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Simple Summary: Ovarian cancer is a lethal disease in women with a 10-year survival rate of
<40% worldwide. A key molecular alteration in ovarian cancer is the aberrant overexpression and
activation of the transcription factor forkhead box M1 (FOXM1). FOXM1 regulates the expression
of a multitude of genes that promote cancer, including those that increase the growth, survival,
and metastatic spread of cancer cells. Importantly, FOXM1 overexpression is a robust biomarker
for poor prognosis in pan-cancer and ovarian cancer. In this review, we first discuss the molecular
mechanisms controlling FOXM1 expression and activity, with a specific emphasis on ovarian cancer.
We then discuss the evidence for and the manner by which FOXM1 expression promotes aggressive
cancer biology. Finally, we discuss the clinical utility of FOXM1, including its potential as a cancer
biomarker and as a therapeutic target in ovarian cancer.

Abstract: Forkhead box M1 (FOXM1) is a member of the conserved forkhead box (FOX) transcription
factor family. Over the last two decades, FOXM1 has emerged as a multifunctional oncoprotein and a
robust biomarker of poor prognosis in many human malignancies. In this review article, we address
the current knowledge regarding the mechanisms of regulation and oncogenic functions of FOXM1,
particularly in the context of ovarian cancer. FOXM1 and its associated oncogenic transcriptional
signature are enriched in >85% of ovarian cancer cases and FOXM1 expression and activity can
be enhanced by a plethora of genomic, transcriptional, post-transcriptional, and post-translational
mechanisms. As a master transcriptional regulator, FOXM1 promotes critical oncogenic phenotypes
in ovarian cancer, including: (1) cell proliferation, (2) invasion and metastasis, (3) chemotherapy
resistance, (4) cancer stem cell (CSC) properties, (5) genomic instability, and (6) altered cellular
metabolism. We additionally discuss the evidence for FOXM1 as a cancer biomarker, describe the
rationale for FOXM1 as a cancer therapeutic target, and provide an overview of therapeutic strategies
used to target FOXM1 for cancer treatment.

Keywords: FOXM1; forkhead box M1; transcription factors; oncogenes; oncoproteins; ovarian cancer;
high-grade serous ovarian cancer

1. Introduction
1.1. FOX Proteins and FOXM1 Discovery

Forkhead box (FOX) proteins are a family of transcription factors defined by an
evolutionarily conserved 80–100 amino acid domain called the forkhead box or winged-
helix motif [1–5]. There are 50 known FOX genes in the human genome divided into
19 subfamilies (A–S) [6]. Sequence variation outside of the shared forkhead box motif
leads to diverse mechanisms of regulation and function between FOX subfamilies, and
different FOX subfamilies are involved in critical cellular processes and govern organ
system functions [7]. For example, the FOXA subfamily participates in cellular metabolism
and the development of endoderm-derived organs [8]; the FOXC subfamily promotes
blood vessel maturation and lymphatic sprouting [9]; the FOXO subfamily regulates

Cancers 2021, 13, 3065. https://doi.org/10.3390/cancers13123065 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-0866-0666
https://doi.org/10.3390/cancers13123065
https://doi.org/10.3390/cancers13123065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13123065
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13123065?type=check_update&version=2


Cancers 2021, 13, 3065 2 of 39

cell cycle arrest at G1, apoptosis, and resistance to oxidative and cellular stress [10]; the
FOXP subfamily is involved in immune system functions, including coordinating the
development and function of B and T lymphocytes [11].

FOXM1 is the sole member of the FOXM subfamily [6]. Historically, FOXM1 held
alternative names: Trident [12], WIN [13], hepatocyte nuclear factor 3 (HNF3) [14], fork
head homolog 11 (HFH-11) [14,15], FKHL16 [15], M-phase phosphoprotein 2 (MPHOSPH2,
MPP2) [16], MPM2-reactive phosphoprotein 2 (MPP2) [16], and TGT3 [17]. In 1997, FOXM1
was first identified by Korver et al. as Trident from mouse thymus tissue [12], by Yao
et al. as WIN from a rat insulinoma cell line [13], and by Ye et al. as HNF-3/HFH-11
from a human colon carcinoma cell line [14]. These initial studies reported that FOXM1 is
widely expressed in embryonic tissues but that its expression is restricted in adult tissues to
actively proliferating cells, such as those in the thymus and gastrointestinal tract [12–14,18].
Indeed, later studies confirmed that FOXM1 is highly expressed in embryonic [19–22],
regenerative [23–26], and cancerous tissues [27–29] and all of them exhibit high proliferative
capacity. The FOXM1 field and publications have increased steadily since the year 2000,
with a large proportion of studies focused on cancer (Figure 1).
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1.2. FOXM1 Structure and Transcriptional Activity

The human FOXM1 gene, located at chromosome 12p13.33, consists of ten exons,
including exons I–VIII and alternatively spliced exons Va and VIIa [13,15,28]. Exon Va
encodes a 15 amino acid insertion into the DNA binding domain (DBD), which is a feature
not seen in other FOX family members. On the other hand, exon VIIa encodes a 38 amino
acid insertion into the transactivation domain (TAD) [13,14,28]. Alternative splicing of
exons Va and VIIa gives rise to three well-characterized FOXM1 isoforms (Table 1): FOXM1a
includes all ten exons, FOXM1b omits alternative exons Va and VIIa, and FOXM1c includes
alternative exon Va and omits alternative exon VIIa [13,14,28,29]. Notably, functional
characterizations have shown that FOXM1b and FOXM1c are transcriptionally active while
FOXM1a is not [12,14,27,28,31,32]. Additional FOXM1 isoforms have also been reported in
the literature but have not been well characterized to date (Table 1).
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Table 1. FOXM1 isoforms and variants.

Isoform
Name Structure Known Function Size RefSeq ID Ensembl ID UniProt ID References

Well-Characterized FOXM1 Isoforms

FOXM1a Includes alternative exons
Va and VIIa Not transcriptionally active 801 aa NM_202002 ENST00000342628 Q08050-3 [13,14,28,29]

FOXM1b Omits alternative exons
Va and VIIa Transcriptionally active 748 aa NM_202003 ENST00000361953 Q08050-2 [13,14,28,29]

FOXM1c
Includes alternative exon
Va; omits alternative exon

VIIa
Transcriptionally active 763 aa NM_021953 ENST00000359843 Q08050-1 [13,14,28,29]

Other Reported FOXM1 Isoforms

FOXM1b1

Omits alternative exons
Va and VIIa; omits alanine
residue at the beginning of

exon III; includes
glutamine residue at the

end of exon V

Transcriptionally active with
functions similar to FOXM1b 748 aa NM_001243088 ENST00000627656 A0A0D9SFF0 [33]

FOXM1b2

Omits alternative exons
Va and VIIa; omits alanine
residue at the beginning of

exon III

Transcriptionally active with
functions similar to FOXM1b 747 aa NM_001243089 N/A N/A [33]

FOXM1d
Includes alternative exon

VIIa; omits alternative
exon Va

Not transcriptionally active;
binds directly to oncogenic

proteins
786 aa N/A N/A A0A2P9DTZ0-

1 [31,34,35]

FOXM1
variant
gAug10

No evidence at the protein
level N/A N/A N/A ENST00000536066 N/A [36]

FOXM1
variant
lAug10

No evidence at the protein
level N/A N/A N/A N/A N/A [36]

FOXM1 contains three recognized functional protein domains: (1) a negative regula-
tory domain (NRD) at the N-terminus, (2) a centrally located DBD, and (3) an acidic TAD
at the C-terminus (Figure 2) [12,15,37,38]. As a transcription factor, FOXM1 binds DNA
within the major groove at promoters containing the canonical forkhead motif RYAAAYA,
where R = purine (A/G) and Y = pyrimidine (C/T) [12,39]. FOXM1 appears to bind to its
recognition sequence with lower affinity than other FOX family members; this suggests
that FOXM1 may utilize more complex mechanisms for DNA binding and gene expression
regulation [39]. For example, FOXM1 can be recruited to gene targets by either directly
binding Forkhead consensus sequences [40] or indirectly through protein–protein interac-
tions with the MuvB complex (LIN9, LIN37, LIN52, LIN54, and RBBP4) [41,42]. In addition,
FOXM1 interaction with MuvB and B-Myb can facilitate FOXM1 binding directly to non-
consensus genomic sequences [41–43]. Recently, an investigation using FOXM1 chromatin
immunoprecipitation sequencing (ChIP-Seq) in five cancer cell lines from different organ
origins revealed that FOXM1 can interact directly or indirectly with the Nuclear Transcrip-
tion Factor Y (NFY) complex to regulate the majority of its cell cycle- and mitosis-related
gene targets [44]. This study also proposed that FOXM1 may promote cell type-specific
gene expression through additional mechanisms, such as binding to super-enhancers and
interacting with cell type-specific transcription factors [44]. In agreement, FOXM1 was
recently identified as a key transcriptional regulator of cancer-specific enhancers in lung
adenocarcinoma [45].
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phorylated by three kinases important in ovarian cancer, CDK4/6 (dark blue), PLK1 (tan), and 
ERK1/2 (green), are indicated. Figure created with BioRender.com. 
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1.3. FOXM1 Function and Regulation

FOXM1 exhibits spatiotemporal expression and activity throughout the cell cycles.
FOXM1 mRNA and protein expression increases in late G1-phase, peaks in S-phase, and
remains at high levels in G2/M through late M-phase [12,28,46]. In addition to regulation
at the transcriptional and translational levels, fine-tuning of FOXM1 expression also oc-
curs post-translationally. FOXM1 protein stability is regulated by the E3 ubiquitin ligase
complex CRL4VprBP in G1-phases and S-phases [47] and by the F-box protein FBXO31
during the G2-M transition [48]. Another critical regulator of FOXM1 function is post-
translational modification by phosphorylation. During cell cycle progression, FOXM1
undergoes sequential multi-site phosphorylation by several cyclin-CDK complexes (Cy-
clin D-CDK4/6 [49], Cyclin E-CDK2 [50], and Cyclin A/B-CDK1/2 [51–54]) as well as
by other kinases (CHK2 [55], MAPK [56], and PLK1 [57]), all of which facilitate FOXM1
stabilization, nuclear translocation, and activation [29]. Upon mitotic exit, FOXM1 is
targeted for ubiquitin-mediated proteasomal degradation by the anaphase promoting com-
plex/cyclosome (APC/C) E3 ubiquitin ligase [58]. Thus, the cycle of FOXM1 expression,
phosphorylation, and degradation repeats with every cell division cycle.

The NRD of FOXM1 binds to the TAD to repress FOXM1 transcriptional activity
(auto-repression). Importantly, phosphorylation of the TAD relieves self-inhibition from
the NRD, which allows for differential activation and gene targeting of FOXM1 at different
cell cycle stages [37,50,52,54,59]. A recent investigation supports a model where FOXM1
phosphorylation by CDK proteins provides a docking site for polo-like kinase 1 (PLK1),
which then phosphorylates the TAD at S730 on FOXM1c (S715 on FOXM1b) and releases it
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from the NRD [59]. The TAD and NRD become structurally disordered upon disassociation
and offer flexibility in interacting with binding partners such as p300/CBP [59]. This model
may be primarily applicable to FOXM1 activation at the G2/M checkpoint, where PLK1 is
known to function. Thus far, no other kinase has been shown to phosphorylate the TAD at
S730 on FOXM1c (S715 on FOXM1b).

Once activated, FOXM1 promotes entry into S phase by activating the transcription of
genes regulating the G1/S checkpoint (e.g., SKP2 and CKS1) [60]. Later, entry into M phase
is mediated by FOXM1 activation of genes regulating the G2/M checkpoint (e.g., PLK1,
CDC25B, CCNB1, NEK2, and BIRC5) [60–62]. Finally, FOXM1 promotes faithful mitotic
progression by activating genes involved in mitotic spindle assembly and chromosome
segregation (e.g., AURKB, KIF20A, CENPA, CENPB, and CENPF) [60–62]. Thus, FOXM1
functions as a critical transcriptional regulator of several important cell cycle transitions,
and its ability to differentially activate gene sets may relate both to its sequential phos-
phorylation as well as the presence of distinct binding partner complexes at different cell
cycle phases.

In addition to phosphorylation and ubiquitination, FOXM1 is regulated by other
post-translational modifications [29]. Small ubiquitin modifiers (SUMOs) may be necessary
for both FOXM1 activation and degradation, depending on the SUMOylation site [63–67].
Acetylation of FOXM1 may promote its activity [68], while methylation of FOXM1 may
suppress its activity [69]. SUMOylation, acetylation, and methylation of FOXM1 require
further study to discern their relative roles and potential crosstalk in FOXM1 regulation.

1.4. Transgenic Mouse Models Reveal Functions of FOXM1

Whole-body knockout of FOXM1 results in embryonic lethality in mice. Foxm1−/−

mouse embryos with deletion of exons IV–VII, which removes the DBD and TAD, died in
utero between E13.5 and E16.5 due to a failure to properly form multiple organs, including
the liver, lung, and heart [20–22]. Notably, polyploidy was observed in hepatoblasts and
embryonic cardiomyocytes, which likely results from improper mitotic progression [20,22].
Foxm1−/−neo mice, where the PGK-neomycin cassette was inserted into Exon III of Foxm1,
died perinatally with increased numbers of polyploid cells in the developing heart and liver,
which is a phenomenon observed as early as E13 [70]. Thus, whole-body knockout revealed
the importance of FOXM1 expression in early organogenesis due to the lethal phenotypes
observed. These models did not allow investigation of post-embryonic functions of FOXM1.

Conditional Foxm1 knockout (cKO) mice have been used to investigate the role of
FOXM1 in tissue-specific organogenesis [71]. For example, Foxm1 deletion in smooth
muscle cells did not influence cell differentiation but, rather, decreased proliferation of
smooth muscle cells in blood vessels and the esophagus [72]. Deletion of Foxm1 in respira-
tory epithelial cells prenatally impaired important lung functions (sacculation, type I cell
differentiation, and surfactant production) but did not alter gross lung morphology [73].
Conversely, postnatal expression of constitutively active FOXM1b in respiratory epithelial
cells increased Clara cell proliferation and airway hyperplasia [74]. Deletion of Foxm1
in pancreatic tissue resulted in a normal pancreas at birth but with a lack of β-cell mass
expansion postnatally, which can result in impaired islet function and overt diabetes [75].

Transgenic mouse models have also been utilized to investigate the roles of FOXM1 in
organ regeneration in adult tissues [71]. In response to vascular injury, mice with Foxm1
cKO in endothelial cells showed difficulty reannealing adherens junctions, microvessel
leakage, and poor endothelial barrier function [76,77]. In the setting of liver regeneration,
hepatocyte-specific Foxm1 deletion slowed hepatocyte proliferation [78], while hepatocyte-
specific FOXM1b overexpression led to accelerated hepatocyte growth through increased
S-phase and M-phase transitions [46,79,80]. In mice challenged by lung injury, FOXM1b
overexpression increased the proliferation of several cell types in the lung [81], while
pancreas-wide Foxm1 deletion [82] and Foxm1 deletion in muscle satellite cells [26] led to
impairments in pancreas and muscle repair, respectively, following injury. Collectively,
studies using transgenic mice with Foxm1 KO, Foxm1 cKO, and FOXM1b overexpression
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verify an important role for FOXM1 in embryogenesis, organogenesis, and organ regenera-
tion in adults.

Transgenic mouse models have also been utilized to define the functions of FOXM1
in cancer [71]. FOXM1 overexpression in all cell types through a Rosa26-FOXM1b con-
struct, when used in combination with a second tumor induction stimulus or oncogene,
increased the number and size of lung adenomas [83]; increased the number, size, and
proliferation of colon adenocarcinomas [84]; and accelerated the development of prostate
adenocarcinomas [85]. In a transgenic mouse model expressing a constitutively active
form of FOXM1b (FOXM1-∆N), FOXM1 stimulated progression from urethane-induced
benign lung adenomas to invasive metastatic lung adenocarcinomas [86]. However, in
instances where FOXM1 was tested as the main tumor inducer (i.e., without a second
tumor induction stimulus or oncogene), FOXM1b overexpression alone was insufficient to
generate hepatocellular carcinoma [87] and lung adenocarcinoma [74]. Deletion of Foxm1
prior to or following a tumor induction stimulus in mice decreased both the number and
size of tumors in the lung [88,89], liver [90], and colon [84]. Interestingly, although FOXM1
overexpression alone appears to be insufficient in driving tumorigenesis in vivo, the ab-
sence of FOXM1 prevented tumor development in the colon [84] and liver [91]. These data
suggest that FOXM1 is necessary but not sufficient for tumorigenesis in vivo.

To date, transgenic mouse models have not been utilized to interrogate the onco-
genic function of FOXM1 in ovarian cancer. This is partially due to the relative dearth
of transgenic ovarian cancer models. However, given the recent development of such
models [92–94], this is an area that is ripe for future investigations.

2. Ovarian Cancer

Ovarian cancer is the fifth leading cause of cancer-related deaths in women in the
United States [95] and the eighth leading cause of cancer-related deaths in women glob-
ally [96]. Due to the internal location of the ovaries and non-specific symptoms during
early-stage disease, ovarian cancer is difficult to detect early on and is frequently diag-
nosed during the advanced clinical stages (III and IV) [97]. The standard of care treatment
for ovarian cancer is cytoreductive (debulking) surgery, platinum-based and taxane com-
bination chemotherapy, and maintenance therapy using poly (ADP-ribose) polymerase
inhibitors (PARPi) and/or bevacizumab (an inhibitor of vascular endothelial growth factor
(VEGF)) [98,99]. However, >80% advanced-stage ovarian cancer eventually recurs and
treatment with further therapy is palliative [100]; this results in a 10-year overall survival of
<40% worldwide [101,102]. The lethality of ovarian cancer highlights the need to develop
better early detection modalities and more effective therapies for relapsed patients.

There are three major categories of ovarian cancer: epithelial (EOC), germ cell, and
sex cord-stromal [100]. Of these, EOC comprises ~90% of all ovarian cancer cases [100] and
is the focus of this review article. EOC is subtyped by histology into serous (low-grade
or high-grade), endometroid, mucinous, and clear cell tumors [100]. Ovarian tumors
with serous histology constitute ~70% of EOC, with most cases being high-grade serous
carcinoma (HGSC) [103]. Furthermore, HGSC accounts for up to 90% of ovarian cancer-
related deaths overall [104]. Although HGSC was traditionally thought to arise from the
ovarian surface epithelium (OSE), a majority of the evidence now supports the contention
that the fallopian tube epithelium (FTE) is the origin of most HGSC [105–107]. Notably,
crucial studies identified HGSC precursors, mainly serous tubal intraepithelial carcinomas
(STICs), in the fallopian tubes (FT) of women with disseminated HGSC [108–111] and in
those at high risk for developing HGSC (e.g., BRCA1/2 mutation carriers) [112–114].

The prevailing model for HGSC development proposes that normal FTE transforms
into early serous proliferations (ESPs) and then STICs, which ultimately become HGSC that
disseminate to the ovaries and/or other sites in the peritoneal cavity [105]. Accordingly,
ESPs, also known as “p53 signature” lesions, show increased expression of mutant p53 and
γ-H2AX (an indicator of DNA damage) compared to normal FTE [112,115]. STICs show
an atypical morphology in addition to the high expression of mutant p53, γ-H2AX, and
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Ki-67 (an indicator of proliferative activity) [112,115]. HGSC maintains high expression
of mutant p53, γ-H2AX, and Ki-67 and experiences profound genomic instability with
recurrently altered pathways, including p53, Rb/E2F, homologous recombination (HR)
DNA repair, PI3K/RAS, NOTCH, and FOXM1 [30,115,116].

3. FOXM1 Is Overexpressed and Activated in Ovarian Cancer

In 2011, The Cancer Genome Atlas (TCGA) published an integrated genomic analysis
of primary HGSC tumors. This landmark study identified FOXM1 as a key oncoprotein
in ovarian cancer [30]. The FOXM1 transcriptional pathway was aberrantly activated
in over 85% of cases and rendered it the second most frequent molecular alteration in
HGSC, second only to TP53 mutations [30]. Publications on FOXM1 in ovarian cancer
have subsequently increased since 2011 (Figure 1). Supporting the initial conclusions of
the TCGA, other studies have described widespread overexpression of FOXM1 and its
transcriptional targets in HGSC and EOC and have explored the molecular mechanisms
underlying FOXM1 pathway activation. These mechanisms are described in detail below
and are summarized in Figure 3.
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3.1. The FOXM1 Gene Experiences Copy Number Gains and Amplifications

Chromosome 12p13.33, where FOXM1 resides, shows copy number gains and am-
plifications in many human cancers, and studies indicate that this somatic copy number
alteration (SCNA) can occur early in cancer development [117–126]. We reported that,
in TCGA data, 45% of HGSC harbored low-level copy number gain of FOXM1, while
12% of tumors harbored high-level amplification, impacting almost 60% of cases [127].
Importantly, FOXM1 copy number correlated with mRNA expression in HGSC and this
demonstrates that FOXM1 copy number gain is a functional SCNA [127]. In agreement,
we more recently showed that FOXM1 copy number correlates with FOXM1 mRNA and
protein expression in pan-cancer [27]. The 12p13.33 amplifications were reported to be
common in an independent cohort of HGSC patients before and after front-line chemother-
apy (and detectable in plasma), further supporting this mechanism [128]. Despite the high
frequency of FOXM1 SCNA observed in HGSC, an even greater proportion of tumors show
FOXM1 overexpression or pathway activation (reaching ~90% of HGSC cases) [30,127],
indicating that additional mechanisms contribute to FOXM1 overexpression and pathway
activation in HGSC.

3.2. Inactivation of Upstream Tumor Suppressor Promotes FOXM1 Gene Expression

The TP53 mutations are ubiquitous in HGSC [30,129]. Mutations in TP53 frequently
manifest as single base-pair mutations localized to the DBD, resulting in either partial
or complete loss of function (LOF) or gain-of-function (GOF) [130]. GOF p53 mutants
exhibit both loss of wild-type and gain of oncogenic functions, leading to the promotion
of cell proliferation, survival, migration, invasion, and angiogenesis [130,131]. Important
early studies revealed wild-type p53 as a negative regulator of FOXM1 [132,133]. In
HGSC, bioinformatic pathway prediction suggested that dysfunctional p53 is linked to
the upregulation of FOXM1, VEGFA, TPX2, BRIC5, and TOP2A [134]. Moreover, GOF
p53R273H and p53R248W/Q, which are three of the most common p53 mutations in ovarian
cancer [130,131], were noted to dramatically increase FOXM1 protein expression in murine
oviductal epithelial cells [135] and human EOC cell lines [136]. Importantly, p53R273H and
p53R248W induced distinct levels of FOXM1 protein, suggesting a more complex mechanism
than a simple loss of wild-type function [135]. While GOF p53R175 and p53Y220 are also
common ovarian cancer TP53 mutations, their relationship with FOXM1 expression has
not been established [130].

Paired box transcription factor 8 (PAX8) is an FTE lineage marker that is retained
during malignant transformation to STICs and HGSC [92] and appears partially responsible
for FOXM1 upregulation in HGSC [137]. In cells of the Müllerian (female genital tract)
lineage, PAX8 increased TP53 gene expression regardless of TP53 mutational status [138].
Since nearly all HGSC cases contain mutant p53, it is plausible that PAX8 upregulates
FOXM1 expression in a subset of HGSC by enhancing the expression of GOF p53.

One mechanism by which GOF p53 increases FOXM1 expression in EOC is by en-
hancing FOXM1 mRNA stability [136]. Other GOF p53 mutations, such as p53G245D, have
been shown to upregulate FOXM1 expression in other cancers [139]. Specifically, p53G245D

decreased AMP-activated protein kinase (AMPK)-mediated phosphorylation of FOXO3A
in head and neck squamous cell carcinoma cells, thereby alleviating its repression on
FOXM1 gene expression [139]. Thus, upregulation of FOXM1 expression in ovarian cancer
may occur through distinct mechanisms depending on the specific TP53 mutation.

Inactivation of retinoblastoma (Rb) (RB1) by truncating point mutations, indels, and
gene breakage occurs in 17.5% of HGSC tumors [116]. Moreover, the Rb pathway is altered
in 67% of HGSC tumors, rendering it a very common molecular defect [30]. In addition, the
Rb and p53 signaling pathways are highly interconnected [140]. In a murine oviductal line
continually passaged in culture to mimic cellular aging, high passage number cells demon-
strated molecular changes including increased FOXM1 expression, hyper-phosphorylated
(i.e, inactivated) Rb, and the expression of a p53 splice variant that exhibited partial loss of
wild-type p53 function with potential GOF [141]. Our studies demonstrated that combined
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TP53 and RB1 inactivation in murine and human OSE cells synergistically upregulates
FOXM1 mRNA and protein expression than when compared to inactivation of either tumor
suppressor alone [127]. Moreover, we showed that FOXM1 is overexpressed in a transgenic
murine model of ovarian cancer driven by combined Rb1/Trp53 knockout in the OSE [127].
Downregulation or inactivation of the p53 and Rb pathways result in the activation of the
E2F1 transcription factor, which directly upregulates FOXM1 gene expression by binding
to its promoter [133,142–145]. Indeed, we reported that E2F1 knockdown in human OSE
cells and in the HGSC cell line COV362 with inactivated p53 and Rb significantly reduced
FOXM1 mRNA expression [127]. In agreement, E2F1 mRNA showed a strong positive
correlation with FOXM1 mRNA in human primary EOC [127]. We also have shown that
dysregulation of the Rb/E2F pathway, including the overexpression of E2F1 or cyclin E1 or
RB1 knockout, caused increased FOXM1 expression in FTE cells [27]. TP53 mutation, RB1
copy number loss, and CCNE1 expression each strongly correlates with FOXM1 expression
and FOXM1 pathway activation in pan-cancer [27]. These findings establish that p53 and
Rb pathway dysregulation is a key contributor to FOXM1 overexpression in ovarian cancer.

FOXO3A is a FOX family member and tumor suppressor that functions as a negative
regulator of FOXM1. FOXO3A suppresses FOXM1 activity via at least three mechanisms:
(1) Downregulating FOXM1 gene expression, potentially through the upregulation of the
Mad/Max family of transcriptional repressors [146–148]; (2) directly displacing FOXM1
from the promoter region of FOXM1 target genes [148–150]; and (3) condensing FOXM1
gene targets into heterochromatin, making the genes less accessible to FOXM1-mediated
activation [148]. Critically, as normal FTE progresses to STIC lesions and HGSC, FOXO3A
expression steadily decreases with a concurrent increase in FOXM1 expression and activa-
tion of the PI3K/AKT and MAPK/ERK pathways [151]. Several mechanisms may result
in the loss of FOXO3A expression in HGSC. First, late-stage HGSC tumors demonstrated
FOXO3A copy number loss and a subset of TCGA HGSC showed upregulation of miR-182,
which targets FOXO3A mRNA for degradation [151]. Second, FOXO3A phosphorylation
by the PI3K/AKT or MAPK/ERK pathways, which are highly active in HGSC, results
in the nuclear export of FOXO3A to the cytoplasm and thus inactivation of its transcrip-
tional activity [151,152]. Third, T-type Ca2+ channels, which are aberrantly overexpressed
in ovarian cancer, can activate the PI3K/AKT pathway, thus antagonizing FOXO3A nu-
clear retention and promoting FOXM1 expression [153]. Consequently, selective inhibitors
against PI3K, ERK1/2, and AKT were shown to significantly decrease both basal and in-
duced FOXM1 gene expression levels in HGSC cells [154]. In agreement, inhibiting T-Like
Cell-Originated Protein Kinase (TOPK), which is a protein in the MAPK/ERK pathway
that also modulates the PI3K/AKT pathway, leads to decreased FOXM1 gene expression in
ovarian cancer cells [155].

3.3. Upstream Oncogenes Promote FOXM1 Expression

Several oncogenic transcription factors have been noted to promote FOXM1 overex-
pression in ovarian cancer. Yes-associated protein (YAP) can bind to the FOXM1 promoter
and promotes FOXM1 gene expression in HGSC cell lines [154]. Investigations in mesothe-
lioma and soft-tissue sarcoma cell lines have also demonstrated the ability of the YAP-TEAD
complex to transcriptionally activate FOXM1 expression [156,157], and there is evidence
in soft-tissue sarcoma that FOXM1 can directly interact with the YAP-TEAD complex
to promote cell proliferation [157]. In HGSC, bromodomain and extraterminal domain
(BET) proteins recognize acetylated lysine residues on histones and may recruit chromatin-
modification enzymes or co-activators to activate the FOXM1 promoter [158]. Indeed, a
pan-inhibitor of the BET family, I-BET151, downregulated FOXM1 mRNA and protein
expression in several EOC cell lines [159]. Given the emergence of BET inhibitors as a novel
therapeutic approach in EOC [160], further studies of the effect of these agents on FOXM1
expression and FOXM1-driven phenotypes are warranted. Additional proteins, which
are not classical oncogenes, are also known to upregulate FOXM1 expression in ovarian
cancer. For example, the ETS family transcription factor ETV5 directly binds to the FOXM1
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promoter to upregulate its expression in EOC [161]. Additionally, the E3 ubiquitin ligase
substrate receptor VprBP/DCAF1, which is upregulated in HGSC, co-activates FOXM1
expression by a mechanism independent of its E3 ubiquitin ligase activity [47].

Studies in other cancer types have identified well-known oncogenic transcription factors
that bind to the FOXM1 promoter and induces its transcription: Gli1 and Gli2 in the sonic
hedgehog (Shh) pathway [162–165], c-Myc [145,166–168], STAT3 [169], and Twist1 [170]. c-
Myc is known to transcriptionally activate FOXM1 in several cancers [166–168] and, notably,
exhibits copy number gains in >65% of HGSC cases [30]. In addition, FOXM1 has been
reported to bind to its own promoter and induce its own gene expression through an autoreg-
ulatory circuit [171,172]. However, our data were unable to confirm this mechanism [27].

Although not addressed in ovarian cancer, there is evidence that stress response pro-
teins increase FOXM1 expression; this suggests that FOXM1 promotes cell survival in harsh
conditions. For example, heatshock factor 1 (HSF1) can bind to the FOXM1 promoter and
upregulate its expression when glioma cells are subjected to lethal heat shock stress [173].
Activating transcription factor 4 (ATF4), which is a transcriptional regulator that responds
to amino acid deprivation, can upregulate histone lysine demethylase KDM4C, which
activates transcription of FOXM1 and FOXM1 target genes [174].

Reactive oxygen species (ROS) provide another link between cell stress and FOXM1.
ROS can upregulate FOXM1 expression, which then activates transcription of ROS scav-
enger proteins such as manganese superoxide dismutase (MnSOD) [175]. MnSOD in turn
promotes E2F1-mediated and Sp1-mediated activation of the FOXM1 promoter [176]. These
findings suggest that ROS activates a feed forward loop that leads to the increased protein
expression of MnSOD and FOXM1. Additionally, HIF1α, in the presence of ROS or hypoxia,
binds to and transactivates the FOXM1 promoter [177,178]. In the context of ovarian cancer,
the follicular fluid microenvironment is a major source of ROS, which plays important
physiologic functions in the ovaries, including follicular growth, oocyte maturation, and
ovarian steroid biosynthesis [179]. The oxidative stress exerted on the ovaries and FT could
potentially result in FOXM1 upregulation in premalignant and malignant ovarian cells,
which may in turn drive cellular proliferation in cells that might normally undergo DNA
damage arrest.

3.4. FOXM1 Is Post-Transcriptionally Regulated by Non-Coding RNAs (ncRNA)

Non-coding RNAs (ncRNA) compose a complex regulatory network that participates
in diverse biological processes ranging from chromatin remodeling to protein stabiliza-
tion [180,181]. In the context of FOXM1, ncRNA investigations have focused on post-
transcriptional regulation of the FOXM1 mRNA. Among the different classes of ncRNAs,
microRNAs (miRNA) bind to and destabilize messenger RNAs (mRNA), while long non-
coding RNAs (lncRNA) and circular RNAs (circRNA) can contain miRNA-complementary
sites that competitively bind to miRNAs and reduce the number of available miRNAs that
can bind to mRNA targets; this is an action known as miRNA sponging [180,181]. Thus,
ncRNAs play a major role in FOXM1 regulation, with over 40 implicated to date [182].

In ovarian cancer, miR-370 targets FOXM1 mRNA for degradation [183,184]. This
mechanism has also been observed in osteosarcoma [185], gastric cancer [186], and acute
myeloid leukemia [187]. CircRNA hsa_circ_0061140 and lncRNA plasmacytoma vari-
ant translocation 1 (lncPVT1), for which expressions are upregulated in ovarian cancer,
sponge miR-370 activity in ovarian cancer cells [183,184]. Studies in gastric cancer and
pan-cancer have suggested that lncPVT1 can also interact with and stabilize the FOXM1
protein and have shown that FOXM1 binds to the promoter of lncPVT1 to activate its
transcription [188,189]. Additionally, lncPVT1 can interact with FOXM1 mRNA directly,
potentially regulating FOXM1 mRNA splicing and stability [189]. PVT1 also exists as a
circRNA (circPVT1) [190]. In EOC, circPVT1 is able to sponge miR-149-5p, which targets
FOXM1 mRNA [191]. miR-149 has also been shown to repress FOXM1 expression in
non-small-cell lung cancer [192] and gastric cancer [193]. Interestingly, PVT1 is located on
chromosome band 8q24.21 and is frequently co-amplified with MYC [30,194]. Additional
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miRNAs established to target FOXM1 in ovarian cancer are miR-134 [195–199] and miR-
216b [200–203]. Interestingly, a recent report indicates that FOXM1 acts as a transcriptional
regulator of several miRNA molecules in triple-negative breast cancer, which has a similar
molecular profile to HGSC [204]. Taken together, these data indicate that ncRNA alterations
play a key role in promoting FOXM1 expression in cancer, including ovarian cancer, and
that FOXM1 itself can function in miRNA dysregulation.

3.5. FOXM1 Is Stabilized and Activated by Post-Translational Mechanisms

As mentioned earlier, FOXM1 is functionally regulated by post-translational modifica-
tions (PTMs). In particular, a plethora of evidence supports that FOXM1 protein stabiliza-
tion and transcriptional activity depend on specific phosphorylation events [29,37,49–57,59].
However, to date, most FOXM1 expression studies in cancer, including ovarian cancer, have
only reported overall FOXM1 protein levels rather than phosphorylated FOXM1 (phospho-
FOXM1), which stems from a limited number of antibodies available for PTMs. Measuring
phospho-FOXM1 may provide more insight into FOXM1 activation status in cancer and
should be emphasized in future investigations. Known FOXM1 phosphorylation sites of
kinases known to be relevant in ovarian cancer are illustrated in Figure 2.

The MAPK/ERK and PI3K/AKT pathways promote FOXM1 activation in cancer,
including ovarian cancer. As described earlier, the overabundance of T-type Ca2+ channels
in ovarian cancer leads to PI3K/AKT overexpression and, consequently, treatment with
mibefradil, which is a calcium channel blocking agent, decreased nuclear FOXM1 protein
levels and its binding to the BIRC5 (survivin) promoter in EOC cells [153]. Growth factor
receptor-bound protein 7 (GRB7), which is a signal transducing adaptor protein that is
overexpressed in ovarian cancer, promotes constitutive activation of the MAPK/ERK
pathway and thereby leads to enhanced FOXM1 activity [205]. Interestingly, the MEK
inhibitor U0126 decreased FOXM1 protein levels in OVCA433, which is an ovarian cancer
cell line with functional p53, but not in SKOV3, a p53-deleted ovarian cancer cell line; this
suggests that functional p53 may be necessary for the MAPK/ERK pathway to regulate
FOXM1 activity [206]. Studies in other cancers have suggested that the PI3K/AKT pathway,
independent of the MAPK/ERK pathway, functions as a main activator of oncogenic
FOXM1 activity [207–209].

Additional kinases also promote FOXM1 phosphorylation in ovarian cancer. HGSC
tumors with downregulation of miR-506, which targets CDK4/6 mRNA, showed increased
FOXM1 protein [210]. Since CDK4/6 phosphorylates FOXM1c at numerous residues
(Figure 2) [49], this result implies that the gain of CDK4/6 increased FOXM1 protein activity
and stability in these tumors. Overexpression of Polo-like kinase 1 (PLK1), for which
phosphorylation at S730 at the TAD of FOXM1c (S715 on FOXM1b) relieves the physical
repression of the FOXM1 NRD [59], is prognostic for poor overall survival in EOC [211,212].
Elucidating the relative contributions of different kinases to FOXM1 activation in ovarian
cancer may provide novel avenues for therapeutic intervention in this disease.

Deubiquitination serves as an additional mechanism to increase FOXM1 expression
in ovarian cancer. Otubain 1 (OTUB1) belongs to a family of deubiquitinases (DUBs), for
which their defining feature is their ovarian tumor (OTU) domain, and OTUB1 promotes
aggressive behavior in several cancers through both canonical and non-canonical DUB
functions [213]. In ovarian cancer, OTUB1 promoted ovarian cancer cell proliferation,
invasion, and tumor growth through deubiquitination and stabilization of FOXM1 [214]. It
is likely that other DUBs may stabilize FOXM1 protein in ovarian cancer. For example, in
basal breast cancer, which has robust molecular similarity to HGSC [215], the DUB USP21
deubiquitinates and stabilizes FOXM1 in vitro and in vivo [216]. Further elucidations of
DUBs that target FOXM1 in ovarian cancer are an important area for future investigations.

4. FOXM1 Oncogenic Functions

FOXM1 is a transcriptional master regulator of several hallmarks of cancer [217,218].
Upregulation and activation of FOXM1 in cancer can contribute to numerous phenotypes,
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including cell proliferation, cancer stemness, genomic instability, drug resistance, protec-
tion from oxidative stress, altered metabolism, invasion, metastasis, angiogenesis, and
inflammation [148,217,219,220]. Remarkably, and consistent with its function in a myriad
of oncogenic phenotypes, FOXM1 has been reported as the top gene expression biomarker
for poor prognosis in a pan-cancer analysis consisting of >18,000 tumors from 39 distinct
malignancies [221]. Our present understanding of FOXM1 in relation to ovarian cancer phe-
notypes is summarized in Figure 4. Mechanistically, FOXM1 activates genes by binding to
gene promoters and enhancers, both directly [40] and via interactions with transcription fac-
tor complexes such as MuvB [41–43], B-Myb [41–43], and NFY [44]. FOXM1 transcriptional
targets identified in ovarian cancer are shown in Table 2.
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Table 2. FOXM1 target genes and their functions.

FOXM1 Target (Gene) Known Oncogenic Mechanism References

Cellular Proliferation

Cyclin B1 (CCNB1) Cyclin protein that promotes mitosis [127,222]

S-phase kinase-associated protein 2 (SKP2) F-box protein that mediates cell cycle entry and
G1/S transitions [127]

Polo-like kinase 1 (PLK1) Protein kinase that mediates mitosis and
cytokinesis [127]

Cell division cycle 25B (CDC25B) Tyrosine protein phosphatase that mediates cell
cycle progression and mitosis [222]

Centrosomal protein 55 (CEP55) Mitotic phosphoprotein that mediates cytokinesis [222]

Centrometere protein F (CENPF) Microtubule-binding protein and mediates cell
division [222]

DNA topoisomerase II Alpha (TOP2A)
DNA topoisomerase that mediates DNA

transcription and replication and chromosome
condensation and segregation

[222]

Cyclin F (CCNF) F-box protein that mediates the stability of proteins
that regulate cell cycle and genome stability [223]

Protein regulator of cytokinesis 1 (PRC1)
Microtubule-associated protein essential for

cytokinesis (related to mitosis-related genes in
ovarian cancer)

[223]

Homeobox DLX-1 (DLX1)
Transcription factor that modulates the

TGF-β1/SMAD4 signaling pathway in ovarian
cancer

[224]

Proliferation cell nuclear antigen clamp-associated
factor (PCLAF)

PCNA-binding protein that regulates DNA repair,
cell cycle progression, and proliferation (and

activates the PI3K/AKT/mTOR signaling
pathways in ovarian cancer)

[225]

Kinesin-like protein KIF20A (KIF20A) Kinesin protein that participates in cytokinesis and
intracellular transportation [223]

Cellular Migration and Invasion

Cyclin F (CCNF) F-box protein that mediates the stability of proteins
that regulate cell cycle and genome stability [223]

Protein regulator of cytokinesis 1 (PRC1)
Microtubule-associated protein essential for

cytokinesis (related to mitosis-related genes in
ovarian cancer)

[223]

Matrix metalloproteinase 2 (MMP2) Metalloproteinase that mediates extracellular
matrix degradation [222]

Homeobox DLX-1 (DLX1)
Transcription factor that modulates the

TGF-β1/SMAD4 signaling pathway in ovarian
cancer

[224]

Proliferation cell nuclear antigen clamp-associated
factor (PCLAF)

PCNA-binding protein that regulates DNA repair,
cell cycle progression, and proliferation (and

activates the PI3K/AKT/mTOR signaling
pathways in ovarian cancer)

[225]

Kinesin-like protein KIF20A (KIF20A) Kinesin protein that participates in cytokinesis and
intracellular transportation [223]

Cytokeratin-5 (KRT5) Filament protein that is found in FTE stem cells
and serous ovarian cancer (may promote stemness) [226,227]

Cytokeratin-7 (KRT7)
Filament protein that promotes cell–matrix

adhesion and extracellular matrix degradation in
ovarian cancer

[226,228]

β-catenin (CTNNB1)

Transcriptional co-regulator protein and adaptor
protein for cell adhesion that contributes to ovarian

cancer metastasis, stemness, chemoresistance,
angiogenesis, and immune evasion

[229,230]

Integrin β1 (ITGB1) Integrin protein that facilitates the adhesion of
ovarian cancer spheroids [231]

Integrin αV (ITGAV) Integrin protein that facilitates the adhesion of
ovarian cancer spheroids [231]

Integrin α5 (ITGA5) Integrin protein that facilitates the adhesion of
ovarian cancer spheroids [231]

Lamin B1 (LMNB1) Nuclear lamina protein that facilitates the adhesion
of ovarian cancer spheroids [231]

Fibronectin 1 (FN1) Extracellular matrix glycoprotein that facilitates
the adhesion of ovarian cancer spheroids [231]
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Table 2. Cont.

FOXM1 Target (Gene) Known Oncogenic Mechanism References

Chemotherapy Resistance and DNA Repair

Exonuclease 1 (EXO1) Homologous DNA damage repair protein [232]

Proliferation cell nuclear antigen clamp-associated
factor (PCLAF)

PCNA-binding protein that regulates DNA repair,
cell cycle progression, and proliferation (and

activates the PI3K/AKT/mTOR signaling
pathways in ovarian cancer)

[225]

Protein regulator of cytokinesis 1 (PRC1)
Microtubule-associated protein essential for

cytokinesis (related to mitosis-related genes in
ovarian cancer)

[223]

Cyclin B1 (CCNB1) Cyclin protein that promotes mitosis [233]
BRCA1 (BRCA1) Homologous DNA damage repair protein [233,234]
BRCA2 (BRCA2) Homologous DNA damage repair protein [234]
RAD51 (RAD51) Homologous DNA damage repair protein [233,234]

Fanconi anemia group F protein (FANCF) Homologous DNA damage repair protein [233]
RAD51 paralog D (RAD51D) Homologous DNA damage repair protein [233]

Fanconi anemia group D2 protein (FANCD2) Homologous DNA damage repair protein [233]

Altered Cellular Metabolism

Glucose transporter 1 (GLUT1) Glucose transport protein that promotes aerobic
glycolysis in ovarian cancer [235]

Hexokinase 2 (HK2) Glycolytic enzyme that promotes aerobic
glycolysis in ovarian cancer [235]

4.1. FOXM1 Expression Is Associated with Tumor Progression and Poor Prognosis in Ovarian
Cancer

FOXM1 expression is elevated in multiple stages of ovarian cancer, from initial neo-
plastic transformation to late-stage metastatic spread. In one study, immortalized FT stem
cells were observed to have higher FOXM1 expression than non-immortalized counter-
parts and STICs isolated from women with HGSC revealed higher expression of FOXM1
than normal FTE [236]. In addition, FOXM1 is expressed in STIC lesions in concert with
FOXO3A downregulation [151]. These data suggest the FOXM1 upregulation in HGSC
may occur early and prior to full neoplastic transformation. However, FOXM1 expression
clearly shows additional elevation in later disease stages. For example, FOXM1 gene
expression in primary EOC, including HGSC, is highly overexpressed compared to nor-
mal epithelial ovarian tissues [30,127,134,161,222] and directly correlates with the tumor
stages [127] and grade [127,161]. FOXM1 protein expression in EOC positively correlates
with lymph node metastasis [237] and FIGO stage [222,238]. We reported that HGSC
TCGA cases with FOXM1 gene amplification have overall reduced survival [127] and other
studies have demonstrated that FOXM1 protein expression directly correlates with reduced
disease-free [239], progression-free [237,240], and overall [237,239] survival in EOC.

4.2. FOXM1 Promotes Cellular Proliferation, Migration, and Invasion

Increased FOXM1 expression in cancer promotes cell cycle progression and cell prolif-
eration. In particular, FOXM1 regulation of cell cycle and mitotic genes, such as CCNB1,
CDK1, and CENFP, is conserved across different cancer types [44]. We observed that
FOXM1 knockdown in immortalized human OSE cells results in the accumulation of cells
in G2/M, while FOXM1 knockdown in HGSC cells led to accumulation of cells in G1 [127].
In both cell models, FOXM1 knockdown downregulated the expression of SKP2, PLK1, and
CCNB1 and this is consistent with inhibition of cell cycle transitions [127].

Additional studies have demonstrated that FOXM1 promotes ovarian cancer cell
migration and invasion. Stabilization of FOXM1 via deubiquitination by OTUB1 promotes
cell proliferation and invasion of SKOV3 cells in vitro and increased tumor growth of
SKOV3 mouse xenografts in vivo [214]. A separate study demonstrated that FOXM1
knockdown in SKOV3 cells inhibited cell migration and invasion [239]. Conversely, FOXM1
overexpression in A2780/CP70 and OVCA433 cells increased proliferation, migration, and
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invasion. Mechanistically, in OVCA433 cells, FOXM1 overexpression increased mRNA
expression of the extracellular proteases MMP9 and PLAUR [206], while the FOXM1
inhibitor thiostrepton decreased cell migration and invasion in conjunction with reducing
MMP9 and PLAUR expression [206]. In another study, FOXM1 knockdown decreased
ovarian cancer tumor growth in xenografts [229]. FOXM1 knockdown in the EOC cell lines
EOC-CC1 and OSPC2 inhibited cell proliferation, colony formation, and invasion, which
coincided with decreased expression cell cycle genes and metastasis genes [222].

FOXM1 gene targets that are relevant to cell proliferation, migration, and invasion
have been described. Notably, many are overexpressed in ovarian cancer and are reported
to correlate with poor prognosis. These include: SKP2 [127], PLK1 [127], CCNB1 [127,222],
CDC25B [222], CEP55 [222], CENPF [222], TOP2A [222], CCNF [223], PRC1 [223], and
MMP2 [222]. In addition, several novel FOXM1 gene targets have been identified in ovar-
ian cancer. For example, the cytoskeleton proteins cytokeratin-5 (KRT5) and cytokeratin-7
(KRT7) are known to promote migration in SKOV3 cells [226]. DLX1 [224], PCLAF [225],
KIF20A [223], and CTNNB1 [229] have been shown to contribute to proliferation and
metastatic phenotypes. Moreover, FOXM1 target genes can be linked to broader cancer
pathways. KRT5 is found in a population of basally located CD44+ stem-like cells in the
FTE, for which its population is expanded in serous cancer samples [227]. KRT7 upregu-
lates integrin β1-FAK signaling and matrix metalloproteinase expression, promoting cell
matrix adhesion [241] and extracellular matrix degradation [228], respectively. The home-
obox protein DLX-1 is a mediator in TGF-β1/SMAD4 signaling in ovarian cancer [224],
which promotes EMT and cell stemness phenotypes [242]. The proliferation cell nuclear
antigen (PCNA) clamp-associated factor PCLAF activates the PI3K/AKT/mTOR pathway
in ovarian cancer cells [225]. CTNBB1 encodes β-catenin, which contributes to ovarian
cancer metastasis, stemness, chemoresistance, angiogenesis, and immune evasion [230].
Interestingly, FOXM1 can bind directly to β-catenin to promote its nuclear localization
and transcriptional activity in glioma; this provides an addition link between FOXM1 and
β-catenin [243].

In ovarian cancer, FOXM1 also induces the expression of integrins and matrix proteins:
ITGB1 [231], ITGAV [231], ITGA5 [231], LMNB1 [231], and FN1 [231], which may facilitate
adhesion of ovarian cancer cells to new organs. In keratinocytes, ectopic overexpression
of FOXM1 in combination with the loss of TP53 enhanced integrin β1 expression [145].
Consistently, the lung vasculature in FOXM1−/− mouse embryos demonstrated a down-
regulation of integrin β1 and laminins α2 and α4, and FOXM1 was demonstrated to
transactivate the LAMA4 promoter [21]. There is also evidence that FOXM1 targets E-
cadherin, although this has not been reported in ovarian cancer [244]. E-cadherin plays a
dynamic role in ovarian cancer, where its overexpression is important for the growth and
survival of ovarian cancer cells [245,246], its fragmentation is important for intraperitoneal
metastasis [246,247], and its re-expression is a key part of mesenchymal-to-epithelial tran-
sition (MET) [245,248]. Taken together, these studies suggest that FOXM1 regulates the
expression of key adhesion molecules and promotes their expression in contexts favorable
to ovarian cancer progression.

In addition to cancer cells, the tumor microenvironment (TME) plays a critical role
in ovarian cancer [249]. While not yet explored in ovarian cancer, investigations in other
cancers have shed light on the role of FOXM1 in TME development and maintenance. A
mouse model with a macrophage-specific Foxm1 deletion (macFoxm1−/−) demonstrated
decreased macrophage recruitment and migration to lung tumors and ultimately reduced
the number and size of lung tumors formed [250]. In cancer-associated fibroblasts (CAFs),
FOXM1 and its downstream targets are upregulated in several cancers [251] and hepato-
cellular carcinoma CAFs rely on FOXM1 to activate cartilage oligomeric matrix protein
(COMP) gene expression, which eventually increases EMT, invasion, and stemness of hepa-
tocellular carcinoma cells [252]. The recent development of mouse models that recapitulate
TME observed in human ovarian cancer [253,254] provides a ripe opportunity to study the
role of FOXM1 in the ovarian cancer TME.



Cancers 2021, 13, 3065 16 of 39

4.3. FOXM1 Promotes DNA Repair and Chemotherapy Resistance

Most ovarian cancers are diagnosed at advanced stages and ultimately develop
chemoresistance. FOXM1, whose transcriptional network includes DNA repair genes [255],
has been reported to promote ovarian cancer resistance to taxanes (e.g., paclitaxel and
docetaxel), platinum-based drugs (e.g., cisplatin and carboplatin), and PARPi (e.g., olaparib
and niraparib). For example, cisplatin-resistant or paclitaxel-resistant IGROV1 cells showed
significant increases in FOXM1 expression, and FOXM1 contributed to the chemoresistant
phenotype [240]. Additionally, FOXM1 knockdown in EOC cell lines EOC-CC1 and OSPC2
decreased the expression of DNA damage response genes (ASPM, XRCC1, XRCC4, and
RAD51) and chemoresistance genes (CXCR4, CYR61, and EDN1) and concomitantly in-
creased cell sensitivity to several chemotherapy agents, including carboplatin, cisplatin,
doxorubicin, and olaparib [222].

In HGSC patients, shallow whole genome sequencing (sWGS) of circulating tumor
DNA (ctDNA) from plasma revealed a 16% increase in chromosome 12p13.33 amplification
(location of FOXM1) after the acquisition of chemotherapy resistance [128]. In agreement,
we observed that almost half of HGSC patients have increased FOXM1 expression in
recurrent chemoresistant tumors [256]. Bioinformatic analysis led to the identification of
FOXM1 as one of the top three hub genes for which overexpression leads to platinum-based
chemotherapy resistance [257]. Furthermore, cisplatin-resistant ovarian cancer tissues and
cells were reported to have increased FOXM1 [232] and FOXM1 was an independent
indicator of shorter time to progression in platinum-resistant EOC [222]. A2780 and
SKOV3 cells treated with cisplatin demonstrated increased FOXM1 protein expression
in a dose-dependent manner [232]. Additionally, ectopic overexpression in BG-1 and
A2780 cells enhanced cisplatin resistance, while FOXM1 knockdown sensitized SKOV3
and A2780/CP70 cells to cisplatin [232,240]. Taken together, these data implicate FOXM1
in promoting chemoresistance, particularly to platinum-based drugs, in ovarian cancer.

Several studies have reported that the FOXM1 small molecule inhibitor (SMI) thiostrep-
ton sensitizes ovarian cancer cells to platinum-based chemotherapy [258,259]. For example,
thiostrepton in combination with cisplatin increased cell death in ovarian cancer cell lines
and human ovarian cancer ascites cells ex vivo than compared to treatment with platinum
alone [260]. In EOC cell lines A2780 and HEC-1A, treatment with thiostrepton (1–10 µM) in
combination with cisplatin had a synergistic effect on cell death [136]. Pretreatment of the
cisplatin-resistant ovarian cancer cell line A2780/CP70 with thiostrepton increased cisplatin
sensitivity in vitro and in xenografts [240]. However, the mechanistic link between these
phenotypes and FOXM1 is uncertain since thiostrepton has pleiotropic effects [261–263].

Investigations of FOXM1 also support that there is a role with respect to PARPi and
taxane resistance in ovarian cancer [222,233,240]. For example, treatment of ovarian cancer
patient tissues ex vivo with the PARPi olaparib increased BRCA1, BRCA2, RAD51, and
FOXM1 gene expression, and treatment of the tissues with olaparib and thiostrepton re-
versed this effect. Moreover, the combination treatment, but not olaparib alone, led to
decreased proliferation and increased apoptosis [234]. Furthermore, FOXM1 inhibition by
siRNA or thiostrepton sensitized EOC cells to olaparib, which correlated with apoptosis,
increased DNA damage, and increased PARP1 trapping [233]. Thiostrepton treatment sensi-
tized rucaparib-resistant EOC cell lines to the PARPi rucaparib [233]. FOXM1 has also been
shown to promote taxane resistance in breast cancer [216,264,265], gastric cancer [266–268],
hepatocellular carcinoma [269], prostate cancer [270], and nasopharyngeal carcinoma [271].

FOXM1 transcriptional targets linked to platinum resistance in ovarian cancer include
exonuclease 1 (EXO1) [232], a DNA repair protein recruited to double-stranded breaks,
and PCLAF [225], a protein that activates the PI3K/AKT/mTOR signaling pathway. In
addition, Protein regulator of cytokinesis-1 (PRC1), which promotes proliferation, migra-
tion, and invasion, is a direct FOXM1 transcriptional target found to promote resistance
to multiple agents (cisplatin, taxol, and doxorubicin) [223]. Finally, olaparib treatment of
EOC cells stimulated FOXM1 binding to the promoters of CCNB1 [233], BRCA1 [233,234],
BRCA2. [234], RAD51 [233,234], FANCF [233], RAD51D [233], and FANCD2 [233], which,
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given the function of these genes, are likely to promote PARPi resistance. FOXM1 is also
associated with the upregulation of inhibitor of apoptosis (IAP) genes, including survivin
(BIRC5) and X chromosome-linked IAP (XIAP) in several cancers [272–275]. Further re-
search on the link between FOXM1 and IAPs, which are intimately related to anti-cancer
therapy resistance [276], may reveal additional FOXM1 transcriptional targets linked to
ovarian cancer chemoresistance.

4.4. FOXM1 Promotes Cancer Cell Stemness

Cancer stem cells (CSC) have enhanced capacities for self-renewal, cell plasticity, and
the ability to adapt to harsh environments [277–279]. These characteristics facilitate therapy
resistance, disease recurrence, and reduced patient survival [277–279]. As ovarian cancer
has high recurrence rates, targeting stemness is of particular interest [278,279]. The FOXM1
transcriptional network includes pluripotency genes, such as SOX2, NANOG, and OCT4, in
several cancer models [280–283]. Interestingly, FOXM1 depletion in human embryonic stem
cells led to a disruption in proliferation but did not impact OCT4 and NANOG expression
during in vitro differentiation [235], suggesting that the ability of FOXM1 to modulate
pluripotency may be restricted to specific settings which cancer cells are able to exploit.

In ovarian cancer, FOXM1 has been reported to promote cancer cell stemness. CSCs
generated from EOC cell lines SKOV3 and A2780 demonstrated elevated levels of FOXM1
in addition to the CSC markers CD133, CD44, and ALDH1 [284]. The synthetic genis-
tein analogue 7-difluormethoxyl-5,4′-di-n-octylgenistein (DFOG) downregulated FOXM1
expression concurrent with CD133, CD44, and ALDH1 and dramatically attenuated sphere-
forming abilities [284]. In agreement, ectopic expression of FOXM1 reversed these ef-
fects [284]. ALDH1-high cells isolated from A2780 and the cisplatin-resistant sub-line
A2780/CP70 expressed increased levels of FOXM1, NOTCH1, OCT4, and NANOG and
demonstrated enhanced sphere-forming abilities [285]. Treatment of these cells with the
ALDH1 inhibitor diethylaminobenzaldehyde (DEAB) downregulated sphere-forming abili-
ties and FOXM1 expression, while thiostrepton treatment did not affect ALDH1 expression,
suggesting that FOXM1 is downstream of ADLH1-induced stemness [285]. Chemoresis-
tance can also be a sign of stemness. Indeed, the cisplatin-resistant A2780/CP70 cell line
demonstrated enhanced sphere formation ability and increased protein levels of FOXM1,
ALDH1, OCT4, NANOG, and NOTCH1 compared to the A2780 parental line [240]. FOXM1
overexpression in A2780 and BG-1 cells increased sphere formation, while knockdown
of FOXM1 in A2780/CP70 and SKOV3 cells decreased sphere formation [240]. In addi-
tion to ovarian cancer, FOXM1 is linked to CSC phenotypes in other cancers, including
lung [286–288], liver [289,290], glioma [291–293], breast [294], colon [295], prostate [270],
endometrial [296], and embryonal carcinoma [297].

4.5. FOXM1 Promotes Genomic Instability and DNA Replication Stress

A defining feature of HGSC is genomic instability, manifested in large part by in-
creased SCNAs [30,116,298]. A seminal early study showed that FOXM1 and several of
its transcriptional targets, such as AURKB and CCNB1, rank in the top 70 genes for which
overexpression is associated with chromosomal instability (CIN) in pan-cancer (named
the CIN70 signature) [299]. More recently, we and others have reported that FOXM1
and its transcriptional program are enriched in tumors with elevated CIN/functional
aneuploidy [27,299,300]. Interestingly, we have also observed significant association be-
tween FOXM1, genomic instability, and DNA hypomethylation in EOC [301]. There is
a well-established link between DNA hypomethylation and genomic instability in can-
cer [302,303]. Intriguingly, ectopic FOXM1 expression in oral keratinocytes was shown to
concurrently induce genomic instability and DNA hypomethylation [304]. The pattern of
DNA hypomethylation in these cells resembled that seen in the head and neck squamous
cell carcinoma cell line SCC15 [305]. It is unknown whether FOXM1 can similarly induce
genomic instability and DNA hypomethylation in ovarian cancer cell models.
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In epidermal keratinocytes, ectopic FOXM1 expression and UVB exposure induced
SCNAs and loss of heterozygosity (LOH), predisposing cells to a “second hit” on the DNA-
damage checkpoint responses (e.g, TP53 mutations) that promote malignant transforma-
tion [306]. Moreover, FOXM1 promoted the proliferation and attenuated the differentiation
of keratinocytes [145]. These observations suggest that FOXM1 may drive accelerated
G2/M progression, thus preventing cells with irreparable DNA damage from committing
to terminal differentiation [145].

DNA replication stress (RS) is caused by extrinsic and intrinsic factors that disrupt
replication fork dynamics, and critically, RS is a major driver of cancer genomic instabil-
ity [307,308]. Notably, FOXM1 was recently reported to induce DNA replication stress
in vitro and FOXM1 expression was observed to correlate with expression of RS biomark-
ers in several cancer types, including HGSC [309]. Our recent study also suggests a
link between FOXM1 and RS. We showed that RHNO1, which encodes a DNA damage
repair protein involved in the cellular RS response, shares a head-to-head (i.e., bidirec-
tional) gene arrangement with FOXM1 on chromosome 12p13.33 [256]. Activation of the
FOXM1/RHNO1 bidirectional promoter (F/R-BDP) leads to balanced gene expression of
both genes and we observed that FOXM1 and RHNO1 each promote HGSC cell growth,
survival, and homologous recombination (HR) DNA damage repair [256]. Importantly,
FOXM1 and RHNO1 promoted olaparib and carboplatin resistance, and CRISPR-dCas9-
mediated repression of the F/R-BDP reversed these effects [256]. We postulate that cancer
cells have a selective advantage for FOXM1 and RHNO1 co-expression since FOXM1 drives
RS and downstream oncogenic phenotypes such as genomic instability, while RHNO1
helps mitigate FOXM1-induced RS to a level more favorable to cancer cell survival.

4.6. FOXM1 Is Linked to Altered Cellular Metabolism

FOXM1 is known to contribute to metabolic cellular processes. For example, a pro-
teomics study of the breast cancer cell line MCF-7 revealed that FOXM1 altered the ex-
pression of 37 proteins associated with mitochondrial biogenesis and glycolysis [294]. In
pancreatic cancer, FOXM1 expression was upregulated in a glucose-dependent manner,
which correlated with epithelial-to-mesenchymal transition (EMT) in pancreatic cancer cell
lines [310]. In addition, downregulation of FOXM1 induced pancreatic cancer cells to use
mitochondrial respiration rather than aerobic glycolysis in high-glucose medium, further
linking FOXM1 to the glycolytic pathway [310]. Similarly, FOXM1 knockdown decreased
glucose utilization, lactate production, and lactate dehydrogenase (LDH) activity in several
pancreatic cell lines and downregulated phosphoglycerate kinase 1 (PGK-1) and lactate
dehydrogenase A (LDHA) [311]. Further investigation revealed that FOXM1 binds directly
to the LDHA promoter to promote its expression in pancreatic cancer cells [311]. FOXM1
was also found to transactivate LDHA in gastric cancer, promoting a glycolytic phenotype
with high proliferative, migratory, and invasive abilities [312]. Similarly, FOXM1 knock-
down decreased glucose uptake and lactate production in the hepatocellular carcinoma
cell line Hep3B, and the overexpression of FOXM1 in the hepatocellular carcinoma cell line
MHCC-97H increased glucose uptake and lactate production, but only when appropriate
levels of glucose transporter 1 (GLUT1) were present [313]. As part of this regulatory
mechanism, FOXM1 directly transactivated the GLUT1 promoter [313]. FOXM1 has also
been shown to regulate the level of the oncometabolite D-2-hydroxyglutarate, by activating
the isocitrate dehydrogenase 1 (IDH1) promoter in the fibrosarcoma cell line HT-1080 [314].

Two observations support that FOXM1 may also be important for metabolic repro-
gramming in ovarian cancer. First, FOXM1 gene expression is upregulated in ovarian
cancer cells by both the metabolic enzyme aspartate N-acetyltransferase, which is over-
expressed and associated with worse clinical outcomes in HGSC, and N-acetylaspartate,
which is the most abundant onco-metabolite in HGSC tissues [315]. Second, FOXM1 di-
rectly binds to the promoters of GLUT1 and hexokinase 2 (HK2) in EOC cell lines A2780
and SKOV3, and FOXM1 knockdown resulted in decreased aerobic glycolysis in these cell
lines [316]. Moreover, both mRNA and protein expression of GLUT1 and HK2 positively
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correlated with FOXM1 in EOC tissues [235]. Taken together, these data suggest that altered
amino acid metabolism in ovarian cancer cells upregulates FOXM1, which alters glycol-
ysis and mitochondrial respiration by promoting aerobic glycolysis. The Warburg effect,
wherein tumor cells metabolize glucose through aerobic glycolysis as opposed to oxidative
phosphorylation, is well-known for promoting proliferation, metastasis, stemness, and ther-
apy resistance [317,318]. Furthermore, as glycolysis and mitochondrial activity affect fatty
acid metabolism [319], FOXM1 may also play a role in fatty acid metabolism. Further study
on the relationship between FOXM1 and ovarian cancer metabolism is highly encouraged.

4.7. FOXM1 Isoform Expression and Function in Cancer

As mentioned earlier, FOXM1 is distinguished by three principal isoforms (a, b,
and c) (Figure 1). While several early cancer investigations focused on FOXM1b [32,
320], our recent studies of the TCGA database and human HGSC tissues revealed that
FOXM1c is the highest expressed FOXM1 isoform in both pan-cancer and HGSC [27,127].
Consistent with our findings, it was demonstrated that FOXM1c had the highest expression
compared to FOXM1b and FOXM1a in a panel of EOC cell lines [321]. FOXM1c has also
been associated with proteolytic processing that removes the NRD, which may result in
constitutive activation [322]. In a bioinformatic study analyzing FOXM1 isoforms enriched
in 12 ovarian cancer tissues compared to 18 normal control tissues, two novel FOXM1
isoforms missing the NRD were identified within the top 5% enriched isoform genes [36].
However, the sequences of these isoforms suggested that they are not translated into
proteins and their functional contribution to ovarian cancer remains unknown (Table 1).

It is likely that FOXM1b and FOXM1c have common transcriptional targets, given the
similarities of the proteins as well as data showing that both isoforms can target oncogenic
DLX1 in ovarian cancer cells [224]. In addition, our recent isoform-specific overexpression
and RNA-sequencing (RNA-seq) study revealed a number of common transcriptional
targets between FOXM1b and FOXM1c, as well as some distinct targets [27]. Predictably,
gene expression changes were largely absent from FOXM1a overexpressing cells [27] and
this is consistent with its reported transcriptional incompetence [12].

Some studies suggest that FOXM1b and FOXM1c expression may have distinct phe-
notypic consequences. Previous work in several cancer cell lines, including the ovarian
cancer cell line A2780/CP70, observed that FOXM1b had a higher transforming ability
than FOXM1c and this is as measured by anchorage-independent growth [322]. However,
another study reported that FOXM1c promoted proliferation, migration, and invasion,
while FOXM1b only promoted cell migration and invasion in EOC cells [206]. In a study
of the newly EOC-derived cell lines EOC-CC1 and OSPC2, higher amounts of FOXM1c
than FOXM1b expression were detected (which matched their original clinical biopsy speci-
mens) [222]. In this study, the highest amount of FOXM1c compared to FOXM1b expression
was found in OSPC2 cells from patient ascites [222]; this suggests that FOXM1c may be
upregulated when cells have adopted a mesenchymal (metastatic) phenotype. Therefore,
while FOXM1b and FOXM1c are both able to promote oncogenic phenotypes, FOXM1c
may promote more proliferative and metastatic phenotypes and, due to its higher relative
expression [27,127], FOXM1c may be the most relevant isoform to overexpress and model
in ovarian cancer investigations.

Some work has specifically linked FOXM1c to the MAPK/ERK pathway. Only
FOXM1c, which contains two functional ERK1/2 target sequences [56], was found to
be sensitive to activation by MAPK/ERK in HEK293 cells [322]. Similarly, in the mouse
fibroblast line NIH/3T3, constitutively active MEK1 promoted FOXM1c, but not FOXM1b,
transactivation of the CCNB1 promoter [56]. As mentioned earlier, the connection between
MAPK/ERK and FOXM1 in ovarian cancer has only been demonstrated in EOC cell lines
with wild-type p53, and it has been suggested that the MAPK/ERK pathway may not
interact with FOXM1 in mutant p53 settings [206]. Therefore, it is not entirely clear if the
interaction between MAPK/ERK and FOXM1c is relevant in ovarian cancer.



Cancers 2021, 13, 3065 20 of 39

5. Clinical Translation
5.1. FOXM1 Has Potential as a Prognostic Biomarker in Ovarian Cancer

Numerous studies have linked FOXM1 expression to poor prognosis in ovarian can-
cer. FOXM1 mRNA expression associates with higher EOC tumor grades [127,161] and
stages [127], and FOXM1 protein expression associates with EOC lymph node metasta-
sis [237] and a higher FIGO stage [222]. HGSC tumors with FOXM1 gene amplification
have increased FOXM1 mRNA expression and reduced overall survival [127]. EOC tu-
mors with high FOXM1 mRNA expression showed reduced progression-free and overall
survival [238]. EOC tumors with elevated FOXM1 protein expression were associated
with reduced disease-free [239], progression-free [237,240], and overall [237,239] survival.
Meta-analyses of FOXM1 in human solid tumors reported that FOXM1 protein expression
in ovarian tumors coincides with an overall hazard ratio (HR) of 1.34 (95% CI = 0.96–1.88)
for overall survival [323] and an odds ratio (OR) of 2.34 (95% CI = 1.30–4.20) for 3-year
overall survival [324]. In addition, during the early stage, non-serous EOC FOXM1 protein
levels correlated with poor prognosis in mucinous OC and improved the predictive power
of current clinical markers (age, stage, CA-125, and ploidy) [325]. Most remarkably, a pan-
cancer meta-analysis of the transcriptomes of ~18,000 human tumors identified FOXM1
expression as the top single gene predictor of poor prognosis in cancer [221]. FOXM1
was also shown to outperform the widespread clinical marker, MKI67 (encodes Ki-67), for
predicting survival [221]. These data suggest FOXM1 should be aggressively pursued as a
prognostic ovarian cancer biomarker in clinical validation studies.

5.2. In Vivo Studies of FOXM1 in Ovarian Cancer Are Limited

Although in vitro ovarian cancer models provide invaluable insight into the function
of FOXM1 in ovarian cancer, cell lines do not adequately recapitulate in vivo disease. For
example, cell lines may experience selective pressure, genetic drift, and genomic instability,
resulting in phenotypic changes (including drug response) that no longer reflect the original
tumor [326,327]. Furthermore, cell lines do not interact with the tumor microenvironment
(TME) or engage in metastatic processes in the manner experienced by tumors in vivo.
In vivo ovarian cancer models include cell line xenografts, patient-derived xenografts
(PDX), syngeneic transplant (i.e., allograft) models, and genetically engineered mouse
models (GEMM) [328].

Several considerations drive the need for the continued development of in vivo ovar-
ian cancer models. First, the anti-VEGF monoclonal antibody bevacizumab improves
progression-free survival in women with ovarian cancer [329,330], demonstrating the
importance of angiogenesis in ovarian cancer. Second, the matrisome [331], including
collagen-remodeling genes [332] and cancer-associated fibroblasts (CAF) [333], partici-
pates in ovarian cancer progression. Third, while ovarian cancers exist in a generally
immunosuppressive environment [334], ovarian tumors contain tumor-associated lympho-
cytes [221,335,336] and a subset of patients with ovarian cancer respond to immunother-
apy [334,337]. Fourth, a key route of ovarian cancer metastasis is via the peritoneal fluid,
which carries exfoliated tumor cells to locations including the omentum, peritoneal lining,
colon, diaphragm, and small bowel [338]. These metastatic sites can provide different
environmental niches for EOC cells. For instance, when metastasizing to the omentum,
cancer cells preferentially attach to areas of immune cell aggregates that contain high
vascular density [339]. Greater than 70% of ovarian cancer patients have diffuse peri-
toneal carcinomatosis at initial presentation [338], rendering it a critical process to model in
scientific investigations.

The scope of the literature examining the function of FOXM1 using in vivo ovarian
cancer models is currently limited. FOXM1 is overexpressed in an ovarian cancer GEMM
driven by dual p53/Rb knockout in the OSE [127,340]. Recently, novel allograft mod-
els [253,254] and GEMMs [94] were shown to recapitulate critical aspects of human HGSC,
including TME and metastasis. Notably, in the GEMM study, Dicer1-Pten double knockout
(DKO) mice (Dicer1flox/flox Ptenflox/flox Amhr2cre/+) and Dicer1-Pten-Trp53 triple knockout
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(TKO) mice (p53LSL-R172H/+ Dicer1flox/flox Ptenflox/flox Amhr2cre/+) were shown to develop
tumors exhibiting an activated FOXM1 network, which correlated with genomic instabil-
ity [94]. In addition to Tp53, alterations in DICER1 and PTEN are common alterations in
human HGSC and PTEN deletion is linked to FOXO3A downregulation [94,341]. The data
from these GEMM models are in agreement with our pan-cancer analysis, which linked
FOXM1 mRNA and protein expression to genomic instability [27]. Thus, novel GEMMs
may provide highly relevant in vivo models to interrogate FOXM1 function in ovarian
cancer development and progression.

5.3. Therapeutic Targeting of FOXM1 in Ovarian Cancer

There is strong rationale for targeting FOXM1 in cancer, particularly in aggressive
cancers with poor survival outcomes such as ovarian cancer. In general, two therapeutic
strategies can be used to impair FOXM1: (1) inhibiting upstream pathways that induce
and/or activate FOXM1and (2) inhibiting FOXM1 directly. For the former, several inhibitors
of pathways upstream of FOXM1 are used in the clinic or are in clinical trials. In contrast,
FOXM1 inhibitors (FOXM1i) have not yet entered clinical trials. However, several direct
inhibitors have been used in pre-clinical studies, and there will likely be future clinical
testing on these agents. Since ovarian cancers ultimately develop resistance to most
chemotherapy, it is worthwhile to develop both indirect and direct FOXM1 inhibitors
in parallel.

5.4. Inhibitors of Upstream Signaling Pathways

The ErbB family of receptor tyrosine kinases (RTKs) activate the MAPK/ERK [342],
PI3K/AKT [342], and PLK1 [146,343] signaling pathways, all of which are upstream kinases
that phosphorylate and activate FOXM1. The pan-ErbB receptor inhibitor dacomitinib miti-
gated FOXM1 activity through reduced levels of phospho-PLK1 in chemotherapy-resistant
EOC cells, while single-targeted ErbB inhibitors, such as trastuzumab, had marginal effects
on PLK1 and FOXM1 activity [344]. Dacomitinib was also found to reduce FOXM1 activity
in pancreatic ductal adenocarcinoma cancer (PDAC) [345], which is another aggressive
cancer with poor prognosis and high FOXM1 activity [346]. Selective inhibitors against
PI3K, ERK1/2, and AKT decreased FOXM1 gene expression in HGSC cells [154], potentially
via their effects on FOXO3A.

PLK1 is a FOXM1 target gene [41] as well as a critical upstream kinase that promotes
FOXM1 activation [57,59]. Thus, PLK1 inhibitors (PLK1i) may be a highly effective means
to target FOXM1 function. Interestingly, the PLK1i BI6727, combined with paclitaxel,
was synthetically lethal in CCNE1-amplified HGSC cell lines and triggered mitotic arrest
and apoptosis [347]. In combination with dacomitinib, the PLK1i BI2536 synergistically
enhanced the sensitivity of chemoresistant EOC cells to cisplatin [344]. It is plausible
that the activity of PLK1i observed in these studies involved the disruption of FOXM1.
Although BI2536 showed overall limited activity in a phase II trial that included multiple
tumor types, the highest proportion of stable disease responses (76.9%) was observed
in ovarian cancer patients [348]. Another phase I/II trial, using a PLK1-targeted RNAi
(TKM-080301), suggested particular efficacy in tumors that overexpress PLK1 and possess
an inactivation of wild-type p53 [349], potentially making PLK1i particularly suitable
for HGSC. Given their numerous molecular links, it is likely that disruption of FOXM1
signaling accounts for, at least in part, the activity of PLK1i in cancer.

5.5. Direct FOXM1 Inhibitors

A variety of molecules that target FOXM1 have now been reported. The tumor
suppressor protein p19ARF, which is encoded by the INKA4/ARF gene locus, inhibits
FOXM1 and led to the development of the (D-Arg)9-p19ARF 26–44 peptide as a FOXM1
inhibitor [90,91]. Interestingly, this inhibitor targets FOXM1 to the nucleolus, resulting
in its inactivation [90]. Nevertheless, potential immune responses to the peptide limits
its clinical utility [350]. The thiazole antibiotics thiostrepton [171,259,351] and siomycin
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A [352] were the first small molecule inhibitors (SMI) reported to inhibit FOXM1, and
thiostrepton is the most widely used FOXM1i to date [136,205,206,273,275,353]. One pro-
posed mechanism of action (MOA) of these compounds is that they function as proteosome
inhibitors to prevent the degradation of a negative regulator of FOXM1 [354]. Realizing that
thiazole antibiotics function as proteosome inhibitors led to the discovery that proteosome
inhibitors, such as bortezomib, also inhibit FOXM1 [261,355]. In contrast to this model,
another report showed that thiostrepton can bind directly to FOXM1 and suggested that
its function as a proteosome inhibitor is a separate effect [351]. More recently, monensin
was reported as another antibiotic that inhibits FOXM1 by binding to its DBD [356]. While
these agents can have potent anti-cancer effects, their link to FOXM1 is tenuous due to
their pleiotropic effects. For instance, thiostrepton inhibits PAX8 in HGSC by a mecha-
nism not dependent on FOXM1 [262] and disrupts mitochondrial protein synthesis [263].
Furthermore, monensin induces mitochondrial ROS production and disrupts Ca2+ home-
ostasis in human cells [357]. Genistein, an isoflavanoid with broad anti-cancer effects [358],
has also been proposed as a FOXM1i [359]. In order to increase the bioavailability of
genistein, 7-difluoromethoxyl-5,4′-di-n-octylygenistein (DFOG) was synthesized and this
compound was shown to downregulate FOXM1 expression in EOC [284,360] and gastric
cancer [361] cells.

Several high-throughput screens (HTS) have been performed in order to identify novel
SMI of FOXM1. In the first study, the forkhead domain inhibitor FDI-6 was identified from
a screen of >50,000 drug-like molecules [362]. FDI-6 disrupted the binding of FOXM1-
DBD to RYAAAYA promoter sequences [362]. Although the data presented suggested
some specificity to FOXM1, the general mechanism of action of FDI-6 suggests that it
might inhibit DNA binding of other FOX family members [362]. Similar to FDI-6, a single-
stranded DNA aptamer was designed to target the DBD region of FOXM1, inhibiting
FOXM1 transcriptional activity [363]. However, DBD-based inhibitors may not impact
the interaction of FOXM1 with other proteins, including oncogenic transcription factor
complexes. Thus, inhibitors that result in FOXM1 protein degradation might provide a
better therapeutic strategy for targeting FOXM1. In this context, a recent screen of 50,000
small-molecule compounds identified RCM-1 as a FOXM1i [350]. RCM-1 was reported
to decrease nuclear FOXM1 protein levels in U2OS C3 cells, and the MOA was reported
to involve translocation of nuclear FOXM1 into the cytoplasm, resulting in proteasomal
degradation [350]. Another study used computational modeling to screen for FOXM1
SMI in the NCI diversity set of ~2000 synthetic molecules [321]. This strategy identified
N-phenylphenanthren-9-amine as a molecule that may act similarly to thiostrepton in its
binding to FOXM1 [321]. In follow-up work, this compound was shown to inhibit FOXM1
in EOC cells [321]. In another recent study, the 1,1-diarylethylene monoamine compound
NB-55 emerged from a chemical library screen as a potent SMI of FOXM1 [364]. This agent
was shown to inhibit breast cancer cell proliferation more potently than the proliferation
of non-malignant mammary epithelial cells [364]. Using NB-55 as a template, the 1,1-
diarylethylene methiodide salts NB-73 and NB-115 were synthesized and shown to have
increased potency, with IC50 values of ~0.6 µM for proliferation inhibition and reduction
in FOXM1 protein [364]. These compounds appear to bind directly to and destabilize
FOXM1, resulting in enhanced proteolysis [364]. A synopsis of the anti-cancer effects of
direct FOXM1i in ovarian cancer studies is presented in Table 3.
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Table 3. FOXM1 inhibitors and their effects on ovarian cancer phenotypes.

Effect on Ovarian Cancer Cell Phenotype Concentration Assays References

Thiostrepton

Reduced cellular proliferation/viability 0.1–20 µM XTT, AlamarBlue, sulforhodamine B, MTT [136,205,229,233,260]
Reduced cellular proliferation/viability of patient

ascites cells ex vivo when used alone and in
combination with paclitaxel and cisplatin

1–20 µM Sulfohodamine B [260]

Reduced cellular proliferation/viability synergistically
when used in combination with 1 µM cisplatin 2.5–10 µM AlamarBlue [136]

Reduced cellular proliferation/viability by sensitizing
cisplatin-resistant cells to cisplatin 0.5–1 µM MTT [240]

Reduced cellular proliferation/viability by sensitizing
rucaparib-resistant cells to rucaparib 0.1–1.25 µM Sulfohodamine B [233]

Reduced cellular migration 5–20 µM Transwell [154,205,206,229]
Reduced cellular invasion 5–20 µM Matrigel transwell [154,205,206,229]
Reduced colony formation 5–10 µM Clonogenic [229]

Reduced colony formation synergistically when used
in combination with 2.5 µM FH535 (β-catenin

inhibitor)
5 µM Clonogenic [229]

Reduced colony formation by sensitizing
PARPi-resistant cells to PARPi 0.5–1 µM Clonogenic [233]

Slowed wound closure rate 5–10 µM Wound healing [206]

Induced apoptosis 1–10 µM qRT-PCR, western blot, annexin-V/propidium
iodide flow cytometry, caspase-3 activity [136,229,233,260]

Induced apoptosis synergistically when used in
combination with 2.5 µM FH535 (β-catenin inhibitor) 5 µM Annexin-V/propidium iodide flow cytometry [229]

Induced DNA damage 7.5–10 µM Alkaline comet [233]
Induced PARP1 trapping onto chromatin when

combined with Olaparib 5–10 µM PARP trapping [233]

Reduced sphere formation 1 µM Spheroid formation [295]
Decreased HUVEC tube formation and VEFG secretion 5–10 µM HUVEC tube formation, ELISA [229]
Decreased MMP-9 and PLAUR gene expression levels 5–10 µM Sem-quantitative RT-PCR [206]

Decreased NOTCH1 protein expression levels 1 µM Western blot [295]
Decreased active β-catenin, overall β-catenin, TCF4,
cyclin D1, cMYC, uPAR, VEGF, MMP-9, and MMP-2

protein expression levels when used alone and in
combination with FH535 (β-catenin inhibitor)

5 µM Western blot [229]

Reduced tumor size in mice 200–300 µM/kg, 20–50
mg/kg Cell line-derived xenograft [205,229,231,240]

Reduced tumor size in mice when used in combination
with cisplatin 50 mg/kg Cell line-derived xenograft [240]

Reduced tumor size in mice when used in combination
with latanib 20 mg/kg Cell line-derived xenograft [231]

Reduced tumor size in mice when used in combination
with FH535 (β-catenin inhibitor) 20 mg/kg Cell line-derived xenograft [229]

Increased overall survival in mice when used in
combination with latanib 20 mg/kg Cell line-derived xenograft [231]

Reduced number of tumor spheroids in the peritoneal
fluid in mice when used alone and used in

combination with latanib
20 mg/kg Cell line-derived xenograft [231]

Reduced cellular proliferation and induced apoptosis
in patient tumors grown ex vivo alone, in combination

with olaparib, and in combination with carboplatin
3 µM Immunofluorescence on fixated tissue [234]

FDI-6

Reduced cellular proliferation/viability 1–30 µM Not specified, cell counting kit-8 and
microscopic imaging analysis [362,365]

Reduced cellular proliferation/viability when used in
combination with tipifarnib, sapatinib, or rottlerin 3–10 µM Cell counting kit-8 and microscopic imaging

analysis [365]

Increased N-Ras protein expression 1–10 µM Western blot [365]
Decreased p-PKCδ and HER3 protein expression 1–10 µM Western blot [365]

7-difluoromethoxyl-5,4-di-n-octyl genistein (DFOG)

Reduced cellular proliferation/viability 1–10 µM MTT [360]
Reduced colony formation 1–10 µM Clonogenic [360,366]

Induced G2/M-phase cell cycle arrest 1–10 µM Cell cycle analysis [360]

Induced apoptosis 1–10 µM Histone/DNA ELISA, propidium iodide flow
cytometry [360]

Reduced sphere formation 1–10 µM Spheroid formation [366]
Decreased CD133, CD44, ALDH1, and NF-κBp65

protein expression levels 1–10 µM Western blot [366]

Decreased phosphorylation of AKT, ERK1/2, and
FOXO3A 3–10 µM Western blot [366]

N-phenylphenanthren-9-amine

Reduced cellular proliferation/viability 0.01–10 µM Sulforhodamine B [321]
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6. Conclusions and Future Perspectives

Emerging evidence implicates FOXM1 as a crucial oncoprotein and driver of ovarian
cancer. High FOXM1 expression and activity in ovarian cancer are promoted by several
mechanisms, including inactivation of upstream tumor suppressors, gene amplification,
transcriptional and translational upregulation, increased protein phosphorylation, and en-
hanced protein stability (Figure 3). In turn, FOXM1 promotes ovarian cancer by impinging
on several cancer hallmarks: sustained proliferative signaling, invasion and metastasis,
DNA repair and chemotherapy resistance, cancer stemness, DNA replication stress and
genomic instability, and altered cell metabolism (Figure 4).

The major gap in our current knowledge of FOXM1 in ovarian cancer is due to the
limited number of studies using in vivo or ex vivo models [94,234]. Future work should
focus on the verification of the oncogenic potential of FOXM1 using such models, which is
required to provide validation for FOXM1 as a therapeutic target in ovarian cancer. Another
key opportunity will be to evaluate the impact of FOXM1 status on the efficacy of existing
ovarian cancer therapies. Extensive in vitro data support a role for FOXM1 in ovarian
cancer chemotherapy resistance, including platinum-based drugs, taxanes, and PARPi, all
of which are currently used to treat ovarian cancer. Conversely, FOXM1 expression was
recently reported to be a predictor of increased efficacy for Chk1 and WEE1 inhibitors,
which are in clinical testing for ovarian cancer [367–369]. It is thus highly relevant to assess
FOXM1 as a biomarker for responsiveness to chemotherapeutic agents in current use as
well as in clinical trials for ovarian cancer patients.

Transcription factors have traditionally been considered difficult to therapeutically
target. However, new strategies have recently been introduced, including disrupting essen-
tial protein–protein interactions and promoting targeted proteasomal degradation [370].
Several FOXM1i have been reported, and many appear to bind to and destabilize FOXM1,
although their specificity to FOXM1 versus other potential cellular targets requires further
characterization. Novel approaches, such as proteolysis targeting chimaeras (PROTACs),
could substantially aid in the effort to degrade oncogenic transcription factors such as
FOXM1 with increased specificity [370]. Additional FOXM1-targeting methods that may
emerge in the future include siRNA, shRNA, and CRISPR-based approaches [371–373],
which could potentially be delivered intraperitoneally to gain direct access to ovarian
cancer cells. Successful targeting of estrogen receptors (ER) in breast cancer and androgen
receptors (AR) in prostate cancer has demonstrated the efficacy of targeting oncogenic
transcription factors for cancer therapy.

Moving forward, emphasis should be placed on moving FOXM1i studies out of
in vitro settings and into state-of-the-art in vivo ovarian cancer models, with the ultimate
goal of initiating phase I clinical trials. In summary, the FOXM1 ovarian cancer field is
poised to move into a new era that is focused on determining the in vivo roles of FOXM1
in ovarian cancer biology and conducting the initial clinical assessments of its potential as
a therapeutic target in patients.
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