapy, irradiation and immunotherapy [5].To address the issue of ap-
propriate therapy intensity, a common international staging and risk classification system
(INSS/INRG) has been developed [6,7]. In Europe, patients have been classified into three
risk groups following the criteria described in Table 1 [5].The additional International
Neuroblastoma Pathology Classification (INPC) criterion is exclusively used in the USA [8].
Neuroblastoma samples from patients with low and intermediate risk (INSS/INRG) were
grouped together for this retrospective study and high-risk patients were defined as in
Table 1 (Stage 4 > 18 months plus all MYCN-amplified cases).

Table 1. Treatment classification of neuroblastoma patients.

INSS/INRG
Staging

Age at
Diagnosis
(Months)

MYCN Status Chromosome 1p
Status

Treatment Risk
Group

1 not amplified normal Low

amplified High

2 not amplified normal Low

deletion/imbalance intermediate

amplified High

3 <24 not amplified normal Low

≥24 not amplified normal
intermediate

not amplified deletion/imbalance

amplified High

4s/MS <18 not amplified normal Low

amplified High

4/M <18 not amplified intermediate

≥18 amplified High
INSS = International Neuroblastoma Staging System. INRG = International Neuroblastoma Risk Group (INRG)
Staging System.

MYCN amplification was the first identified clinically relevant molecular biomarker for
neuroblastoma [9], and remains a strong single predictor for unfavorable outcome. However,
a recent report from the INRG revealed that the prognostic impact of MYCN amplification is
greatly dependent on the context of clinical and biological features [10]. In Germany, current
risk stratification for the ongoing clinical trials is based on patient age, stage, MYCN amplifi-
cation and the result of an mRNA-based molecular classifier [11] that is continuously further
improved on transcriptomic and genomic levels [12]. We previously demonstrated spatial
intratumor genetic heterogeneity and first evidence of branched evolution in neuroblastoma
by bulk sequencing of paired diagnostic and relapse tumor samples [13]. A more recent
sequencing effort has demonstrated extensive genetic intratumour heterogeneity in neuroblas-
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toma with distinct evolutionary patterns that impact clinical behavior [14]. Previous extensive
next-generation sequencing efforts by the global neuroblastoma community to catalog genetic
aberrations in neuroblastoma [12,14–21] used primarily single diagnostic biopsies, and iden-
tified a low number of recurrent point mutations and translocations even in high-risk and
relapsed neuroblastomas. One of these studies also included matched diagnostic and relapse
samples from five patients, corroborating evidence of the genetic evolution of disease [20].
The demonstration of intratumor genetic heterogeneity and its evolution over disease course
have assisted an expansion of tissue sample collection accompanying patient treatment and
trials worldwide. In-depth analysis and further interpretation with respect to potential clinical
implications will achieve a better grasp of the extent of intratumor heterogeneity in neurob-
lastoma to improve personalized patient treatment. Knowledge remains limited about the
influence of both high intratumor heterogeneity and peptide signatures in neuroblastomas on
disease progression and response to treatment. Tumor progression, in general, is known to
be affected by tumor cellular interplay and the surrounding microenvironment [22]. Taken
together, there is unmet need for reliable neuroblastoma risk classification that takes the tumor
microenvironment and spatial heterogeneity into account.

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)
innovative technology combines the comprehensive mass spectrometric technique with a
conventional histological evaluation. It allows unsupervised (unlabelled) analysis of molecules
(e.g., metabolites, proteins, peptide, lipids and glycans) directly on a single tissue section,
preserving their spatial coordinates and generating a molecular intensity map displaying
the spatial relative molecule abundance [23–26]. MALDI-MSI has several advantages over
other techniques, such as nano-desorption electrospray ionization (DESI), secondary ion
mass spectrometry (SIMS) and liquid extraction surface analysis. MALDI-MSI requires less
time to preform measurements, and provides better spatial resolution for a larger mass
range, which are all important prerequisites for potential clinical application. The mass range
of DESI and SIMS are limited to 2000 Da and 1000 Da, respectively. Spatial resolution of
DESI and LESA are much lower than MALDI-MSI. In the present study, tryptic peptides
ranging from 600 to 3500 Da were analyzed with 50 µm resolution, which could not have
been achieved by the other techniques [27]. Direct identification of proteins, from which the
peptides (acquired by MALDI-MSI) stem, remains limited to only a few abundant proteins.
Several studies have recently demonstrated that high-resolution MSI data combined with
microproteomics (high-resolution mass spectrometry) from microdissected tissue sections
enables retention of an aspect of spatial specificity and accurate protein assignment (high mass
accuracy) [28–30]. This is a promising strategy to explore potential disease-relevant protein
markers in small patient collectives, but is not well suited for large-scale studies because of
the longer processing time both for microdissection and mass spectrometry and the higher
cost. In contrast, spatially distinct signatures of peptide spectra, such as those extracted from
MALDI tissue imaging data, can be obtained in high-throughput in a clinically feasible time
frame at a lower cost, and could provide a new dimension to the current classification of
distinct patient subgroups, and potentially assist prediction of disease progression and/or
resistance development [31–34]. Therefore, MALDI imaging is a promising technology to
aid histopathology tissue assessment in routinely used large-scale formats. MALDI-MSI has
been used to classify tumor types [35], to predict a therapeutic strategy [36,37] and to act
as a biomarker for indicating response to treatment [38,39]. This technology can interpret
molecular tumor composition while preserving spatial morphology, providing important
insights into tumor heterogeneity and its impact on tumor biology.

In this pilot study, we investigated the feasibility and potential of MALDI-MSI com-
bined with uni- and multivariate statistical strategies to (1) determine discriminative
peptide signatures for neuroblastomas designated as high or lower risk groups as a starting
point for subsequent more fine-tuned comparisons in the same patient subgroup and (2) to
explore neuroblastoma intratumor heterogeneity for the first time on the protein level. Our
aim was to reach an initial proof-of-concept that peptide signatures are capable of adding
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a new useful dimension of novel information to current clinical and transcriptomic risk
classification schemes for neuroblastoma.

2. Results
2.1. Discriminative Peptide Signatures Can Be Derived from MALDI-MSI Data to Identify
Different Tumor Features

Here we evaluated the technical feasibility of MALDI-MSI to identify potential discrim-
inative protein features of more aggressive neuroblastomas (high-risk) from formalin-fixed,
paraffin-embedded (FFPE) tissue sections. Tissue samples were diagnostic biopsies from
primary neuroblastomas categorized as high (n = 5) or other risk groups (low or interme-
diate risk, n = 4). Peptide signatures extracted from the analyzed tissue samples yielded
501 aligned m/z values in a mass range for tryptic peptides (m/z value range: 800–3200).
Neuroblastoma cell-rich tumor regions yielded 397 aligned m/z values (Table S1). Repre-
sentative average spectra of whole sections are shown in Figure S1. Peptide signatures were
identified that characterized different tissue regions using bisecting k-means clustering, an
unsupervised multivariate segmentation analysis, conducted on MALDI-MSI data from
the tissue sections. Segmentation analysis produced two clusters shown as segmentation
maps (Figure 1) that corresponded well to tissue areas in the tumors that were either tumor
cell rich (>80%) or poor (defined by the reference pathologist). Consequently, peptide
signatures obtained from MALDI-MSI data can distinguish tumor regions with a high
tumor cell content from those with <80% tumor cell content directly from fixed tissue
sections. To determine whether signatures could be defined to discriminate high from
other risk groups, we performed a segmentation analysis (bisecting k-means) across only
the regions with >80% tumor cell content, as defined by the pathologist. Unsupervised
segmentation analysis of m/z values from these areas produced three segment clusters
with different peptide signatures in high-risk tumors, (percentage of each peptide signature
contributing to the tumor cell-rich region in Table S2), but only a single segment cluster in
neuroblastomas were classified as lower risk (Figure 1). These data illustrate molecular
intratumor heterogeneity for the first time on the protein level in high-risk tumors. Pep-
tide signatures can be extracted from MALDI-MSI data by unsupervised clustering that
correctly identify tumor cell-rich regions in neuroblastomas and discriminate high-risk
neuroblastomas from lower risk groups.

Univariate analysis of MALDI-MSI data has the potential to determine which single
peptides are the most discriminative between neuroblastoma tissues from different risk
groups. We applied receiver operator characteristic (ROC) analysis to the total 397 aligned
m/z peaks from tumor cell-rich areas in paired comparisons of tissue sections from high
or other neuroblastoma risk groups. Differential spatial peptide intensity distributions
in tissue samples from the two risk groupings determined the discriminatory power of
individual peptides. Wilcoxon rank sum testing was applied to the total 397 aligned m/z
peaks, resulting in 206 statistically significant m/z values (AUC values of >0.8 or <0.2;
p < 0.001). From these, we show the five peptides with the strongest discriminatory values
in Figure 2. Three peptides (m/z values: 1707.68, 1775.79 and 1832.79 Da) had significantly
higher intensity distributions and two peptides (m/z values: 766.48 and 1178.73 Da)
had significantly lower intensity distributions in tumor cell-rich regions from high-risk
neuroblastoma tissue sections. To explore the potential of the most discriminatory peptides
in the peptide signatures to discriminate high from other risk groups, principle component
analysis was applied to the 206 statistically significant m/z values (AUC values of >0.8
or <0.2; p < 0.001). Principal component 1 (PC-1) mainly captured the differences within
the tumor cell-rich regions in tumors from different risk groups and shows an increased
intensity distribution in cell-rich tumor regions in high-risk neuroblastomas (Figure S2).
Since 62% of the variance was explained by the first principal component (Figure S2), these
findings demonstrate that both unsupervised and supervised statistical approaches result
in discriminatory peptide signatures for high or other risk designations using MALDI-MSI
data from neuroblastoma tissue sections.
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Figure 1. MALDI imaging identifies high-risk neuroblastomas by heterogeneous peptide signatures in tumor cell-rich
regions. Sections from primary neuroblastomas with high or other risk classifications are shown with hematoxylin and
eosin (H&E) staining for tissue section orientation in segmentation maps of MALDI-MSI analysis. Segments (indicated by
different colors) represent different proteomic clusters generated by bisecting k-means clustering. Black lines surround
tumor areas with >80% tumor cell content (annotated by the reference pathologist). Signatures derived from segmentation
clustering across the whole tissue section are shown in the middle column and peptide signatures derived only across the
tumor cell-rich areas in the sections shown on the right. Colors represent the same proteomic clusters in the 2 images in the
middle column and the 2 images in the right column, but not between the middle and right images.

Figure 2. Selected peptides have differential intensity distributions in neuroblastoma cell-rich tumor regions between
high and other risk groups. Relative peptide expression (color bar) is shown for MALDI m/z ion peaks with the highest
significant area under the curve (AUC) values (>0.85, p < 0.001, top row) in receiver operator characteristic (ROC) analysis
and the lowest AUC values (AUC < 0.3, p < 0.001, bottom MALDI images). MALDI-MSI ion images are shown for the same
set of neuroblastoma tissue sections categorized either as high (HR) or other risk groups (nHR) in each image. Black lines
surround tumor areas with >80% tumor cell content (annotated by the reference pathologist). Hematoxylin and eosin (H&E)
staining in sections is shown for orientation.
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2.2. Discriminative Proteins Were Identified from Neuroblastoma Tissue Sections Based on
MALDI-MSI Data

To identify the proteins corresponding to the discriminatory tryptic peptide fragments,
we used a bottom-up nanoliquid chromatography-tandem mass spectrometry (nanoLC-
MS/MS) approach in adjacent tissue sections. This analysis assigned 147 of the 206 m/z
values (Table S3) shown to be discriminative in ROC analysis (AUC > 0.7 or AUC < 0.3,
p < 0.001) to peptides corresponding to proteins identified by nanoLC-MS/MS. According
to guidelines, corresponding proteins to m/z values are correctly identified when the
validating approach (nanoLC-MS/MS in this case; Table S4) identifies at least two peptides
(detected in MALDI-MSI) from the same protein, whose spatial differential intensities
are similar and correlated in the same tissue region (correlation coefficients) [40]. These
guidelines were fulfilled for 8 proteins (Table 2) that corresponded to 18 MALDI-MSI
m/z values. Of these 8 proteins, differential intensity distributions for m/z values from 6
(14 m/z values) proteins were verified using MALDI-MSI data obtained from 10 arrayed
cores from neuroblastoma tissue areas having >80% tumor cell content (Table 2; selected
ion intensity maps from TMA shown in Figure S2). Two peptides (m/z values in Table
S3) from the proteins, COL1A2, COL6A3, HSPA5, HIST1H2BC, KRT9, AHNAK and
NID2, were present at significantly higher intensities in tumor cell-rich areas in high-risk
neuroblastomas.

This group is enriched for extracellular matrix components (COL1A2, COL6A3 and
NID2) and proteins associating with or regulating cytoskeletal proteins (AHNAK) as well
as a cytoskeletal protein (KRT9). The two peptides assigned to CRMP1 had significantly
lower intensities in tumor cell-rich areas from high-risk neuroblastomas compared to lower
risk classifications. We selected two representative proteins from those identified for vali-
dation in adjacent neuroblastoma tissue sections using immunohistochemistry. AHNAK
expression was higher in tumor cell-rich areas in high-risk neuroblastomas than in the
lower risk groups (Figure 3). Reciprocally, CRMP1 expression was lower in high-risk
neuroblastomas compared with lower risk groups (Figure 3), validating our MALDI-MSI
profiling results. Our data strongly support that the 1832.79 m/z peak captured by MALDI-
MSI have a higher intensity in tumor cell-rich regions of high-risk neuroblastomas is a
tryptic peptide from AHNAK, an approximately 700 kD scaffold protein not previously
published in the context of neuroblastoma. It was initially reported to be associated with
neuroblast differentiation (reviewed in Davis2014) [41], but more recent studies have also
pointed to an important role in promoting cellular proliferation, migration and epithelial-
mesenchymal transition (EMT), processes leading to a short disease-free survival time
and poor outcome of aggressive cancers including pancreatic ductal adenocarcinoma [42].
Likewise, the relatively low intensity 922.50 m/z peak in MALDI-MSI of high-risk neu-
roblastomas is a tryptic peptide from CRMP1, a marker for neuronal differentiation that
is involved in neuronal outgrowth and guidance. It has been previously used in mRNA
panels for neuroblastoma MRD and tumor-initiating cells [43–46]. These findings strongly
support the correct identification of these 8 proteins as sources for 18 tryptic peptides
detected by MALDI-MSI in FFPE neuroblastoma tissue sections and validate AHNAK
and CRMP1 as discriminatory protein markers with potentially interesting and plausible
biological roles.
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Table 2. Differential intensity distributions of peptides (MALDI-MSI) and their corresponding proteins in tissue sections from neuroblastomas in high or other risk groups.

MALDI IMS
m/z Value

ROC [AUC] for
High Versus
other Risk *

ROC [AUC]
HR/nHR
TMA †

Significance
Rating-WRS

LC-MS/MS
[Mr + H+ cal.] Scores § Deviation

[Da]
Correlation
Coefficient

Protein
Symbol Protein

868.4930 0.85 0.73 <0.001 868.46 48.1 0.03 0.38
COL1A2 Collagen type I alpha 2 chain1562.7700 0.91 0.74 <0.001 1562.79 127. 0.02 0.64

2026.9100 0.86 0.73 <0.001 2027.02 65.8 0.11 0.36
1459.8500 0.72 0.66 <0.001 1459.86 40.5 0.01 0.38

COL6A3 Collagen type VI alpha 3 chain
2056.9200 0.88 0.63 <0.001 2057.04 59.4 0.12 0.32
766.4820 0.08 0.28 <0.001 766.46 21.7 0.03 0.44

CRMP1
Collapsin response mediator

protein 1922.4990 0.14 0.34 <0.001 922.51 22.3 0.02 0.40
1833.9900 0.87 0.67 <0.001 1833.91 65.1 0.08 0.40

HSPA5
Heat shock protein family A

(Hsp70) member 52042.2200 0.85 0.73 <0.001 2042.05 25.6 0.17 0.32
1477.8600 0.90 0.75 <0.001 1477.79 28.1 0.07 0.41

HIST1H2BC H2B clustered histone 41743.6800 0.82 0.58 <0.001 1743.82 96.2 0.14 0.58
1775.7900 0.90 0.70 <0.001 1775.81 123. 0.02 0.55
1586.7700 0.90 0.74 <0.001 1586.77 89.4 0.00 0.47

KRT9 Keratin 92705.2800 0.86 0.78 <0.001 2705.16 67.9 0.12 0.44
1267.5000 0.87 0.74 <0.001 1267.65 63.9 0.12 0.38

AHNAK AHNAK nucleoprotein
1832.7900 0.92 0.70 <0.001 1832.88 44.7 0.09 0.39
1706.7800 0.87 0.74 <0.001 1706.78 31.2 0.00 0.31

NID2 Nidogen 2
2455.3600 0.79 0.72 <0.001 2455.17 34.9 0.19 0.33

* Calculated from data obtained from regions in whole tissue sections with >80% tumor cell content. † TMA = tissue microarray (arrayed neuroblastom tissue cores from areas with >80% tumor cell content). §

MOlecular Weight Search score [47].
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Figure 3. Validation of two discriminative protein markers for neuroblastoma risk in tissue sections. Shown are representa-
tive tissue sections from neuroblastoma designated high-risk (HR) and as other risk groups (nHR). MALDI-MSI ion maps
for one peptide (m/z 1832.79 Da) assigned to AHNAK and one peptide (m/z 922.50 Da) assigned to CRMP1 are shown next
to the corresponding sections stained with hematoxylin and eosin (H&E) for orientation. Black lines border areas with >80%
tumor cell content. Immunohistochemical (IHC) detection of AHNAK and CRMP1 is shown for the regions surrounded by
the yellow squares in the expanded image (400×magnification).

Taken together, MALDI-MSI is feasible for the investigation of molecular cell pheno-
types in histologically homogeneous appearing areas of high-risk neuroblastoma. Our data
show these cells to be molecularly heterogeneous, and we identified discriminatory peptide
signatures for high-risk neuroblastoma. From the discriminatory peptides, 18 could be
assigned to 8 proteins, and differential AHNAK and CRMP1 expression was immunohis-
tochemically validated in tissue sections. AHNAK shows intense and distinct staining
in the tumor cell-rich regions in high-risk neuroblastomas in comparison to other risk
groups (slight staining). In contrast, CRMP1 staining is intense in tumor cell-rich regions
of neuroblastomas with other risk designations and only exhibited slight staining in the
high-risk group. A detailed analysis of their biological roles in neuroblastoma is warranted.

3. Discussion

MALDI-MSI is a unique mass spectrometric technique that combines spatial molecular
analysis with conventional histological assessment. Neither labels nor prior knowledge
of molecular targets is necessary to simultaneously analyze the distribution of hundreds
of peptides within a tissue, and sample preparation is automated and relatively simple.
These advantages make MALDI-MSI an optimal tool to identify biomarkers and explore
tumor complexity. We have previously used MALDI-MSI on epithelial ovarian cancer
samples to discriminate among four different histotypes [48] and identify a proteomic
signature in early-stage disease that is a prognostic marker for recurrence [49]. Here, we
applied this technique to expose spatially resolved proteomic changes directly on intact
neuroblastoma FFPE tissue sections. The acquired spatial peptide signatures resulted
in 11 identified proteins, most of which are associated with the extracellular matrix and
cytoskeleton, which enabled us to distinguish high-risk neuroblastomas from the tissue
sections independently of conventional histology. Differential expression of the identified
discriminative proteins, AHNAK and CRMP1, was immunohistochemically confirmed in
sections, and discriminative spatial intensities of m/z peaks were validated in microar-
rayed tissue cores from tumor cell-rich regions in neuroblastomas. Importantly, we show
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that MALDI-MSI is capable of detecting molecular heterogeneity on the protein level in
neuroblastoma tissue sections.

Due to their heterogeneous distribution throughout the whole tissue sections, not
all peptides detected by MALDI-MSI in the whole sections were detected in cores in the
tissue microarray (Figure S3). Depending on the area of the entire tumor from which the
core is obtained, this information can be lost, pointing to significant limitations in the
use of tissue microarrays to detect tumor heterogeneity in comparison to MALDI-MSI on
whole tissue sections as a new, more comprehensive and precise diagnostic option. Several
studies demonstrate that MALDI-MSI in a powerful tool to aid pathology for different
cancer types [26,50,51]. Our study emphasizes that the investigation of whole tumor tissue
sections are promising to directly explore molecular tumor heterogeneity. Different areas
in a tumor section, while being homogeneous in morphological structure, can contain dif-
ferences in molecular composition [52,53]. Previous studies demonstrate that MALDI-MSI
is suitable to determine molecular subtypes in high-grade serous ovarian cancer [31,49] or
to perform tumor classification. MALDI-MSI is shown here to be suitable to acquire spatial
peptide signatures with potential as tools to directly examine molecular heterogeneity from
diagnostic neuroblastoma tissue sections and potentially assist discrimination of high- or
ultrahigh-risk disease after testing in a larger patient cohort.

International risk classification of neuroblastoma, based on clinical criteria plus MYCN
amplification and recently complemented by transcriptomic parameters, has proven its
usefulness for making therapy decisions and for disease management. Adding diagnostic
information on the protein level might have the potential to further improve fine-tuning
and the precision of current risk classification approaches. With this paper, we provide
the proof-of-concept for the technical feasibility of this approach. Even more important is
the consideration of tumor heterogeneity for the future selection of reliable prognostic or
predicative biomarkers and signatures.

Tumors are complex tissues interposing cancer cells with distinct cell types and
structures including extracellular matrix, stromal cells, blood vessels and cellular im-
mune components. Neighboring cells in the tumor stroma, best described by combining
proteomic profiling with histological evaluation, also influence tumor actions and phe-
notypes [54]. This diversity of cellular and molecular composition results in intratumor
heterogeneity as a key factor contributing to therapeutic failure, drug resistance and recur-
rence [55]. Neuroblastoma proteomes have been previously studied using tandem LC-MS
in bulk tissue homogenates from each tumor sample, and have defined large-scale, up-
or down-regulated proteins associated with high risk [56,57]. The most commonly used
(LC-MS, 2-dimensional electrophoresis) proteomic methods use tissue homogenates and
cannot assign protein alterations to morphological structures. Due to the high intratumor
heterogeneity, information about protein alterations may be lost.

In addition to providing proof-of-concept for the technical feasibility of MALDI-MSI,
the potential risk classification-relevant peptide signatures of neuroblastoma are described
to open new avenues to assess tumor heterogeneity. Our data also identified two specific
proteins with potentially important roles in neuroblastoma biology and disease course.
Our data showed a lower intensity distribution of CRMP1 in high-risk neuroblastomas
and reciprocally higher intensity distribution in low- and intermediate-risk neuroblas-
tomas. This is well in line with the reported role of CRMP1 in neuronal differentiation
and its previous use as a marker gene in neuroblatoma gene expression panels as well
as its usefulness as a prognostic and diagnostic marker in other cancers [58]. A detailed
functional assessment of the biological role of CRMP1 in neuroblastoma is warranted in
subsequent studies, but is beyond the scope of this paper. The lower mass accuracy of
the presented workflow makes it more susceptible to false-positive protein assignments.
Consequently, selected m/z values were matched to their source proteins to examine
whether the differential peptide signature includes peptides from biologically feasible pro-
teins in neuroblastoma, and subsequently validated their differential expression in tumor
sections using immunohistochemistry. High- or ultrahigh-resolution mass spectrometry
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combined with microproteomics from microdissected regions in consecutive tissue sections
is a promising technology for accurate extensive spatial proteomic characterization and
quantification [28,29]. However, its use in high-throughput workflows, such as for large
sample cohorts, is limited. This is an important prerequisite to explore potential clinical
applications for alternative or improved risk assessment in a large tumor sample cohort.

We identified AHNAK as a marker protein highly expressed in high-risk neurob-
lastoma, from which tryptic peptides have high intensity distributions in tumor cell-rich
regions of sections analyzed by MALDI-MSI. AHNAK has not been previously associ-
ated with neuroblastoma, but has been implicated in several cellular functions associated
with cancer, including being listed one of six putative cancer genes involved in the evo-
lution of nine cancer types across 3000 cancer genomes [59]. Most interestingly, AHNAK
has been reported to be associated with enhanced proliferation and migration in rhab-
domyosarcoma [60] among other cancers as well as supporting EMT in hepatoblastoma [61],
endometrial [62] and lung [63] cancer cells as well as pancreatic ductal adenocarcinoma [42]
and gastric cancer [64]. A similar role in neuroblastoma would be well in line with our
previous observations that several signaling elements involved in EMT regulation are
mutated in relapsed neuroblastomas [13]. However, the role of AHNAK in cancer appears
to be tissue-specific, as other reports also point to a potential role as a tumor suppressor in
glioma [65] and breast cancer [66]. This may be due to the fact that AHNAK achieves its
breadth of activity by being a large protein that moderates multiprotein complex function
by acting as a scaffold to tether activity either in the nucleus or at the plasma membrane
and having its own phosphorylation sites that alters interactivity and intracellular local-
ization [41]. The neuroblastoma-specific biological role of AHNAK has to be evaluated in
subsequent detailed studies beyond the scope of this paper. Interestingly, AHNAK peptide
intensity in MALDI imaging of low- and intermediate-risk neuroblastoma sections was
also occasionally high in areas with <80% tumor cell content. While we can only speculate
about the source of expression, these could represent subclones of molecularly evolving
neuroblastoma cells or groups of neuroblastoma cells that are held back from evolving by
influences of the surrounding stroma.

AHNAK was also occasionally upregulated in some area of the tumor stroma. Due
to the barrier of natural structure including connective tissues, fibroblasts, immune cells
and vasculature, common mass spectrometry methods are limited and cannot expose the
molecular composition of the stromal compartment. MALDI-MSI is able to map protein
changes in both areas that clearly exhibit the cellular interaction between malignant cancer
cells and their environment and provides new insights for understanding neuroblastoma
tumorigenesis and progression.

4. Materials and Methods
4.1. Patient and Sample Cohort

All samples were collected from primary neuroblastomas (located in the adrenal) for
diagnostic purposes and were conserved in the local pathology departments as FFPE tissue
blocks. Diagnosis of neuroblastoma was confirmed by an experienced reference pathologist
and risk classification for patients, performed by the national neuroblastoma trial group, was
based on definitions of the German BFM-NB2004 Trial and recommendations by the German
Society for Pediatric Oncology and Hematology (GPOH). The comprehensive patient data set
included sex, age, tumor INSS stage at diagnosis, presence or absence of MYCN amplification
in the diagnostic tumor sample (detected by FISH), INRG risk classification and outcome, in
particular diagnosis of relapse and death of disease (Table 3). Follow-up time for patients
in this cohort was at least 4 years or until death of disease. Tissue areas with >80% tumor
cell content were identified by the pathologist for both stancing tissue cores to create the
tissue microarray and annotating sections analyzed by MALDI-MSI. Sample numbers 1–5
(high-risk) and 10–13 (other risk designations, Table 3) were used in an analyses of whole
tissue sections (MALDI-MSI and immunohistochemistry). Cores from sample numbers 4,
10, 12 and 13 were also stanced for the tissue microarray together with tissue cores from 6
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tumor samples from independent patients. Tumor cores were removed from FFPE tissue
blocks using a 1.0-mm diameter hollow needle as tissue cores, which were arrayed in a
recipient paraffin block (Table 3).

Table 3. Clinicopathological characteristics for our patient cohort.

ID Sex Age
(Years)

INSS
Stage

MYCN
Amplification

Risk
Classification
(at Diagnosis)

Disease
Recurrence Death Metastasis

1 F 0.3 3 + high - - No
2 M 0.6 2 + high - - No
3 M 1 3 + high - + No †

4 M 1.4 4 + high - - Yes
5 F 1.2 4 + high + + Yes
6 M 2.8 4 + high + + Yes
7 M 7.8 4 - high - - Yes
8 F 8 4 + high - - Yes

9 ‡ M 1.2 3 - high + - No ‡

10 F 2.4 1 - low - - No
11 F 0.8 4 - intermediate - - Yes
12 M 0.1 4s - low - - Yes
13 F 0.1 3 mosaic low - - No
14 F 5.9 3 - intermediate - - No
15 M 1.9 2 - low - - No

† Disease in this patient later metastasized and was upgraded to INSS stage 4. ‡ This patient had multiple relapses after first-line therapy
and was treated for high-risk disease in relapse therapy.

4.2. Tissue Immunohistochemistry

FFPE tissue sections (whole sections) were dewaxed and subjected to a heat-induced
epitope retrieval step. Endogenous peroxidase was blocked by hydrogen peroxide prior
to incubation with a monoclonal antibody against human CRMP1 (EP14521, Abcam,
Cambridge, UK), followed by incubation with EnVision+ HRP-labeled polymer (Agi-
lent Technologies Inc., Santa Clara, CA, USA) and visualization using the OPAL system
(Akoya Biosciences Inc., Marlborough, MA, USA) according to manufacturer’s instructions.
After protein inactivation, sections were incubated with a polyclonal antibody against
human AHNAK (PA5-53890, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA),
followed by incubation with the EnVision+ polymer (Agilent Technologies Inc.) and visu-
alization using the OPAL system. Nuclei were stained with 4′,6-diamidine-2′-phenylindole
dihydrochloride (DAPI; Merck KGaA, Darmstadt, Germany) and slides were mounted in Flu-
oromount G (Southern Biotech, Birmingham, AL, USA). Multispectral images were acquired
using a Vectra® 3 imaging system (Akoya Biosciences Inc., Malborough, MA, USA).

4.3. MALDI-MSI

All FFPE tissue sections (whole sections and tissue microarrays) were cut to 6-µm
thickness by microtome (HM325, Thermo Fisher Scientific, Waltham, MA, USA.) and
mounted onto conductive glass slides coated in indium tin oxide (Bruker Daltonik GmbH,
Bremen, Germany). Sections were preheated to 80 ◦C for 15 min before deparaffiniza-
tion. Paraffin was removed in xylene, and tissue sections were processed through 100%
isopropanol and successive hydration steps of 100% ethanol followed by 96%, 70%, and
50% ethanol, each for 5 min. Sections were fully rehydrated in Milli-Q-purified water
(Merck KGaA, Darmstadt, Germany). Heat-induced antigen retrieval was performed in
MilliQ-water for 20 min in a steamer. After drying slides for 10 min, tryptic digestion was
performed. An automated spraying device (HTX TM-Sprayer, HTX Technologies LLC,
ERC GmbH, Riemerling, Germany) was used to deliver, onto each section, 16 layers of
tryptic solution (20 µg Promega®Sequencing Grade Modified Porcine Trypsin in 800 µL
digestion buffer-20 mM ammonium bicarbonate with 0.01% glycerol) at 30 ◦C. Tissue
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sections were incubated for 2 h at 50 ◦C in a humidity chamber saturated with potassium
sulfate solution, then the HTX TM Sprayer applied 4 layers of the matrix solution (7 g/L
a-cyano-4-hydroxycinnamic acid in 70% acetonitrile and 1% trifluoroacetic acid) at 75 ◦C.
MALDI imaging was conducted on the rapifleX® MALDI Tissuetyper® (Bruker Daltonik
GmbH, Bremen, Germany) in reflector mode with the detection range of 800–3200 m/z,
500 laser shots per spot, a 1.25 GS/s sampling rate and raster width of 50 µm. FlexImaging
5.1 and flexControl 3.0 software (Bruker Daltonik GmbH) coordinated the MALDI imaging
run. External calibration was performed using a peptide calibration standard (Bruker
Daltonik GmbH). The matrix was removed from tissue sections with 70% ethanol after
MALDI imaging, and sections were stained with hematoxylin and eosin for histology.
Tumor regions with >80% tumor cells were digitally annotated by a pathologist in the
SCiLS cloud and transferred into SCiLS Lab software (Version 2019c Pro, Bruker Daltonik
GmbH).

4.4. Protein Identification by Electrospray Ionization Tandem Mass Spectrometry

Protein identification for m/z values was performed on adjacent tissue (tumor cell-rich
regions) sections using a bottom-up nano-liquid chromatography electrospray ionization
tandem mass spectrometry approach as previously described [67]. Similar to their prepara-
tion for MALDI-MSI, sections were preheated to 80 ◦C for 15 min before deparaffinization.
Paraffin removal, antigen retrieval and tryptic digest were carried out as for MALDI-MSI.
After incubation at 50 ◦C in a humidity chamber saturated with potassium sulfate solution
for 2 h, peptides were extracted from tumor cell-rich regions separately from each tissue
section into 40 µL of 0.1% trifluoroacetic acid and incubated for 15 min at room temperature.
Digests were filtered using a ZipTip® C18 following the manufacturer’s instructions, and
the eluates were vacuum concentrated (Eppendorf® Concentrator 5301, Eppendorf AG,
Hamburg, Germany) and reconstituted separately in 20 µL 0.1% trifluoroacetic acid, from
which 2 µL were injected into a NanoHPLC (Dionex UltiMate 3000, Thermo Fisher Scien-
tific) coupled to an ESI-QTOF ultrahigh-resolution mass spectrometer (Impact II™, Bruker
Daltonic GmbH, Bremen, Germany). The peptide mixture was loaded onto an Acclaim
PepMap™ 100 C18 trap column (100 µm × 2 cm, PN 164564, Thermo Fisher Scientific)
and calibrated with 10 mM sodium hypofluorite (flowrate 20 µL/h) before separation in
an Acclaim PepMap™ RSLC C18 column (75 µm × 50 cm, PN 164942, Thermo Fisher
Scientific) with an increasing acetonitrile gradient 2–35% in 0.1% formic acid (400 nL/min
flow rate, 10–800 bar pressure range) for 90 min while the column was kept at 60 ◦C.
Released charged peptides were detected by a tandem mass spectrometer using a full-mass
scan (150–2200 m/z) at a resolution of 50,000 FWHM. AutoMS/MS InsantExpertise was
used to select peaks for fragmentation by collision-induced dissociation. Acquired raw
MS/MS spectra were converted into mascot generic files (.mgf) for amino acid sequences
using ProteoWizard software [68] and were used to search the human Swiss-Prot database
using the Mascot search engine (version 2.4, MatrixScience Inc. Boston, MA, USA) with the
significance threshold of p < 0.05 and the settings for trypsin as the proteolytic enzyme; a
maximum of 1 missed cleavage; 10 ppm peptide tolerance; peptide charges of 2+, 3+ or
4+; oxidation allowed as variable modification; 0.8 Da MS/MS tolerance and a MOWSE
score >13 to identify the corresponding protein. MOWSE (for MOlecular Weight SEarch)
is a method for identifying proteins from the molecular weight of peptides created by
proteolytic digestion and measured with mass spectrometry [47]. The probability-based
MOWSE score formed the basis to develop Mascot, a proprietary software for protein
identification from mass spectrometry data Mascot results were exported as.csv files (Table
S4). To match aligned m/z values from MALDI-MSI (Table S1) with the peptides identified
by nanoLC-MS/MS (Table S4), we developed an excel macro in-house (File S1). The macro
was applied with settings accommodating previously described parameters [40]. Briefly,
the comparison of MALDI-MSI and LC−MS/MS m/z values required the identification
of >1 peptide (search mass window < 0.3 Da). Only peptides with the smallest mass
differences in the mass window and a correlation ratio ≥0.30 were counted as a match. The
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peptides with highest MOWSE peptide scores and the smallest mass differences between
MALDI-MSI and LC-MS/MS data were accepted as correctly identified.

4.5. MALDI-MSI Data Processing for Statistical Analyses

MALDI-MSI raw data were imported into the SCiLS Lab software version 2019c Pro
(Bruker Daltonik GmbH) using settings preserving the total ion count and without baseline
removal and converted into the SCiLS base data .sbd file and .slx file. An attribute table was
built for sample number, tumor cell-rich regions, tumor INSS stage, MYCN amplification
status in diagnostic tumor sample, or whether the molecular risk designation was high
or other, and on patient age, sex and whether the patient experienced disease recurrence.
Attributes were used to divide a dataset into independent datasets from different spatial
spectral regions in tissue sections, or samples with different tumor or patient characteristics
for analysis. Peak finding and alignment were conducted across a dataset (interval width =
0.3 Da) using a standard segmentation pipeline (SciLS Lab software) in maximal interval
processing mode with TIC normalization, medium noise reduction and no smoothing
(Sigma: 0.75) [69,70].

4.6. Statistical Analyses

The top-down segmentation using bisecting k-means clustering analysis was per-
formed on the partitioned datasets from tissue sections or from only the regions with >80%
tumor cells, as previously described [71], to defined peptide signatures. Both analyses used
settings for 0.3 Da interval width, including all individual spectra, medium noise reduction
and correlation distance. Discriminative MALDI-MSI m/z values from tumor cell-rich
regions were identified using supervised ROC analysis on the partitioned datasets from
tissue regions with >80% tumor cells. Area under the ROC curve (AUC) varies between
0 and 1, where values close to 0 and 1 indicates peptides to be discriminatory and 0.5
indicates no discriminatory value. Since the number of m/z values from the groups to be
compared must be similar for this analysis, 35,000 m/z values were randomly selected per
group. For those peptides with an AUC >0.7 or <0.3, a univariate hypothesis test (Wilcoxon
rank sum test) was used to test the statistical significance of m/z values. Peptides with
p-values < 0.001 and a peak correlation ratio ≥0.30 were selected as candidate markers.
Supervised principal component analysis (PCA) was conducted to define characteristic
peptide signatures differentiating between tumor regions with >80% tumor cell content
from high or other risk groups. The data were scaled for PCA in a level scaling model. Only
m/z values with AUC >0.8 or <0.2 and p < 0.001 were used as peak intervals for PCA using
settings to create five components and use settings to use an interval width of ±0.3 Da,
maximal interval processing mode, normalization to total ion count, and no noise reduc-
tion. ROC analysis was also used in validation experiments to identify discriminative m/z
values (defined in data sets from whole sections) using MALDI-MSI data (2500 m/z values
randomly selected per group) from arrayed tumor cores. The Wilcoxon rank sum test was
used to test the statistical significance of m/z values. Peptides with significant differences
(p-value < 0.001) in the Wilcoxon test with a peak correlation ratio ≥0.30 were selected as
candidate markers (significant correlations p < 0.05; Pearson’s correlation analysis [72]. All
Figures were created using the SCiLS Lab software (Bruker, Bremen, Germany).

5. Conclusions

Molecular intratumor heterogeneity in high-risk neuroblastoma most likely con-
tributes to therapy response and the clinical disease course, and is a challenge for risk
assessment at initial tumor diagnosis. This pilot study demonstrates that (1) MALDI-MSI
can visualize molecular tumor characteristics on the protein level associated with current
risk classification directly in FFPE tumor tissue sections; (2) MALDI-MSI was able to ex-
plore spatial proteomic changes and directly identify molecular tumor heterogeneity in
tumor sections; and (3) combined with nanoLC-MS/MS, this approach can identify differ-
entially expressed new protein biomarkers in high-risk neuroblastomas (versus lower risk
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groups), which might have an important role in neuroblastoma biology and/or progression.
We provide proof-of-concept for the usefulness of this innovative technology in assisting
risk classification and assessment of tumor heterogeneity on the protein level, as well as
identification of new biomarkers with potential relevance for an increased understanding
of neuroblastoma biology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13133184/s1 are Figure S1: Representative average spectra of whole sections and
malignant regions of HR and non-HR neuroblastoma tissue sections. Figure S2: Discriminatory
peptide signatures within tumor cell-rich regions in high or other risk groups of neuroblastoma.
Figure S3: Ion maps of m/z values for CRMP1 and AHNAK in whole neuroblastoma sections and
their validation in selected cores from the tissue microarray. Table S1: Aligned m/z values from
cell-rich tumor region in neuroblastoma sections and tumor microarray cores. Table S2: Segmentation
map of the tumor cell-rich regions in sections from high-risk neuroblastoma (HR) and neuroblastomas
from other risk groups (nHR). Table S3: Identified discriminative MALDI-MSI m/z values by using
nanoLC-MS/MS. Table S4: Protein identification by LC-MS of neuroblastoma whole tissue section.
File S1: Excel macro codes for linking MALDI-MSI data and LC-MS/MS data.
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