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Simple Summary: Cancer-associated fibroblasts (CAFs), as an important part of the tumor envi-
ronment (TME), facilitate the progression of tumorigenesis, the development of metastasis, and
chemoresistance. MiRNAs—one of the media through which CAFs function—are actively secreted
into the TME within exosomes and taken up by specific target cells. Aberrantly expressed miRNAs
exert tumor-suppressive or oncogenic functions through negatively regulating gene expression by
post-transcription modification. In this review, we describe miRNAs that are differentially expressed
by NFs and CAFs, summarize the modulating role of CAF-derived miRNAs in fibroblast activa-
tion and tumor advance, and, eventually, identify a potential clinical application for CAF-derived
miRNAs as diagnostic/prognostic biomarkers and therapeutic targets in several tumors.

Abstract: Cancer-associated fibroblasts (CAFs), prominent cell components of the tumor microenvi-
ronment (TME) in most types of solid tumor, play an essential role in tumor cell growth, proliferation,
invasion, migration, and chemoresistance. MicroRNAs (miRNAs) are small, non-coding, single-
strand RNAs that negatively regulate gene expression by post-transcription modification. Increasing
evidence has suggested the dysregulation of miRNAs in CAFs, which facilitates the conversion
of normal fibroblasts (NFs) into CAFs, then enhances the tumor-promoting capacity of CAFs. To
understand the process of tumor progression, as well as the development of chemoresistance, it is
important to explore the regulatory function of CAF-derived miRNAs and the associated molecular
mechanisms, which may become potential diagnostic and prognostic biomarkers and targets of
anti-tumor therapeutics. In this review, we describe miRNAs that are differentially expressed by
NFs and CAFs, summarize the modulating role of CAF-derived miRNAs in fibroblast activation and
tumor advance, and eventually identify a potential clinical application for CAF-derived miRNAs as
diagnostic/prognostic biomarkers and therapeutic targets in several tumors.

Keywords: cancer-associated fibroblasts; microRNA; tumorigenesis; angiogenesis; chemoresis-
tance; biomarker

1. Tumor Microenvironment and Cancer-Associated Fibroblasts

Tumorigenesis is a complex and dynamic process, containing the following three
critical steps: initiation, progression, and metastasis. The tumor microenvironment (TME),
primarily composed of blood and lymphatic vessels, adipose cells, immune cells, fibroblasts,
and an extracellular matrix (ECM), is vital for tumorigenesis; the physiological state of
the TME is closely correlated with each step of tumorigenesis (see Figure 1) [1,2]. The
endothelial cells of blood and lymphatic vessels play a key role in tumor development and
immune escape, which offer nutrients and oxygen, evacuate metabolic wastes and carbon
dioxide for tumor growth and development, and assist in escaping immune surveillance [3].
Adipose cells, as a major energy source, also contribute to the production of circulating

Cancers 2021, 13, 3160. https://doi.org/10.3390/cancers13133160 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-1276-680X
https://doi.org/10.3390/cancers13133160
https://doi.org/10.3390/cancers13133160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13133160
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13133160?type=check_update&version=2


Cancers 2021, 13, 3160 2 of 14

estrogen, recruiting immune cells, and supporting angiogenesis [1]. The immune cells,
such as lymphocytes, macrophages, and myeloid-derived suppressor cells (MDSCs), are
involved in various immune responses orchestrated by the tumor. Macrophages within the
TME promote angiogenesis, ECM degradation, and remodeling, and facilitate tumor cell
motility, and are described as “obligate partners for tumor-cell migration, invasion and
metastasis” [4]. MDSCs are effective inhibitors of the adaptive immune response to tumors
and directly promote metastasis. Meanwhile, tumors are always infiltrated by T regulatory
cells (Treg cells), which inhibit adaptive and innate immune in response to tumor stress [5].
Dysregulation of ECM molecules in cancer progression mediates mechanotransduction,
as well as tumor initiation and migration [6]. Cancer-associated fibroblasts (CAFs) are
activated fibroblasts that constitute prominent components of the TME in most types of
solid tumors, and have been shown to facilitate tumor progression by supporting the
survival, proliferation, and invasion of tumor cells, promoting angiogenesis, remolding the
ECM, and mediating immunosuppression [6].
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Fibroblasts are derived from primitive mesenchyme, having an elongated, spindle-like
morphology. Normal fibroblasts have a bidirectional effect on tumors: in the early stage
of tumorigenesis, fibroblasts maintain the structural integrity of most epithelium tissues
against the progression of a tumor; however, as the malignancy advances, fibroblasts
are activated to promote tumor development, which are referred to as cancer-associated
fibroblasts (CAFs). CAFs are generally identified by the expression of alpha-smooth muscle
actin (α-SMA) and fibroblast activation protein (FAP) [7,8]. Several other markers can also
be used to identify CAFs due to their heterogeneity, including vimentin, platelet-derived
growth factor receptor alpha (PDGFR-α), platelet-derived growth factor receptor beta
(PDGFR-β), and fibroblast specific protein 1 (FSP-1) [9].

CAFs, consisting of a heterogeneous population of mesenchymal cells, exhibit system-
atic differences in different anatomical sites. Within the same type of tissue, a differential
expression of CAF markers defines distinct CAF subsets and determines the diversity of the
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CAFs, which may be attributed to the originate cell types, adjacent tissues, and occasion of
activating [10]. CAFs are derived from the following six potential original cell types [8,11]
(Figure 2): normal fibroblasts [12], mesenchymal stem cells (MSCs) [13], epithelial cells [14]
and endothelial cells [15], human adipose tissue-derived stem cells (hASCs) [16], senescent
fibroblasts [17], and cancer stem cells (CSCs) [18], among which CAFs principally originate
from the transformation of normal fibroblasts and MSCs.
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2. Introduction to miRNAs

MicroRNAs, also known as miRNAs, a major class of small non-coding RNAs, are
functional single-strand RNAs, ~22 nucleotides long, which mediate post-transcriptional
gene silencing by binding to the 3′-untranslated region or open reading frames of target
mRNAs. Aberrantly expressed miRNAs exert tumor-suppressive or oncogenic functions
by regulating the expression of mRNAs through different signaling pathways, thereby
affecting the progression of tumors. MiRNAs are one of the key regulators between CAFs
and tumor cells fulfilling the functions of tumor promotion [19,20], with the potential to
serve as biomarkers for tumor diagnosis and targets of anti-tumor therapy.

MicroRNAs processed from the introns of protein-coding host genes, as well as other
miRNAs, are transcribed in the nucleus by RNA polymerase II, which are termed as pri-
miRNAs. The pri-miRNAs are transformed into pre-miRNAs through nuclear cleavage
performed by the Drosha RNase III endonuclease. Then, the pre-miRNAs are actively
transported from the nucleus into the cytoplasm by Ran-GTP and the export receptor
Exportin-5. After being processed by Dicer, miRNAs are incorporated into an RNA-
induced silencing complex (RISC) in a single strand form. An RISC directly binds to the
3′-untranslated region (UTR) of a target mRNA, in order to induce post-transcriptional
repression, or targets DNA for transcriptional silencing [21] (see Figure 3). Genetic loss,
epigenetic modification, extensive transcriptional inhibition, or defective biogenesis are the
main causes of dysregulated expression in mature miRNA, in the case of tumors [22].
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A range of techniques, such as real-time PCR [23], reverse transcription PCR (RT-
PCR) [24], miRNA array [25], and Biotin miRNA pull-down assay [26] have been utilized in
many studies to demonstrate the miRNA expression levels in various tumor types. MiRNAs
were previously thought to be unstable molecules but have been recently demonstrated
to circulate in a highly stable and cell-free form in bodily fluids. Circulating miRNAs can
be significantly altered in a wide range of pathological conditions, including cancers. The
source of such extracellular miRNAs is still not known, but the following three different
pathways have been suggested: (1) passive leakage from broken cells; (2) active secretion
from microvesicles, including exosomes and shedding vesicles; and (3) active secretion
using a microvesicle-free, RNA-binding protein-dependent pathway, such as high-density
lipoprotein (HDL) [27]. Exosomes are small secretory vesicles with a diameter of 40–100 nm,
which are key determinants promoting cell-to-cell communication [28]. Specific miRNA
populations are selected for packaging into vesicles, and actively secreted into the TME
with the assistance of particular molecules. Finally, secreted miRNAs packaged in exosomes
are delivered into recipient cells, and act similarly to endogenous miRNAs to exert gene
silencing. Similarly, HDL can readily associate with exogenous miRNAs and deliver them
to recipient cells [27]. In this review, we do not describe the functions of exosomes and
RNA-binding protein in detail.

3. Functions of CAF-Derived miRNAs

CAFs in different tumor tissues can produce and secrete miRNAs with different ex-
pression levels. Aberrantly expressed CAF-derived miRNAs, either up- or down-regulated,
appear to have an enormous impact on the activation of CAFs, tumorigenesis, metastasis,
angiogenesis, immunosuppression, and chemoresistance (see Figure 4) [6]. Understanding
the relationships between miRNA and CAFs helps to explore tumor biology and possible
treatment targets.
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In the present review, we describe the differential expression of miRNAs in normal
fibroblasts (NFs) and CAFs and summarize the modulating role of CAF-derived miRNAs in
fibroblast activation and tumor advance. We also identify the potential clinical application
for CAF-derived miRNAs as diagnostic and prognostic biomarkers, as well as targets in
anti-tumor therapies.

3.1. CAF-Derived miRNAs Promoting Activation of CAFs

CAF-derived miRNAs contribute to the transformation of normal fibroblasts (NFs) into
CAFs [29], as well as maintain the activated CAF status. Numerous studies have discussed
the possibility of anti-tumor therapy targeting CAFs derived from specific tumors. In
consideration of the functions that miRNAs perform to promote the activation of CAFs
in various tumor types, miRNAs could serve as another potential target for antitumor
therapeutics.

CAF-derived miRNAs in breast cancer have been widely researched in recent years,
and their expression levels have been evaluated in pairs of primary NFs/CAFs isolated
from patients with different breast cancer sub-types. MiR-9, miR-221, and miR-222 derived
from CAFs have been found to be up-regulated, while miR-205, miR-200b, and miR-200c
were down-regulated [30–33]. MiR-222 [30] was up-regulated in the CAFs relative to the
matched NFs. MiR-222 directly binds to the 3′UTR of Lamin B receptor (LBR) mRNA,
and down-regulates the expression of LBR, which is a direct target of miR-222, leading
to the transformation of an NF into a CAF-like phenotype. The knockdown of LBR alone
is enough to transform NFs into cells that resemble CAFs, providing evidence that the
miR-222/LBR axis can be regarded as the independent factor influencing the conversion
of NFs. The significantly higher levels of CAF-derived miR-9 observed in triple-negative
breast cancer (TNBC) [31] were involved in the acquisition of a CAF phenotype, while the
mechanisms by which miR-9 induces NFs to convert into CAFs are still unclear. Meanwhile,
overexpressing miR-9 stimulates tumor cell migration by reducing E-cadherin, which has



Cancers 2021, 13, 3160 6 of 14

been demonstrated to be a direct target of miR-9. These up-regulated miRNAs reduce
the expression of the corresponding signal molecules and facilitate the activation of CAFs.
Inhibitors of such miRNAs or analogues of their target molecules will induce a reversion
of CAFs, which may provide a novel method to improve prognosis and prolong overall
survival but requires further clinical research to be demonstrated. In contrast, miRNAs that
are down-regulated in breast cancer inhibit the suppression of target genes and enhance the
downstream signal pathways to promote CAF activation. For example, TGF-β1 derived
from tumor cells [32] regulates the expression of miR-200s (miR-200b/c) and miR-221
within CAFs. TGF-β1, together with CAF-derived miR-200s (miR-200b/c) and miR-221,
constitutes a self-stimulating pattern by targeting DNMT3B, which is necessary for main-
taining the activation of CAFs. TGF-β1 down-regulates miR-200s (miR-200b/c) expression.
The response to TGF-β1, the expression of DNMT3B, and the autocrine signaling of TGF-β1
are regulated by miR-200s and miR-221, which are vitally important for maintaining the
activation of CAFs. Exogenous TGF-β1 activates the miR-200b/c/miR-221/DNMT3B
regulatory loop within the CAFs and, in turn, the miR-200b/c/miR-221/DNMT3B feed-
back loop influences TGF-β1 expression and secretion within CAFs. The inhibition of
either exogenous or autocrine TGF-β1 or DNA methylation by DNMT3B will break the
positive feedback loop and provide a potential therapeutic opportunity aimed at reversing
the activated state of CAFs into a normal, inactivated fibroblastic state to prevent cancer
progression, which may provide a potential target for anti-CAF therapeutic strategies. In
addition, miR-205 is down-regulated in CAFs [33], which has been associated with higher
CD31 levels and a lower overall chance of breast cancer survival. As a direct target of
miR-205, YAP1 is essential for CAF activation.

The MiR-21 derived from CAFs has been confirmed to be up-regulated in several
tumors, such as lung adenocarcinoma and pancreatic cancer, and demonstrated to be
involved in the conversion of CAFs. The up-regulation of miR-21 [34] in CAFs in the
invasive region of lung adenocarcinoma induces a CAF-like phenotype in lung fibroblasts,
which is related to the up-regulation of calumenin. In pancreatic ductal adenocarcinoma
(PDAC) [35], a high expression of miR-21 mediates the activation of CAFs by targeting
PDCD4 and promotes the desmoplasia of PDAC. Meanwhile, the high expression of miR-
21 in CAFs elevates the MMP-3, MMP-9, PDGF, and CCL-7 expression and positively
regulates the tumor-promoting role of CAFs. In addition, miR-21 [36] is involved in the
metabolic alteration of CAFs and affects the development of tumor cells. Examining the
glycolytic metabolism in CAFs indicates that miR-21 mediates the reverse Warburg effect
phenomenon in CAFs and is involved in CAF–cancer cell metabolic coupling, consequently
promoting tumor progression. Although the precise mechanism of the miR-21-mediated
activation of CAFs is not clear, miR-21 inhibitors can prevent the transformation of CAFs
from the source, consequently suppressing the tumor-promoting effects of CAFs.

In addition to the above, miRNAs can also serve to limit the transformation of CAFs
through the negative feedback loop. In oral squamous cell carcinoma (OSCC) [37], miR-145
levels are elevated in CAFs, compared with NFs, and miR-145 targets multiple components
of the TGF-β signaling pathway, and acts in the miRNA-145/TGF-β1 negative feedback
loop to dampen the acquisition of myofibroblast traits and suppresses biomarkers of myofi-
broblast activation, suggesting that miR-145 up-regulation may serve to limit myofibroblast
differentiation.

Summing up the above, a great portion of aberrantly expressed miRNAs in CAFs
activate multiple signaling pathways to promote the transition from NFs into CAFs, conse-
quently enhancing the proliferation, invasion, and migration of tumor cells. In contrast,
a small portion of miRNAs have been shown to negatively regulate the conversion of
NFs into CAFs. The inhibition of positive-regulating miRNAs and the stimulation of
negative-regulating miRNAs, as well as the inhibitors or analogues of target molecules,
may be efficacious in therapies targeting CAFs.
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3.2. CAF-Derived miRNAs Promoting Tumor Progression

MiRNAs released into the TME by CAFs can affect various characteristics of the tumor
cells. Increasing evidence has claimed that miRNAs are capable of regulating the pro-
tumor effects of CAFs, including tumorigenesis, development, epithelial to mesenchymal
transition (EMT), and metastasis.

A great portion of miRNAs has been found to be down-regulated in CAFs and are
released into the intercellular stroma packaging by exosomes. Down-regulated CAF-
derived miRNAs relieve the inhibition of their targets, thus promoting the initiation,
survival, proliferation, and worse prognosis of tumors by oncogene activation, cell cycle
regulation, decreasing the apoptosis ratio, and promoting the EMT. In triple-negative breast
cancer (TNBC) [38], miR-4516 was more strongly down-regulated in CAF-derived exosomes
than in NF-derived ones, which was associated with the poor prognosis of TNBC patients.
The loss of miR-4516 contributes to the proliferation and malignancy of TNBC cells by
relieving the suppression of FOSL1, an oncogenic proliferation-related gene (PRG) targeted
by miR-4516. The expression of miR-3188 is reduced in exosomes and their parental
CAFs from head and neck cancer (HNC) tissues [39]. The down-regulation of miR-3188
increased the expression levels of its direct target BCL2, an anti-apoptotic regulator in
HNC cells, to promote the G1 to S cell cycle transition and colony-formation ability, as
well as decreasing the apoptosis ratio in tumor cells. In contrast, overexpressing miR-3188
inhibits the proliferation and promotes the apoptosis of HNC cells by down-regulating
BCL2. In oral squamous cell carcinoma (OSCC) [40], the expression of miR-34a-5p in
CAF-derived exosomes is significantly reduced and the direct target of miR-34a-5p, AXL,
is up-regulated, which mediates the proliferation and motility of OSCC cells by increasing
the activation of β-catenin, which could activate SNAIL transcription to promote EMT.
The miR-34a-5p/AXL axis promotes EMT and cell invasion through the AKT/GSK-3β/β-
catenin/SNAIL signaling pathway. CAF-derived miRNAs, down-regulated in CAFs and
exosomes secreted by CAFs, aggravate tumor progression through multiple mechanisms,
the overexpression of which can restrain the malignancy advance, thus providing a new
direction for chemotherapy.

Down-regulated CAF-derived miRNAs also contribute to the migration of tumor cells.
In gastric cancer, miR-214 and miR-139 are significantly down-regulated. CAF-derived
low-expressed miR-214 [41] removes the inhibition on FGF9 and EMT of gastric cancer
cells, then enhances the capacities of migration and invasion of gastric cancer cells by
means of decreasing E-cadherin and increasing N-cadherin and Snail expression. MMP11,
as a key regulator of extracellular matrix degradation, is negatively regulated by exosomal
miR-139 derived from the CAFs of gastric cancer [42] and contributes to gastric cancer cell
migration. In addition, the miR-148b target DNMT1 in endometrial cancer [43] and the miR-
15a target PAI-2 in cholangiocarcinoma [44] have similar functions in enhancing metastasis
through the induction of EMT. The CAF-derived miRNAs that have been identified to be
down-regulated in various types of tumors function as tumor suppressors, inhibiting the
metastasis of tumor cells by targeting their downstream genes. Raising the expression
of these miRNAs or decreasing the expression of their target genes will be conducive to
preventing tumor metastasis.

A fraction of miRNAs are up-regulated in CAFs and released into the intercellu-
lar stroma packaging by exosomes. Up-regulated CAF-derived miRNAs enhance the
metastasis capacity of tumors by activating multiple signaling pathways. For example,
CAF-derived exosomes showed the higher expression of miR-17-5p in colorectal can-
cer (CRC) tissues [45], which led to the down-regulation of its target, RUNX3. RUNX3
then interacts with MYC, and they both bind to the promoter of TGF-β1, thereby acti-
vating the TGF-β signaling pathway and contributing to tumor progression. In addition,
RUNX3/MYC/TGF-β1 signaling sustains autocrine TGF-β1 to activate CAFs, while the
activated CAFs release miR-17-5p to CRC cells, thus forming a positive feedback loop for
exacerbating CRC progression. Similarly, miR-382-5p in oral squamous cell carcinoma
(OSCC) [46] and the miR-1288 target SCAI in osteosarcoma [47] are also up-regulated to
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promote the migration of tumor cells. Up-regulated CAF-derived miRNAs are always
associated with a positive feedback loop for tumor progression, which may result in a
cascade effect that is difficult to revert, such that it is necessary to break out the positive
feedback loop at the first step by counteracting these up-regulated miRNAs.

Other CAF-derived miRNAs can play a role in curbing the occurrence and progression
of tumors, such as up-regulated miR-34 in gastric cancer [48] and down-regulated miR-320a
in endometrial cancer [49] and hepatocellular carcinoma [50]; however, these will not be
discussed in detail here.

In summary, CAF-derived miRNAs serve a function of inducing EMT and promoting
the initiation, survival, proliferation, invasion, and migration of tumor cells, which has
been associated with worse prognoses. The expression levels of miRNAs in the CAFs
or exosomes secreted by CAFs could serve as biomarkers to evaluate the potential for
tumor progression and metastasis. MiRNA mimics, which compensate the verified down-
regulated miRNAs, and miRNA antagonists, which neutralize the proven up-regulated
miRNAs, are expected to be efficient in oncotherapy.

3.3. CAF-Derived miRNAs Promoting Angiogenesis

In addition to CAFs and tumor cells, aberrantly expressed miRNAs act on endothelial
cells to promote angiogenesis. Several CAF-derived miRNAs are down-regulated in specific
tumor tissues, and the overexpression of their target genes facilitates tumor angiogenesis.
In placental site trophoblastic tumors (PSTTs) [51], one of the most abundant vascular
tumors, miR-363 inhibits the expression of EGR1, which is involved in the angiogenesis
of PSTT. EGR1 promotes Ang-1 secretion in CAFs, thus promoting the tube formation
of human umbilical vein endothelial cells (HUVECs). The inhibition function performed
by miR-363 can be recovered by lnc003875, while lnc003875 exerts a negligible effect on
miR-363 expression. The lnc003875/miR-363/EGR1/Ang-1 axis in CAFs is crucial for
the angiogenesis of PSTT. In breast cancer [33], the miR-205/YAP1 in CAFs displays a
concordant effect in VEGF-independent angiogenesis, by targeting IL-11 and IL-15 to
activate the STAT3 signaling pathway in endothelial cells, which may provide a possibility
for resistance to anti-VEGF therapy.

The neovascularization of solid tumors facilitates the proliferation and migration of
tumor cells by providing nutrient flow and a frequently incomplete, fenestrated endothelial
barrier between neoplastic cells and circulation. Tumor angiogenesis is essential to provide
adequate nutrition for tumorigenesis and tumor progression [52]. Anti-angiogenesis
therapy has been proven to be effective in various tumor types, through targeting the
cytokine VEGF; however, the promotion function of angiogenesis induced by CAF-derived
miRNAs appears to be independent of VEGF, the main target of anti-angiogenesis therapy,
which may be why the resistance emerges after tumor anti-angiogenesis therapy. In
consideration of the angiogenesis promotion function of low-expression miRNAs, mimics
of these miRNAs could play an assisting role in anti-VEGF therapy.

3.4. CAF-Derived miRNAs Promoting Immunosuppression

CAFs have been found to enhance the recruitment, differentiation, and survival of T
regulatory cells (Treg cells), which are generally identified through the expression of CD25
and the transcription factor FOXP3, contributing to the generation and maintenance of an
immunosuppressive microenvironment [6]. According to the expression levels of CD29,
FAP, FSP1, and SMA, CAFS in High-grade serous ovarian cancers (HGSOCs) are distin-
guished into the following four sub-populations: CAF-S1, S2, S3, and S4 [53]. HGSOCs
are mainly enriched in activated CAF-S1 and CAF-S4 subsets, among which the HGSOCs
enriched in CAF-S1 cells are particularly highly infiltrated by FOXP3 + T cells. Compared
with CAF-S4 cells, miR-141 and miR-200a are down-regulated within CAF-S1 cells, leading
to the specific accumulation of CXCL12β, the target of miR-141/200a, in CAF-S1 fibroblasts.
Thus, the accumulation of CXCL12β further facilitates the recruitment of CD25+ FOXP3+
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Treg cells. Treg cells play a key role in fostering an immunosuppressive microenvironment,
and the infiltration of Treg cells predicts a shortened overall survival [54].

In addition, miR-92 has been found to be significantly up-regulated in CAF-derived
exosomes in breast cancer. After being transported into breast cells, miR-92 silences its
direct target, LATS2, which inhibits the inhibition of YAP1 and promotes the nuclear
translocation of YAP1. The occupation of YAP1 in enhancer regions of PD-L1 will increase
the transcriptional activity of PD-L1, which promotes T-cell tolerance and host immunity
escape [55]. In consideration of the function of CAF-miRNAs to promote immunosup-
pression, the expression levels of miRNAs may be a prospective biomarker to assess the
immune status and predict the efficacy of immunotherapy.

3.5. CAF-Derived miRNAs Promoting Chemoresistance

Chemoresistance is a serious obstacle to the treatment and management of various
types of tumors. Chemoresistance—both acquired and innate—has been associated to com-
plex multifactorial processes, including decreased intracellular drug concentrations, hidden
drug targets, aberrant regulation of cell survival, and crosstalk between the TME and tumor
cells [23], among which CAFs play a critical role in the regulation of chemoresistance in
various tumor types. Among the various functional components derived from CAFs,
miRNAs have been extensively reported to play a critical role in cell–cell communication.

The up-regulation of CAF-derived miRNAs mediates the innate resistance of CAFs to
chemotherapeutics and transfers the resistance to tumor cells by regulating the cell cycle
and inhibiting tumor cell apoptosis. In HNC [56], the innate chemoresistance to cisplatin is
mediated by up-regulated CAF-derived miR-196a, which is transferred to HNC cells and
promotes the survival and proliferation of tumor cells. Up-regulated miR-196a directly
targets CDKN1B and ING5, which perform different functions in miR-196a-mediated
cisplatin resistance. Ectopic CDKN1B expression rescues the miR-196a-mediated G1/S
cell cycle transition, while exogenous ING5 expression rescues the apoptosis mediated
by inhibited miR-196a. CAF-derived miR-196a mediates cisplatin resistance in HNC cells
through CDKN1B and ING5 down-regulation, leading to G1/S cell cycle transition and the
inhibition of apoptosis. Similarly, CAF-derived miR-130a mediates the chemoresistance
to cisplatin in non-small cell lung cancer (NSCLC) cells [23] and CAF-derived miR-106b
promotes the resistance to gemcitabine by targeting TP53INP1 in pancreatic cancer [57]. In
a nutshell, CAFs with innate chemoresistance transfer their tolerance into tumor cells by up-
regulated miRNAs, which contribute to the G1/S cell cycle transition and the inhibition of
apoptosis to promote the survival and proliferation of tumors treated chemotherapeutically.

Dysregulation of CAF-derived miRNAs mediates the acquired chemoresistance of
CAFs and transforms the tolerance of tumor cells to chemotherapeutics by regulating
the cell cycle and inhibiting ferroptosis and apoptosis. Ferroptosis is a novel form of
regulated cell death [25], containing iron-dependent peroxides’ (lipid-ROS) accumulation
and leading to lethal cell damage, which has been positively correlated to ALOX15, the
direct target of miR-522. In gastric cancer, up-regulated miR-522 derived from CAFs sup-
presses ferroptosis and promotes the acquired chemoresistance to cisplatin and paclitaxel.
Chemotoxicity promotes miR-522’s up-regulation and secretion from CAFs by activating
the USP7/hnRNPA1 pathway. Subsequently, miR-522 negatively regulates ALOX15 ex-
pression at the post-transcriptional level, thus blocking the accumulation of lipid-ROS,
suppressing the ferroptosis induced by chemotherapy, as well as the consequent develop-
ment of chemoresistance. In CRC [26], up-regulated CAF-derived miR-93-5p induces the
radio resistance of CRC cells by targeting FOXA1 through activation of the TGF-β signal
pathway. FOXA1 negatively regulates the transcription of TGFB3 and prevents its translo-
cation into the nucleus, due to which down-regulated FOXA1 promotes the transcription
of TGFB3 and then activates the TGF-β signal pathway, which leads to the G1/S transition
and inhibition of apoptosis and, consequently, induces the radio resistance of tumor cells.
In breast cancer [58], down-regulated CAF-derived miR-29b exhibits chemoresistance to
paclitaxel by targeting CCL11 and CXCL14, which contributes to decreasing the apop-
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tosis ratio of tumor cells. These studies have described the acquired resistance of CAFs,
where miRNAs facilitate resistance by regulating the cell cycle and inhibiting ferroptosis
and apoptosis.

In summary, aberrantly regulated CAF-derived miRNAs are transferred into the tumor
cells and have a variety of functions in the progression of tumor and chemoresistance.
Developing an in-depth knowledge of the functions that CAF-derived miRNAs perform in
the chemoresistance of tumor cells is conducive to overcoming the barriers of oncotherapy
and improving the prognosis of tumor patients.

4. Clinical Applications of CAF-Derived miRNAs in Tumors

As was mentioned above, miRNAs play an outstanding role in the process of tumori-
genesis, by regulating the cell cycle, metastasis, angiogenesis, metabolism, and apoptosis.
The expression of miRNAs in a tissue- and development-specific manner indicates that
miRNAs are promising markers for the early diagnosis and prognosis of tumors [59]. As
a modulator that essentially regulates gene expression through the post-transcriptional
regulation of mRNA, the dysregulation of miRNAs emerges before the phenotypic changes
observed in tumorigenesis, and the differential expression patterns of these miRNAs can
be perceived at any stage of the progression of tumorigenesis, allowing us to observe the
changes in a real-time, dynamic manner [22]. Therefore, miRNA biomarkers are more sen-
sitive and specific in diagnosis and prognosis than the currently used DNA, protein-coding
RNA, or protein biomarkers.

The properties of miRNAs that can be detected in cell-free or exosome forms, in both
tumor tissues and the bloodstream, are their major advantages over other carcinogenic
biomarkers [6]. MiRNAs, by means of active secretion, apoptosis, or necrosis, directly
enter the bloodstream from tumor tissues and are stable and detectable in the periph-
eral blood. Therefore, changes in the number of miRNAs in circulation can reflect the
pathological process of tumors. Several CAF-derived miRNAs have been found to con-
tribute to the pathological mechanism of tumor progression, some of which are regarded as
non-invasive diagnostic or prognostic markers; for example, miR-145-5p and miR-191-5p
(either individually or in combination) in plasma can help to distinguish breast cancer
patients from healthy individuals accurately and, therefore, can be considered as potential
biomarkers for breast cancer early screening in the Kazakh population [60]. The levels
of seven miRNAs—namely, let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and
miR-23a—were significantly higher in the serum exosomes from CRC patients than those
of healthy controls, which suggests the utilization of serum exosomal miRNAs for the
early detection of primary CRCs [61]. In addition, the loss of miR-4516 has been associ-
ated with a poor prognosis of triple-negative breast cancer (TNBC) patients [38]. High
miRNA-200a expression in stromal fibroblasts may predict a good prognosis in patients
with NSCLC [62].

In conclusion, cancer-related circulating miRNAs or tissue specific miRNAs are stable
and detectable in the peripheral circulation, such that they can be utilized as non-invasive
biomarkers to identify patients at an early stage, to monitor the cases during therapy,
and to estimate the prognosis of patients, which may become a promising direction for
further research.

5. Conclusions and Future Perspectives

In the past few years, increasing evidence has indicated the importance and participa-
tion of CAFs in tumorigenesis, development, invasion, metastasis, immunosuppression,
and chemoresistance in various types of tumors. In this context, miRNAs have been
demonstrated to play a crucial role in the transformation of NFs into CAFs and in the
progression of angiogenesis and chemoresistance. Aberrantly expressed CAF-derived
miRNAs contribute to the activation of numerous signaling pathways by directly binding
to their targets, thus facilitating the activation of CAFs and the pro-tumor functions of
CAFs. In addition, several miRNAs possess the potential for use in screening patients from
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healthy controls at an early stage, dynamic observations of the progression, and predicting
a prognosis.

Although pre-clinical and clinical investigations performed on miRNAs have indi-
cated great promise for the establishment of accurate, non-invasive biomarkers, there are
considerable limitations to their clinical utility, due to the influence caused by different
factors, such as the diversity of sample types, detection methods, tumor heterogeneity, and
the ethnicity of patients. Therefore, studies in large homogeneous populations are required
in order to investigate the value of these miRNAs as diagnostic and prognostic biomarkers.

Finally, investigations of the molecular mechanisms by which CAF-derived miRNAs
promote the activation of fibroblasts and the progression of tumorigenesis, angiogenesis,
immune escape, and chemoresistance indicate the potential of CAF-derived miRNAs as a
target in anti-tumor therapies. However, there are some barriers of RNA therapeutics that
have yet to be overcome, such as the lack of a reliable administration route and effective
carriers, lack of optimal dosage regimes, and insufferable side effects. Although it may
be too premature to affirm the possibility of using CAF-derived miRNAs as targets in
anti-tumor therapy, exploration in the field of miRNA-based therapeutics may provide
fruitful directions for further research.
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