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Simple Summary: Biochemical recurrence after radical prostatectomy is vitally important for long-

term oncological control and subsequent treatment of these patients. We applied radiomic tech-

nique to extract features from MR images of prostate cancer patients, and used deep learning algo-

rithm to establish a predictive model for biochemical recurrence with high accuracy. The model was 

validated in 2 indepented cohorts with superior predictive value than traditional stratification sys-

tems. With the aid of this model, we are able to distinghuish patients with higher risk of developing 

biochemical recurrence at early stage, thus providing a window to initiate neoadjuvant or adjuvant 

therapies for prostate cancer patients. 

Abstract: Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy 

(RP) and often compromises oncologic survival. To determine whether imaging signatures on clin-

ical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical re-

currence and optimize treatment. We retrospectively enrolled 485 patients underwent RP from 2010 

to 2017 in three institutions. Quantitative and interpretable features were extracted from T2 deline-

ated tumors. Deep learning-based survival analysis was then applied to develop the deep-radiomic 

signature (DRS-BCR). The model’s performance was further evaluated, in comparison with conven-

tional clinical models. The model achieved C-index of 0.802 in both primary and validating cohorts, 
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outweighed the CAPRA-S score (0.677), NCCN model (0.586) and Gleason grade group systems 

(0.583). With application analysis, DRS-BCR model can significantly reduce false-positive predic-

tions, so that nearly one-third of patients could benefit from the model by avoiding overtreatments. 

The deep learning-based survival analysis assisted quantitative image features from MRI performed 

well in prediction for BCR and has significant potential in optimizing systemic neoadjuvant or ad-

juvant therapies for prostate cancer patients. 

Keywords: prostate cancer; biochemical recurrence; survival prediction; deep learning; MRI 

 

1. Introduction 

Prostate cancer (PCa) is the most common cancer among men and the second leading 

cause of death for men worldwide [1]. Radical prostatectomy (RP) is one option of the 

multimodal approaches for organ-confined or locally advanced PCa. Biochemical recur-

rence (BCR) after RP is known to harbor more advanced or aggressive disease. The 10-

year estimated BCR rate after RP has been reported to be up to 27% [2]. More than two-

thirds of BCR cases develop in the first two years after surgery [3]. BCR is known to be a 

surrogate of local recurrence, distant metastasis, and cancer-specific death [4]. Therefore, 

early identification of patients who are predisposed to developing BCR could provide a 

window for early intervention with systemic or local therapies. 

In fact, the natural history of biochemical relapse is heterogeneous. It is difficult to 

stratify patients according to conventional TNM system, several clinical predictive models 

were gradually developed for BCR prediction. Among which, the Cancer of the Prostate 

Risk Assessment (CAPRA/CAPRA-S) score, National Comprehensive Cancer Network 

(NCCN) model and Gleason grade group (GG-RP) system were three kinds of most 

widely adopted models [5]. According to these systems, patients were assigned into low-

, intermediate- and high-risk groups, while patients in the middle group would face con-

troversial prognosis and unclear therapeutic guidance. Besides, these models only incor-

porate pure clinical factors, neglecting more comprehensive information obtained from 

imaging and genetic data.  

MRI has been routinely performed as one component of the multi-modal diagnostic 

procedure of prostate cancer. MRI can overcome the biopsy bias in a non-invasive fashion 

and better highlight tumoral heterogeneity. Adoption of the PI-RADs 2.1 protocol led to 

a sensitivity of 79% in distinguishing benign lesions of malignancies [6]. However, PI-

RADs system demonstrated limited potentials for oncologic prognoses such as BCR or 

overall survival estimation. Radiomics has emerged as an approach converting conven-

tional images into high volume quantitative features [7]. The radiomics may not only an-

alyze anatomical information of micro structural but also information representing the 

underlying pathophysiologic process, which may be correlated with oncological progno-

sis. Thus, radiomics has successfully introduced to discriminate benign and malignant 

lesions [8], predict aggressiveness [9] and estimate Gleason scores [10]. However, there 

were still few studies focusing on BCR prediction for patients after radical prostatectomy 

with relatively large amount datasets [11–13]. 

In this study, based on pathological ground truth registration annotations, we devel-

oped a novel model for BCR prediction, combing quantitative features of magnetic reso-

nance imaging (MRI) and deep learning-based survival analysis. We then validated the 

model and calculated its incremental predictive value in comparison with several 

acknowledgeable nomograms in a multicenter dataset. 
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2. Materials and Methods 

This study was approved by the institutional review board of the Peking University 

Third Hospital Medical Science Research ethics committee with a waiver of informed con-

sent and compliant with the principles in the Declaration of Helsinki (S2019326). 

2.1. Study Design 

A total of 584 consecutive patients diagnosed with prostate cancer were included 

from three institutions in Beijing. All patients were enrolled with strict inclusion and ex-

clusion criteria. The inclusion criteria were shown as follows: (a) primary prostate adeno-

carcinoma confirmed by radical prostatectomy; (b) locally or locally advanced disease ac-

cording to the 8th edition of the AJCC Staging Criteria; (c) No neoadjuvant androgen dep-

rivation treatment (ADT) before surgery; (d) had documented BCR or, (e) did not have 

BCR but followed over 3 years. BCR was defined as two consecutive total PSA readings 

>0.2 ng/mL after RP [14]; (f) Radical prostatectomy was performed. The exclusion criteria 

were as follows: (a) patients with neoadjuvant ADT before surgery; (b) patients with <3 

years of follow-up data without BCR status; (c) patients with incomplete clinical infor-

mation; (d) patients with distant metastasis; (e) patients with other pathology types or 

mixed pathology types; (f) patients with postoperative PSA nadir > 0.1 ng/mL within 3 

months after RP. According to the criteria, 485 patients were enrolled in the final analysis 

(Table 1). Patients who were free from BCR were censored at the last follow-up. 

Table 1. Performance of clinical models and deep radiomic models of BCR prediction by univariate 

cox proportional hazards regression. 

 
PC (PUTH) VC (BJFH) VC2 (PUPH) 

p 
n = 368 n = 34 n = 83 

No. of BCR event (%) 99 (27.1) 16 (47.1) 31 (37.3) 0.016 

Age (Median) 70 68.5 68.0 0.275 

PSA (Median) 10.7 9.89 13.4 0.883 

GG-NB    0.125 

1 138 13 29  

2 114 10 23  

3 63 6 14  

4 89 3 11  

5 81 2 6  

cT    0.436 

2 221 15 44  

3 264 19 39  

4 9    

pT    0.687 

1 2  1  

2 303 22 57  

3 165 12 22  

4 15  3  

GG-RP    0.173 

1 82 4 13  

2 127 10 28  

3 93 8 18  

4 65 9 8  

5 118 3 16  

SM    0.172 

Positive 170 12 38  

Negative 315 21 45  

EPE    0.639 

Positive 171 11 25  

Negative 314 23 58  

SVI    0.940 

Positive 67 4 11  

Negative 418 30 72  

CAPRA    0.248 
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Low 53 9 10  

Intermediate 168 12 34  

High 148 13 39  

Note: BCR: biochemical recurrence; PC, primary cohort; VC, validation cohort; PUTH, Peking Uni-

versity Third Hospital; BJFH, Beijing Friendship Hospital; PUPH, Peking University People’s Hos-

pital; PSA, prostate specific antigen; GG-NB, Gleason grade group of needle biopsy; cT. clinical T 

stage; pT, pathological T stage; GG-RP, Gleason grade group of radical prostatectomy; SM, surgi-

cal margin; EPE, extracapsular extension; SVI, seminal vesicle invasion; CAPRA, Cancer of Pros-

tate Risk Assessment Score. 

The patients were divided into three cohorts, the primary cohort (PC: n = 368, from 

Peking University Third Hospital, Beijing, China) and other two external validation co-

horts (VC1: n = 34, from Beijing Friendship Hospital; VC2: n = 83, from Peking University 

People’s Hospital). Conceptual workflow was demonstrated in Figure 1. The first step 

included data acquisition of images and tumor segmentation. Then, we extracted radio-

mic features from tumor area for tumor heterogeneity. Thirdly, feature evaluation based 

on rank is used to roughly remove features that are of little value in modeling based on 

statistical approaches. Finally, prognosis prediction of BCR was constructed and validated 

in our multi-center dataset. Comparison with guidelines was also supplemented. Details 

of patient recruitment and study design were shown in Supplementary Figure S1. 

 

Figure 1. The workflow of radiomics-based model for data preparation, modeling, signature construction, predicting BCR-

free survival, and clinical applications. DSNN: deep survival neural network; BCR: biochemical recurrence; DRS: deep 

radiomic signature; CAPRA: Cancer of Prostate Risk Assessment; NCCN: National Comprehensive Cancer Network; GG: 

Gleason grade group system. 

2.2. MRI Protocol 

All patients received 3T MRI examination before systematic transrectal needle bi-

opsy. All MR images were obtained with T1W, T2W, DWI and Apparent diffusion coeffi-

cient (ADC) maps. Only DICOM data of T2WI were used for analysis in this study. Details 

of scanning parameters were shown in Table S1. 

2.3. Annotations 

Pathological hematoxylin-eosin sections of each patient from radical prostatectomy 

specimens were scanned at 40× magnification, converting to computational pathological 

sections (NanoZoomer S360, HAMAMATSU, Hamamatsu City, Japan). First, one 

pathologist of urology expertise delineated the lesions that were responsible for diagnosis 
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on each section. Second, this pathologist and one urological radiologist together recog-

nized and delineated lesions on MRI, which were correlated to pathological whole-mount 

slides. The tumor regions of interest (ROIs) were delineated using ITK-SNAP software 

(www.itksnap.org, April 27, 2018). Detailed examples of annotations were demonstrated 

in Figure S2. 

2.4. Radiomic Features of Mp-MRI Extraction 

Standard normal distribution of image intensities was obtained through Z-score nor-

malization. Subsequently, 702 quantitative features extracted from the T2WIs of individ-

ual patients were calculated to characterize intratumoral heterogeneity and complexity. 

Five common groups of features (first-order, shape, texture, wavelet and Laplacian of 

Gaussian filter) were extracted by using “Pyradiomics” (Version 2.1.1, 

https://github.com/Radiomics/pyradiomics, April 14, 2021) [15]. Details of the features 

were summarized in Table S5. 

2.5. Deep Learning-Based Survival Analysis for Signature Construction to BCR Survival 

In this study, we developed a deep survival neural network for BCR prediction and 

constructed a signature named deep radiomic signature for BCR (DRS-BCR) to predict 

BCR probability. After radiomic feature extraction, we firstly evaluated all the radiomic 

features in the PC by univariate analysis and recorded the concordance (C-index) and p-

value (p) between each feature and BCR. Features with predictive potential (C-index >0.5 

and p < 0.05) were selected from the features pool to eliminate redundant information. 

During the modeling phase, we used a new design of neural network structure to describe 

the correlation between image features and BCR-free survival, which contained a dense 

box to gather information of multi-level abstraction [16], and an auto-coding box to gen-

erate sparse features [17]. Three hidden layers with forty-eight neurons were used for the 

dense box. Two hidden layers of forty-eight neurons and a hidden layer with twenty-four 

neurons were used in the auto-coding box. The dropout and early stop strategy were em-

ployed in the training process to mitigate overfitting. The loss function of the model was 

deep survival loss [18], in which the optimizer was Adam [19], and the training batch was 

the total amount of data in the PC. Finally, the output of the neural network was the risk 

of BCR for a patient, namely DRS-BCR.  

To evaluate the interaction between clinical indicators and our proposed DRS-BCR, 

important clinical factors with prognosis power and DRS-BCR were add in a Cox propor-

tional-hazards regression model (CPH) for BCR survival. Comparisons of DRS-BCR were 

evaluated in all cohorts, including combination model and clinical factors (Supplementary 

Material, Supplementary Information I and II). 

2.6. Statistics 

We compared the patients with and without BCR using the t-test for continuous var-

iables and the chi-square test or Fisher’s test for categorical variables. The C-index and 

95% confidence interval (CI) were calculated, in order to evaluate the performance of the 

BCR-free survival model. The Kaplan–Meier (K–M) method and log-rank test were used 

to estimate BCR-free survival. The time-dependent analysis (including ROC curves, AUC, 

sensitivity, and specificity) was performed to evaluate accuracy of predicting BCR. The 

cutoff in the time-dependent analysis was selected using criteria based on Youden Index. 

The Wilcoxon signed rank test was used to compare the C-index distributions of different 

models. All packages were based on R software (version 3.1.0). A two-sided p value < 0.05 

was considered significant. 
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3. Results 

3.1. Patient Characteristics 

A total of 485 patients were finally enrolled in the study, with a median age of 69.86 

[95% CI, 62.79–76.93] years old. The median BCR-free survival was 57.7 months. There 

were 81 (22.0%), 9 (26.5%) and 23 (27.7%) patients with 3-year BCR in the PC, VC1 and 

VC2, respectively, which was balanced (p = 0.479), detail information is shown in Table 1.  

To assess the independent prognostic power of each clinical parameter, we grouped 

them as preoperative clinical parameters (PSA, cT stage, GG-NB, PPB) and postoperative 

parameters (GG-RP, surgical margin, extracapsular extension, seminal vesicle invasion) 

in a univariable cox regression model. The parameters were normalized by CAPRA (cT 

stage, GG-NB, PPB) or CAPRA-S (PSA, GG-RP, surgical margin, extracapsular extension, 

seminal vesicle) criteria. The results of the univariate analysis are shown in Table S2.  

We integrated all significant clinical variables (p < 0.05), and grouped them by the 

acquisition time (pre-operative, post-operative, a combination of both pre- and post-op-

erative), and built three clinical prognostic models for BCR prediction, respectively (Ta-

bles S3–S5). We termed the clinical variables as clinical signature (CS). The combination 

of pre- and post-operative clinical variables (CS-combine) yielded C-index [95% CI] of 

0.693 [0.634–0.752] in PC, 0.651 [0.471–0.831] in VC1 and 0.641 [0.529–0.753] in VC2, which 

is the highest among the three.  

3.2. Evaluation of Quantitative Features of Mp-MRI for BCR-Free Survival 

The radiomic pool of 702 features was evaluated by univariate analysis of BCR-free 

survival. From which, 155 features with both concordance and significance were finally 

selected for modeling. Among these, 125 (80.6%) of them were in texture category, 22 

(14.2%) were in first-order category, and 8 (5.16%) were in shapes related category (Table 

S6). Features with the highest concordance and significance were the intensity of gray 

value (first-order) from the original imaging. 

3.3. Assessment of DRS-BCR for Predicting BCR-Free Survival 

The DRS-BCR was generated from a deep survival radiomic neural network (DSNN) 

to predict BCR-free survival, which yielded C-index of 0.802 [95% CI, 0.758–0.846] in PC, 

0.811 [95% CI, 0.722–0.9] in VC1 and 0.794 [95% CI, 0.718–0.87] in VC2. Time-dependent 

ROC curves were then applied to evaluate 3-year and 5-year BCR detection rates (Figure 

2). The DRS-BCR of 3-year BCR yielded AUCs of 0.84 in PC, 0.85 in the VC1, and 0.84 in 

the VC2, respectively (Figure 3). The DRS-BCR of 5-year BCR yielded AUCs of 0.83 in PC, 

0.88 in the VC1, and 0.88 in the VC2, respectively (Figure S3). The HR of DRS-BCR was 

1.705 [95% CI, 1.531–1.893] (p < 0.001) in univariate analysis. 

Next, we performed K–M analysis of 3-year BCR-free survival in the PC, VC1, and 

VC2 (Figure 2a–c). The K–M curves of cohorts all revealed significant differences by log-

rank test between groups of high and low risk (p < 0.001). The calibration curve of the 

radiomics model estimated the probability of 3-year BCR, which demonstrated good 

agreement in the primary cohorts (Figure 2d). The Hosmer–Lemeshow test yielded a non-

significant statistic (p = 0.657), suggesting no departure from the perfect fit. Good perfor-

mance was also observed for the probability of 3-year BCR in all validation cohorts (p = 

0.419, p = 0.583) (Figure 2e,f). The decision curve showed relatively good performance for 

the radiomic signature as well (Figure 2g–i). The results of incorporating DRS-BCR with 

clinical variables were evaluated in Supplementary Information III (Table S7). 
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Figure 2. Performance of DRS-BCR for predicting 3-year BCR-free survival. (a–c) The Kaplan–Meier (K–M) curves of DRS-

BCR-free survival for BCR-free survival within three years in the primary cohort, validation cohort 1, and validation cohort 

2, respectively. The p values were calculated by log-rank test between subgroup with high-risk and low-risk, and signifi-

cant discrimination was revealed by p values less than 0.05. (d–f) The calibration curves for 3-year BCR. (g–i) Clinical 

benefits by decision curve analysis for 3-year BCR. DRS: deep radiomic signature; BCR: biochemical recurrence. 
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Figure 3. The time-dependence receiver operating characteristic curve (ROC) of DRS-BCR in the primary cohort (a), vali-

dation cohort 1 (b), and validation cohort 2 (c). DRS: deep radiomic signature; AUC: area under the curve. 

3.4. Comparison between DRS-BCR and Clinical Nomogram 

We performed Cox proportional hazards regression analysis for the GG-RP, CAPRA-

S, NCCN, and CAPRA models in our multicenter dataset. Performances of these four con-

ventional popular models for BCR prediction were listed in Table 2. Statistically, the GG-

RP, CAPRA-S, NCCN, and CAPRA all demonstrated discriminative power for BCR pre-

diction (HR > 1 and p < 0.001). Significant differences of C-index between DRS-BCR/DRC-

BCR and the other four clinical models were tested by the U-statistics-based C estimator, 

and the C-index of DRS-BCR/DRC-BCR significantly outperformed others in multicenter 

validation (p < 0.05). For the performance of discriminating BCR at 3-year, IDI and contin-

uous NRI tests were applied to evaluate the significance of the incremental performance. 

The test results showed that DRS-BCR maintained better concordance of 3-year BCR than 

other clinical models in all datasets (p < 0.05) (Tables S8–12). The K–M curves were further 

utilized to compare the models for assigning patients into high-risk and low-risk of BCR-

free survival, the log-rank test was used to evaluate the significant discrimination (p < 

0.05) between high-risk and low-risk. Comparisons of K–M analysis and log-rank tests 

between DRS-BCR and other conventional models with multi cut-off groups were carried 

out (Figures S4 and S6). DRS-BCR achieved stronger discriminative power than any other 

clinical models at almost any cut-off settings (p < 0.001). More comparisons between DRS-

BCR and acknowledgeable indicators were listed in Supplementary information IV (Table 

S13). 

Table 2. Patient characteristics. 

 HR p PC (n = 369) VC1 (n = 34) VC2 (n = 83) 

GG-RP 1.645 0.001 0.583 [0.53–0.636] 0.564 [0.419–0.709] 0.689 [0.601–0.777] 

CAPRA-S 1.339 <0.001 0.677 [0.62–0.734] 0.654 [0.49–0.818] 0.654 [0.544–0.764] 

NCCN 1.9022 <0.001 0.586 [0.548–0.624] 0.535 [0.408–0.662] 0.583 [0.498–0.668] 

CAPRA 1.306 <0.001 0.677 [0.618–0.736] 0.552 [0.385–0.719] 0.614 [0.509–0.719] 

DRS-BCR 1.705 <0.001 
0.802 0.811 0.794 

[0.758–0.846] [0.722–0.9] [0.718–0.87] 

DRC-BCR 1.654 <0.001 0.807 [0.76–0.854] 0.794 [0.685–0.903] 0.8 [0.723–0.877] 

Note: GG-RP: Gleason grade group of radical prostatectomy; BCR: biochemical recurrence; PC, 

primary cohort; VC, validation cohort; HR: hazard ratio; CAPRA: Cancer of Prostate Risk Assess-

ment; NCCN: National Comprehensive Cancer Network; DRS-BCR: deep radiomic signature of 

biochemical recurrence; DRC-BCR: deep radiomic combing signature of biochemical recurrence. p 

values were two-sided. 
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4. Discussion 

Prostate cancer is characterized by its notable heterogeneity followed by a wide var-

iation of oncologic prognosis. The majority of prostate cancers are indolent, while the rest 

could be very aggressive and even life threatening. Thus, developing high discriminative 

prognostic models to distinguish low risk of BCR patients from high-risk ones and to pro-

vide directly instructive therapeutic assistant is of great importance. In this study, we de-

veloped a survival model to predict biochemical recurrence after radical prostatectomy. 

This model combined conventional radiomic technique for feature extraction and deep 

learning algorithm for survival analysis. In multicenter validation, the deep radiomic 

model (DRS-BCR) outperformed three popular clinical conventional models in prediction 

of BCR-free survival. 

Clinicians have made great efforts to identify clinical variable combinations in pur-

suit of better oncological prediction and controls. Some models have been widely adopted 

and validated in western countries such as the NCCN stratification, CAPRA/-S score and 

Gleason grade group system [5]. However, the performance of these models in Asian pop-

ulation have been reported to be suboptimal than those in the European and American 

population [20]. American-Asian men were reported to be more likely to have unfavora-

ble risk profile with worse prognosis [21]. In the current study, nearly two third patients 

were classified into intermediate- or high-risk groups, which is in line with Korean and 

Japanese reports [22,23]. Conversely, most patients in European were low risk [24]. These 

facts have increasingly drawn our attention for a hypothesis that the entity of prostate 

cancer in east and west are taking distinct evolution paths. Recently, evidence supporting 

such differences has been discovered in genetic level. In a large national prostatic genomic 

analysis, Chinese population were reported to have distinct driver gene profile comparing 

to American population [25]. Thus, conventional predictive models might not be suitable 

for Asian people. These facts motivated us to develop a new stratification system accord-

ing to our own clinical data. In the current study, we developed and validated a deep 

learning booted radiomic signature (DRS-BCR) to predict BCR-free survival. The model 

achieved very good performance in all centers, outweighing other four clinical models 

(NCCN, CAPRA/-S and Gleason grade group system) in the same setting. This was in line 

with several reports that radiomic models have better performance than conventional 

ones [13].  

Prostate cancer is a multifocal malignancy with highly pronounced heterogeneity, 

treated by multimodal approaches. Patients are generally stratified into different risk 

groups followed by distinct therapies. Thus, accurate stratification is critical to certain 

group of patients, especially for high-risk ones. Hormonal therapy is one of the key to 

prostate cancer. Available evidence indicated that the use of neoadjuvant ADT in RP can-

didates could reduce positive surgical margin rates, EPE rates and lymph node involve-

ments [26,27]. Of note, these benefits only occurred in high-risk patients [28]. With the 

widespread application of PSMA-PET-CT [29–31] and single-cell sequencing [32,33], early 

micrometastasis is considered to be one critical cause for biochemical recurrence or pro-

gressive metastasis after radical prostatectomy. Therefore, accurate prediction of the risk 

of biochemical recurrence will help the early use of systemic therapy for the control of 

systemic micrometastasis in order to obtain longer-term survival benefits. Based on re-

sults of predictive models, many ongoing clinical studies were designed to provide adju-

vant new-generation antiandrogens for high-risk patients, such as abiraterone 

(NCT04513717), darolutamide (NCT04484818) and apalutamide (NCT03767244). Com-

pared with the traditional predictive tools, our model can use prebiopsy MR make recur-

rence risk predictions, so it can be a good basis for stratification to guide the early appli-

cation of postoperative systemic adjuvant therapy, and even guide the development of 

neoadjuvant systemic treatment. 

Considering the clinical implementation of the DRS-BCR model, we made a compar-

ison with CAPRA-S score by fourfold table (Table S13). According to the CAPRA-S sys-

tem, 355 (73.20%) patients were classified into high-risk group, while 260 of them had not 
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developed BCR. Within the 260 patients, only those who harbored latent metastatic cancer 

cells but had not developed BCR yet could benefit from adjuvant therapies, while the rest 

“majority” of them were more likely to only suffer from side effects of over treatments. 

As comparison, DRS-BCR model significantly reduced the proportion of the false positive 

patients and maintained equivalent high level of negative predictive value (89.4% vs. 

86.20%). This indicated that DRS-BCR model can help prevent more than one third pa-

tients from overtreatments and keep the undertreatment rate at a similarly low level as 

CAPRA system. 

Comparing with machine learning-based Cox proportional-hazards regression 

model (CPH), deep survival neural network is able to describe a non-linear relationship 

between features and survival events. Usually, the relationship between features and sur-

vival events is often non-linear [18], which makes conventional linear models (e.g., CPH) 

difficult to obtain optimal performance. In the current study, imaging features were ex-

tracted and primarily selected by conventional radiomic approach. And then, a deep sur-

vival neural network algorithm was applied to develop a more complex non-linear model, 

naming DRS-BCR. Besides, to further mitigating overfitting, strategies such as dropout 

[34] Early stopping [16], transfer learning [35] were also used. 

Additionally, we attempted to incorporate perioperative parameters with DRS-BCR 

to make a new model (DRC-BCR) in pursuit of better performance. Unluckily, DRC-BCR 

only demonstrated equivalent performance when comparing with DRS-BCR. This was 

not in line with those of most previous studies, wherein the final performance of the model 

can always be improved by incorporating clinical factors [11,36]. It could be assumed that 

isolated clinical variables can only reflect limited tumor features from one single perspec-

tive, as with one color from a prism. With a noninvasive way to analysis all information 

from a region, it is quite possible for radiomics to provide more complex and deeper level 

of information to better characterize tumor nature. 

Finally, relatively short follow-up is a major limitation of our study. Selecting 3-year 

and 5-year BCR-free survival in a small cohort decreased the diagnostic power of the 

model. Further, patients in clinical high-risk group might have received long-term adju-

vant ADT or adjuvant RT, which may lead to delayed BCR occurrence. Thus, 10-year long-

term follow-up might better reflect the true biological process. Additionally, incorporat-

ing of DWI or ADC maps may further improve the overall accuracy and consistency of 

the model in the future. 

5. Conclusions 

In conclusion, quantitative features of MRI of prostate cancer showed the potential 

to improve the description of tumor heterogeneity. These features were empowered by 

deep learning-based method to build a powerful prognostic prediction model for BCR 

after RP. With the use of this model, it is promising to optimize neoadjuvant or adjuvant 

systemic therapies for suitable patients. 
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