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Simple Summary: Considerable progress in the treatment of non–small cell lung cancer (NSCLC)
has been made possible by large-scale technologies that scan the gene expression in tumor cells.
While gene expression is informative, it is the changes to cellular metabolism that directly affect the
initiation and the progression of the disease. Altered metabolic processes in cancer include how the
tumor cells handle fat, proteins, and sugar, produce energy, divide (grow), or migrate. We have used
nuclear magnetic resonance and mass spectrometry to survey and document the metabolic changes
in blood and urine samples collected from NSCLC patients before and after their lung tumors were
surgically removed. We found several molecular compounds that changed in abundance in the blood
or urine after surgery, many of which are related to cancer cell metabolism. Further documentation
of these changes in large patient populations will lead to non-invasive ways to screen, diagnose,
or monitor disease progression in lung cancer patients.

Abstract: Metabolic alterations in malignant cells play a vital role in tumor initiation, proliferation,
and metastasis. Biofluids from patients with non–small cell lung cancer (NSCLC) harbor metabolic
biomarkers with potential clinical applications. In this study, we assessed the changes in the metabolic
profile of patients with early-stage NSCLC using mass spectrometry and nuclear magnetic resonance
spectroscopy before and after surgical resection. A single cohort of 35 patients provided a total of 29
and 32 pairs of urine and serum samples, respectively, pre-and post-surgery. We identified a profile
of 48 metabolites that were significantly different pre- and post-surgery: 17 in urine and 31 in serum.
A higher proportion of metabolites were upregulated than downregulated post-surgery (p < 0.01);
however, the median fold change (FC) was higher for downregulated than upregulated metabolites
(p < 0.05). Purines/pyrimidines and proteins had a larger dysregulation than other classes of metabo-
lites (p < 0.05 for each class). Several of the dysregulated metabolites have been previously associated
with cancer, including leucyl proline, asymmetric dimethylarginine, isopentenyladenine, fumaric
acid (all downregulated post-surgery), as well as N6-methyladenosine and several deoxycholic acid
moieties, which were upregulated post-surgery. This study establishes metabolomic analysis of
biofluids as a path to non-invasive diagnostics, screening, and monitoring in NSCLC.
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1. Introduction

There has been considerable progress in our understanding of lung cancer biology in
the last two decades. Checkpoint inhibitors against the programmed death ligand-1 (PD-L1)
as a primary treatment or in combination with chemotherapy have changed the landscape
of non–small cell lung cancer (NSCLC) with significantly improved outcomes [1]. Several
actionable driver mutations, namely epidermal growth factor receptor (EGFR), anaplastic
lymphoma kinase (ALK), and c-ros oncogene 1kinase (ROS1), have been identified using
next-generation sequencing techniques, resulting in specifically targeted drug therapy
and improved outcomes in patients harboring these mutations [2–4]. While it is true
that genomics, transcriptomics, and proteomics may predict the biological behavior of
malignant cells, it is their metabolic alterations that play a direct and vital role in tumor
initiation, proliferation, and metastasis. Some examples of metabolic alterations that are
critical to the survival and proliferation of malignant cells include accelerated glycolysis,
the formation of lactic acid, changes in the citric acid cycle, amino acid metabolism, and
cell membrane synthesis [5–9]. Metabolomics research therefore offers a means to observe
the current status of the cellular microenvironment. Recently, there has been movement to
develop and incorporate metabolomics in NSCLC research to uncover the biomarkers for
applications such as screening, pathogenesis, histopathological classification, and possible
therapeutic interventions [8]. Biofluids from NSCLC patients (including serum, urine,
exhaled breath condensate, and sputum) have been found to harbor specific metabolic
biomarkers with potential applications in clinical practice [10–16].

To date, the clinical application of metabolomics in general is limited due to several
factors, including a lack of adequately controlled studies (i.e., incomparable patient popu-
lations) and a lack of standardized procedures for metabolite extraction, processing, and
analysis [17]. Here, we applied metabolomics to serum and urine samples from a single
patient population collected before and after surgical resection. We have applied two
complementary and commonly used platforms to identify metabolites of interest: nuclear
magnetic resonance (NMR) and liquid chromatography quadrupole time-of-flight mass
spectrometry (LC-QTOF-MS). NMR can detect multiple metabolites in a short time with
minimal sample preparation; LC-QTOF-MS is much more sensitive than NMR and can
detect metabolites of very low concentrations [18,19]. We therefore present a prospective
observational study in patients with known or suspected early-stage NSCLC and compare
their metabolic profiles, screened by these two methods, from serum and urine collected
before and after surgery. We hypothesized that the surgical resection of a malignant tu-
mor affects the overall metabolome and causes significant changes in the concentrations
of metabolites found in commonly analyzed biofluids. The main objective of this study
was therefore to examine the overall metabolomic changes in serum and urine samples
collected from patients with early-stage NSCLC before and after the surgical removal of
the malignancy. This study opens a path to the development of non-invasive diagnostics,
screening, and/or monitoring methods in managing NSCLC.

2. Materials and Methods
2.1. Patient Enrollment and Biofluid Sample Collection

Protocols were approved by the Research Ethics Board of the University of Manitoba,
Canada (H2017:247). Each patient consented to participate in the study prior to accrual.
Consecutive patients were screened for eligibility at a thoracic surgery clinic in Winnipeg,
Manitoba, Canada. Eligible participants were adult patients (>18 years) with biopsy-proven
or suspected stage I or II NSCLC (based on a maximum standardized uptake value on
positron emission tomography or an increasing pulmonary tumor size in serial CT chest
scans), and medically operable. Imaging data for each eligible patient were reviewed by
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a thoracic surgeon and a radiation oncologist. Clinical, imaging, surgical, and pathology
data for enrolled patients were extracted from hospital paper charts and the Varian Medical
Oncology application at Cancer Care Manitoba (CCMB) by a designated research assis-
tant and verified by the principal investigator. All pre- and post-surgery samples were
collected and prepared by the same research assistant, according to standardized protocols.
Serum and midstream urine samples (8–10 mL) were collected within 4 weeks pre-surgery
and within 4 months post-surgery. All samples were immediately stored at −80 ◦C and
transferred to the laboratory for batched analysis by NMR and LC-QTOF-MS.

2.2. Nuclear Magnetic Resonance (NMR)
2.2.1. Sample Preparation for NMR Analysis

The samples were thawed and prepared with the additives and parameters we have
described previously [20]. The serum samples (300 µL) were mixed with a phosphate
buffer (pH 7.4) containing 5 µM NaN3 at a ratio of 1:1 (v/v), followed by the addition
of 20 µL of TSP (0.75%). The urine samples (400 µL) were mixed with 230 µL of a 0.2 M
phosphate buffer (0.2% w/v NaN3) and 70 µL of Chenomx ISTD (IS-2, 5 mM DSS, 0.2%
w/v NaN3). The samples were mixed by vortexing and centrifuged at 12,000× g at 4 ◦C
for 5 min. A volume of 600 µL of each prepared sample was then transferred into a 5 mm
NMR tube for analysis [20].

2.2.2. NMR Analysis

The NMR experiments were conducted on a Bruker Ascend 600 Spectrometer operat-
ing at 600.27 MHz for proton nuclei and 150.938 MHz for carbon nuclei. Each sample was
subject to two separate scans at a probe temperature of 298 K. A few randomly selected
samples were run using the heteronuclear single quantum coherence (HSQC) method for
additional analysis with a 65.5 k time domain, a 90◦ pulse width of 10 µs, a spectral width of
16 ppm, and a relaxation delay of 5 s. A total of 32 scans, with two dummy scans producing
an acquisition time of 4.75 min, were acquired. Water was suppressed (at 2819 Hz, time
domain 32.7 k) in all 1D Nuclear Overhauser Effect Spectroscopy (NOESY) runs. A total of
64 scans and 4 dummy scans were generated during the 7 min 45 s acquisition time. The
2D NMR spectra were achieved with a 90◦ pulse width of 10 µs and a relaxation delay
of 1.5 s. The time-domain values for 2D NMR spectra were 2048 and 400 for F1 (16 ppm)
and F2 (210 ppm), respectively. An acquisition time of approximately 11 h was needed to
obtain 32 scans and 16 dummy scans. All NMR spectra were processed by MestReNova
version 12.0.0–20080 as previously reported [20].

2.3. Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS)
2.3.1. Sample Preparation for LC-QTOF-MS

The serum samples (100 µL) were spiked with 20 µL of Norvaline (0.03 mg/mL) as
an internal standard and extracted with 200 µL of acetonitrile (ACN,). The urine samples
(250 µL) were spiked with 10 µL of Norvaline (0.03 mg/mL) and extracted with 500 µL of
ACN. The samples were then centrifuged at 12,000× g at 4 ◦C for 20 min. The supernatants
of serum and urine were dried under a gentle stream of N2 and stored at −20 ◦C. The dried
serum and urine samples were reconstituted with 100 µL of ddH2O:ACN (1:4) and 200 µL
of ddH2O:ACN (4:1), respectively. Each sample was transferred into a glass insert in a gas
chromatography (GC) vial for analysis [20].

2.3.2. LC-QTOF-MS Analysis

The urinary and serum metabolites were separated using a 1260 Infinity HPLC system
and were detected by a 6538 UHD Accurate Q-TOF MS system (Agilent Technologies,
Santa Clara, CA, USA). The ionization of the separated metabolites was performed us-
ing an electrospray ionization source operating in positive (ESI+) and negative (ESI–)
modes. The separation of the urinary metabolites was achieved using a 2.1 mm × 100 mm,
1.8 µm Zorbax SB-Aq column (Agilent Technologies) held at 45 ◦C and the serum metabo-
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lites were separated using a 2.1 mm × 50 mm, 1.8 µm Zorbax Extended-C18 column
(Agilent Technologies) which was held at 55 ◦C. Water (ddH2O) and ACN with 0.1% formic
acid were used as mobile phases using previously reported gradients [20]. The statistical
analysis was carried out using Agilent MassHunter Acquisition software (B.07) and Mass
Profiler Professional (MPP, 12.6.) as previously reported [20].

2.4. Statistical Analysis and Metabolite Identification

The fold change (FC) was calculated for each metabolite identified by dividing the
larger of the pre- and post-surgery samples by the smaller value.

For the metabolites identified by NMR, the FCs between the identified classes of
metabolites were compared using the Wilcoxon signed rank or the Kruskal–Wallis tests for
the comparison of two or more classes, respectively. The chi-square and Fisher exact tests
were used to compare the frequencies of regulatory direction. Within individuals, the pre-
and post-surgery levels of metabolites were compared using the Wilcoxon signed rank test.

For LC-QTOF-MS, the MPP software (12.6.1) was used for the FC analysis by paired
t tests (p < 0.05; ≥2-fold changes) with an asymptotic p value and the Benjamini–Hochberg
multiple correction method was used to identify statistically significant metabolites.

The compounds identified through LC-QTOF-MS were further confirmed by mass
spectra, retention time, and confidence scores against the Metlin database with
>79,000 metabolites including 39,000 lipids and 168,000 peptides [20–22]. All the identified
metabolites of significance were then re-classified based on the Human Metabolome Data
Base (HMDB) [23].

3. Results
3.1. Patient Enrollment, Inclusion, and Exclusion

Between March 2018 and November 2019, 56 patients were enrolled in the study.
Inclusion and exclusion criteria as well as details of the sample collection are presented
in Figure 1. In total, 35 patients were eligible for analysis. From these individuals, NMR
and QTOF analyses were completed on the urine samples from 29 patients and on the
serum samples from 32 patients, collected both pre- and post-surgery. The mean time
for serum and urine collection was 5 and 7 days before surgery and 56 and 57 days after
surgery, respectively. Post-surgery, all but two patients had their biofluid samples taken
before commencing any systemic therapy. A total of 86% of the patients were smokers or
previous smokers. Each patient had a gross surgical resection of the tumor either through
lobectomy/pneumonectomy (60%) or wedge resection/segmentectomy (40%). All patients
had a confirmed pathological diagnosis of NSCLC, 80% had adenocarcinoma, 88% had
no pathologically involved nodes (N0), and 12% had incidental intrapulmonary, hilar, or
mediastinal (N1-N2) disease. ALK and PDL1 status was available in 66% of the patients.
All patients had ALK negative tumors and a PDL1 tumor proportion score (TPS) of >50%
was present in 17% of the tumors. EGFR status was not available. Mean (±SD) tumor size
from pre-surgical chest CT scans was 2.4 ± 1.6 cm. Mean (±SD) tumor size from surgical
pathology was 2.7 ± 1.9 cm. The mean maximum PET_SUV was 8.2 ± 6.5. The data are
summarized in Table 1.
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Figure 1. Patient enrollment and biofluid collection.

Table 1. Clinical characteristics of the patient cohort.

Characteristics Total (n = 35) Urine (n = 29) Serum (n = 32)

Age Mean (SD) in years 64.7 (7.4) (n = 34) 63.8 (7.0) (n = 28) 64.6 (7.5) (n = 31)
Females 63% (22) 62% (18) 62% (20)
Males 37% (13) 38% (11) 38% (12)

Smoker 34% (10) 36% (10) 35% (9)
Ex-Smoker 52% (15) 50% (14) 50% (13)

Never Smoked 14% (4) 14% (4) 15% (4)
Diabetes 17% (6) 10% (3) 19% (6)
COPD 49% (17) 48% (14) 50% (16)

Previous cancers 29% (10) 31% (9) 28% (9)
On steroids oral/inhalers 0% 0% 0%
Squamous cell carcinoma 14% (5) 14% (4) 16% (5)

Adenocarcinoma 80% (28) 79% (23) 81% (26)
Other 6% (2) 7% (2) 3% (1)

Right Upper Lobe 29% (10) 31% (9) 25% (8)
Right Lower Lobe 20% (7) 17% (5) 22% (7)
Left Upper Lobe 31% (11) 34% (10) 31% (10)
Left Lower Lobe 19% (7) 17% (5) 22% (7)

PET before surgery 86% (30) 86% (25) 84% (27)



Cancers 2021, 13, 3012 6 of 17

Table 1. Cont.

Characteristics Total (n = 35) Urine (n = 29) Serum (n = 32)

Type of surgery:
Wedge Resection/Segmentectomy 40% (14) 38% (11) 41% (13)

Lobectomy 51% (18) 55% (16) 50% (16)
Pneumonectomy 3% (1) 3% (1) 3% (1)

Wedge and Lobectomy 6% (2) 3% (1) 6% (2)
Pathological Stage (n = 34) n = 28 n = 31

T1-T2, N0 M0 79% (27) 75% (21) 77% (24)
T3-T4, N0 M0 9% (3) 11% (3) 10% (3)

T1-T4, N1-2 M0 12% (4) 14% (4) 13% (4)
Mean Tumor size based on CT scan

before surgical resection Mean (SD) in cm 2.4 (1.6) (n = 35) 2.5 (1.7) (n = 29) 2.5 (1.7) (n = 32)

Mean Tumor size base on surgical
pathology Mean (SD) in cm 2.7 (1.9) (n = 34) 2.8 (2.0) (n = 28) 2.8 (1.9) (n = 31)

Mean Maximum PET_SUV Mean (SD) 8.2 (6.5) (n = 30) 8.2 (6.9) (n = 25) 8.1 (6.7) (n = 27)
PDL1: <1% (10/23) 43% 47% (9/19) 45% (10/22)
PDL1: 1–49% (9/23) 39% 42% (8/19) 41% (9/22)
PDL1: >50% (4/23) 17% 11% (2/19) 14% (3/22)

ALK: Negative (n = 23) 100% 100% (n = 20) 100% (n = 22)

Notes: TNM Staging per AJCC, TNM 6th edition. COPD, chronic obstructive airway disease; SD, standard deviation.

3.2. Inclusion, Exclusion, and Classification of Identified Metabolites

A total of 105 metabolites registering statistically significant differences pre- vs. post-
surgery were identified by either LC-QTOF or NMR: LC-QTOF registered 71 metabolites
of significance in the serum samples and 28 in the urine samples, and NMR registered
12 metabolites of significance in the serum samples and 37 in the urine samples. Of the
metabolites identified by NMR, only one in the serum samples and five in the urine sam-
ples were included for analysis as those were statistically significant (p < 0.05). Each
metabolite was reviewed based on the chemical formula, mass and atomic number, pres-
ence/absence, and the description of the compound in both HMDB [23] and the National
Center for Biotechnology Information (NCBI) database [24]. From this analysis, 57 metabo-
lites identified by LC-QTOF were judged to be either of exogenous origin or related to
external substances (prescription drugs, food, or food additives) and were excluded from
the analysis.

We therefore identified 48 metabolites of significance in the serum and urine samples
and classified these based on their chemical composition and/or metabolic pathway per
HMDB. Five classes of metabolites were identified: lipids and derivatives, proteins and
derivatives, carboxylic acid and derivatives, carbohydrates, and purines/pyrimidines.
The metabolites that did not fit into one of these classes were grouped as unclassified.
A metabolite was labeled upregulated or downregulated if the levels increased or decreased
after surgery, respectively, expressed as an absolute FC. Metabolites in each class with their
respective atomic number/mass, polarity, FC, source biofluid (serum or urine) and the
identifying platform (NMR/LC-QTOF) are presented in Table 2.
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Table 2. Classification of altered metabolites of significance.

Compound Formula m/z Polarity FC p Value Reg Class Biofluid Platform

Lipids and Derivatives
2-Propylpent-3-enoic acid C8H14O2 160.1328 + 50 <0.0001 up Fatty Acid Serum QTOF

13,14-Dihydro
PGE1/Prostaglandin F1a C20H36O5 713.493 + 5 0.047 up Prostaglandins Serum QTOF

2-Hexenoylcarnitine C13H23NO4 258.1654 + 16 0.013 up Acyl Carnitines Serum QTOF
2-Octenoylcarnitine C15H27NO4 286.2013 + 3 0.026 up Acyl Carnitines Serum QTOF
Chenodeoxycholic/

Deoxycholic acid glycine
conjugate/

Glycoursodeoxycholic acid

C26H43NO5 450.3208 + 28 0.0005 up Bile Acid Serum QTOF

Cholic acid C24H40O5 426.3246 ˆ + 4 0.026 down Bile Acid Serum QTOF
cis-5-Tetradecenoylcarnitine C21H39NO4 370.2948 + 4 0.033 up Acyl Carnitines Serum QTOF

Decanoylcarnitine C17H33NO4 3,162,481 + 2 0.0001 up Acyl Carnitines Serum QTOF
Dodecanoylcarnitine C19H38NO4 344.2792 + 6 0.0009 up Acyl Carnitines Serum QTOF

Isopentenyladenine C16H23N5O5 204.1242 + 31 0.0001 down Mevalonate
Pathway Urine QTOF

L-Carnitine C7H15NO3 162.1124 + 3 <0.0001 up Carnitines (Lipid
Metabolism) Serum QTOF

L-Octanoylcarnitine C15H29NO4 288.2166 + 2 0.0008 up acyl carnitines Serum QTOF
LysoPC(P-18:1) C26H52NO7P 522.3552 + 3 0.026 up Fatty Acid Serum QTOF

PG(18:1/18:2) C42H77O10P 773.536 + 6 0.0087 up phosphatidyl
glycerols Serum QTOF

PI(16:0/18:1) C43H81O13P 854.5691 ˆ + 7 0.0002 down phosphatidy
linositols Serum QTOF

Proteins and Derivatives

4-Guanidinobutanoic acid C5H11N3O2 163.1156 ˆ + 4 0.029 up amino acid
(Gamma) Serum QTOF

Aspartyl glycine C8H13N3O6 248.0938 + 50 0.0006 down dipeptide Urine QTOF
Asymmetric dimethylarginine

(ADMA) C8H18N4O2 203.1505 + 16 0.044 down amino acid Urine QTOF

Hypoglycin C7H11NO2 142.0875 + 442 <0.0001 up amino acid Urine QTOF
Isodesmosine C24H40N5O8 527.296 + 19 0.043 up amino acid Serum QTOF

L-Glutamic acid n-butyl
ester C9H17NO4 204.1233 + 65 0.0009 up amino acid Urine QTOF

L-Isoleucyl-L-proline C11H20N2O3 229.152 + 2 0.0005 up dipeptide Serum QTOF
N(alpha)-t-Butoxycarbonyl-L-

leucine C11H21NO4 232.1547 + 161 <0.0001 down amino acid Urine QTOF

Pro Leu C11H20N2O3 229.1548 + 625 <0.0001 down dipeptide Urine QTOF
Serine C3H7NO3 1 0.030 down amino acid Serum NMR

Carbohydrates
Myoinositol C6H12O6 203.0524 * – 2 0.0002 up Carbohydrate Serum QTOF

Glyceraldehyde C3H6O3 203.0524 * – 2 0.0001 up Carbohydrate Serum QTOF
Glucose C6H12O6 2 0.0499 up Carbohydrate Urine NMR

Lactate C3H5O3 203.0524 * – 2 0.013 up Glycolysis
Product Urine NMR

Beta-Cortol 8 0.013 down Carbohydrate Serum QTOF
Purine/Pyrimidines

1-Methyladenine C6H7N5 321.1307 * + 59 <0.0001 up Purine Urine QTOF
3-Methyluric acid C6H6N4O3 183.0515 + 198 <0.0001 down Purine Urine QTOF

5-Acetylamino-6-formylamino-3-
methyluracil C8H10N4O4 249.0608 * + 3 0.029 up Hydroxypyrimidine Serum QTOF

N6-Methyladenosine C11H15N5O4 282.1199 + 27 0.0085 up purine
nucleoside Urine QTOF

Carboxylic acid and Derivatives
cis-Aconitate C6H6O6 1 0.035 up carboxylic acid Urine NMR

Malonate C3H3O4 2 0.014 up carboxylic acid Urine NMR
4-Hydroxycyclohexylcarboxylic

acid C7H12O3 162.1126 ˆ + 3 <0.0001 up carboxylic acid Serum QTOF

Fumaric acid C4H4O4 139.0026 + 17 0.011 down carboxylic acid Urine QTOF

Guanidinosuccinic acid C5H9N3O4 176.0654 + 3 0.023 up carboxylic acid
(aspartic acid) Serum QTOF

Proline betaine C7H14NO2 144.1014 + 2 0.024 up
carboxylic acid

(proline
derivative)

Serum QTOF

Succinate C4H6O4 2 0.046 down carboxylic acid Urine NMR
Unclassified

Androstanediol C19H32O2 623.4382 $ + 54 <0.0001 down Androgens Serum QTOF
Dopamine C8H11NO2 154.0823 + 5 <0.0001 up catecholamine Serum QTOF

Epinephrine C9H13NO3 184.0944 + 134 <0.0001 up catecholamine Serum QTOF
Androstenedione C19H26O2 287.2041 + 8 0.023 up Androgens Serum QTOF

Tetrahydrobiopterin/Sapropterin
(BH4, THB) C9H15N5O3 500.2767 } + 8 0.0031 up Biopterin Serum QTOF

N-Desmethylaminopyrine C12H15N3O 218.1378 + 10 0.0003 up phenylpyrazoles Serum QTOF

Notes: * Na adduct; ˆ NH4
+ adduct; $ [2M + K]+; } [2M + NH4]+.
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3.3. Pattern of Frequency and Distribution of the Identified Metabolites

The distribution and the frequency of the metabolites based on the biofluid, and
class are presented in Table 3. There were 31 metabolites of significance in the serum
samples and 17 in the urine samples that were not significantly different (p = 0.060). Lipids
and their derivatives were the most frequently identified, followed by (in decreasing
order of frequency) proteins and derivatives, carboxylic acid and derivatives, unclassified
carbohydrates, and purines/pyrimidines.

Table 3. Categorization of the metabolites based on biofluid and their chemical class.

Source or Class of Metabolites Frequency n (%)

All 48 (100)
Serum 31 (65)
Urine 17 (35)

Lipids and Derivatives 15 (31)
Protein and Derivatives 11(23)

Carboxylic Acid and Derivatives 7 (15)
Unclassified 6 (13)

Carbohydrates 5 (10)
Purine/Pyrimidines 4 (8)

3.4. Pattern of Dysregulation of the Identified Metabolites Post-Surgery

A higher proportion of metabolites were upregulated (n = 34) than were downreg-
ulated (n = 14) post-surgery (p = 0.0055). This ratio varied by biofluid: in serum, these
proportions were 84% (26/31) upregulated and 16% (5/31) downregulated (p = 0.0002),
and in urine, the proportions were similar at 46% (8/17) and 53% (9/17) up- and downreg-
ulated, respectively (p = 1). We found no significant differences in the proportion of the up-
or downregulated metabolites based on chemical class (p = 0.48; see Figure 2).
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3.5. Magnitude of Dysregulation of the Identified Metabolites Post-Surgery

Median, minimum, and maximum changes in the levels of metabolites expressed
as an absolute FC after surgery are presented in Table 4. The median FC was 4 and 16
for all up- and downregulated metabolites, respectively (p = 0.043). A similar pattern
of dysregulation was observed when the data were grouped by biofluid but this was
not significant: for the metabolites identified in the serum samples, the median FC (up-
and downregulated) was 4 and 7, respectively (p = 0.69); for the metabolites identified
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in the urine samples, the median FC change was 14 and 31, respectively (p = 0.28). The
maximum FC for upregulated metabolites in the serum and urine samples was 134 and
442, respectively. The maximum FC for downregulated metabolites in the serum and urine
samples was 54 and 625, respectively. Purines/pyrimidines and proteins and derivatives
had a larger dysregulation than those in the other classes of metabolites (p = 0.045 and
p = 0.027, respectively). Purines/pyrimidines had the highest median FCs of 27 and 198,
respectively, for up- and downregulated metabolites, followed by proteins and derivatives
with median FCs of 19 and 33, respectively. The median FCs for lipids were 4 and 7 for
up- and downregulated metabolites, respectively. Both carbohydrates and carboxylic acid
and derivatives had a median FC of 2 for upregulated metabolites; for downregulated
metabolites in these categories, the median FC was 8 for carbohydrates and 9 for carboxylic
acid and derivatives. For the unclassified metabolites, the median FC was 8 and 54 for the
upregulated and downregulated metabolites, respectively. These results are summarized
in Figure 3.

Table 4. Fold change (FC) in metabolites post-surgery based on biofluid and chemical class.

Class of Metabolites Upregulated Downregulated p Value

N Med
FC

Min
FC

Max
FC n Med

FC
Min
FC

Max
FC

All 34 4 1 442 14 16 1 625 0.043
Biofluid

Serum 26 4 2 134 5 7 1 54 0.69
Urine 8 14 1 442 9 31 2 625 0.28

Class
Lipids and derivatives 12 4 2 50 3 7 4 31

Proteins and
derivatives 5 19 2 442 6 33 1 625

Carbohydrates 4 2 2 2 1 8
Purine/Pyrimidines 3 27 3 59 1 198
Carboxylic acid and

derivatives 5 2 1 3 2 9 2 17

Unclassified 5 8 5 134 1 54

Notes: Upregulated indicates that the metabolite level increased post-surgery. Downregulated indicates that the metabolite level decreased
post-surgery. n, number of metabolites; Max, maximum; Med, median; Min, minimum.
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Figure 3. Magnitude of dysregulation. The magnitude of the downregulation of the metabolites after
surgery was higher in both the serum and urine samples (p = 0.043); although this was not statistically
significant, the difference was larger in the urine samples (p = 0.28) than the serum samples only
(p = 0.69). The alteration in purines/pyrimidines (p = 0.045) and protein and derivatives (p = 0.027)
was larger than those in the other classes of metabolites.
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3.6. Metabolites of Significance with >10 FC Dysregulation and Their Association with
Pathogenesis of Cancer

There were 18 metabolites of significance dysregulated by >10-fold after surgery.
Of these, seven were proteins and derivatives, three were purines, four were lipids, one
was a carboxylic acid, one was an androgen, and two were unclassified (see Table 5).
Six of these metabolites were directly associated with cancer pathogenesis based on the
literature review. Leucyl proline, isopentenyladenine, fumaric acid, and asymmetric dime-
thylarginine (ADMA) were identified in the urine samples and were downregulated by 625,
31, 17 and 16-fold, respectively, after surgery. N6-methyladenosine identified in the urine
samples, and chenodeoxycholic/deoxycholic/glycoursodeoxycholic acid identified in the
serum samples were upregulated with FCs of 27 and 28, respectively. Other metabolites
of significance with FC > 100 included 3-methyl uric acid, N(alpha)-t-butoxycarbonyl-L-
leucine, hypoglycin, and epinephrine without any previously direct association to cancer
pathogenesis.

Table 5. Metabolites of significance (FC > 10).

Class Biofluid Metabolite Regulation Fold Change
Previously Known

Association to
Cancer Pathogenesis

Protein and Derivatives Urine Pro Leu down 625 Yes
Purine/Pyrimidines Urine 3-Methyluric acid down 198 Yes

Protein and Derivatives Urine N(alpha)-t-Butoxycarbonyl-
L-leucine down 161 No

Androgens Serum Androstanediol down 54 Yes
Protein and Derivatives Urine Aspartyl glycine down 50 Yes
Lipid and Derivatives Urine Isopentenyladenine down 31 Yes
Carboxylic Acid and

Derivatives Urine Fumaric acid down 17 Yes

Protein and Derivatives Urine Asymmetric
dimethylarginine (ADMA) down 16 Yes

Protein and Derivatives Urine Hypoglycin up 442 No
Unclassified Serum Epinephrine up 134 Yes

Protein and Derivatives Urine L-Glutamic acid n-butyl ester up 65 Yes
Purine/Pyrimidines Urine 1-Methyladenine up 59 No

Lipid and Derivatives Serum 2-Propylpent-3-enoic acid up 50 No

Lipid and Derivative Serum Chenodeoxycholic/Deoxycholic/
Glycoursodeoxycholic acid up 28 Yes

Purine/Pyrimidines Urine N6-Methyladenosine up 27 Yes
Protein and Derivative Serum Isodesmosine up 19 No
Lipid and Derivative Serum 2-Hexenoylcarnitine up 16 Possible

Unclassified Serum N-Desmethylaminopyrine up 10.3 No

Notes: Based on the magnitude of alteration of the metabolites (>10 fold) after surgery and previously known association to NSCLC and or
any other cancer, six metabolites of significance have been identified marked in bold.

4. Discussion
4.1. Study Desgin and Metobolic Profile

We conducted an exploratory nontargeted metabolomics study for early-stage NSCLC
patients eligible for a curative surgical resection. Two distinct aspects of our study design
are (i) the patient population and (ii) the use of a radical treatment intervention to compare
the metabolic profile of the same patient population, i.e., before and after the complete
removal of a pulmonary cancerous lesion.

The metabolic profile obtained in this study represents a single patient population
with small and localized tumors with no or minimum microscopic regional and no systemic
metastasis. Surgical removal of the tumors provides a binary metabolic state in the same pa-
tient population, i.e., with and without a malignant tumor. Dysregulation of the metabolic
profile was observed in the biofluids of these patients with intact pulmonary tumors,
followed by a significant change in the profile after the surgical removal of the tumors.
The proportion of the identified metabolites in the serum samples (65%) and the urine
samples (35%) was not statistically different. However, the pattern of the dysregulation of
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the metabolites after surgery was distinct. A higher proportion of metabolites increased
in concentration after surgery in the serum and urine samples, and in the serum samples
only compared to the urine samples. In contrast, the proportion of urinary metabolites
that were increased or decreased after surgery was similar. The allocated chemical class of
metabolite did not influence the proportion of metabolites following a particular trajectory
of dysregulation after surgery (Figure 2). The magnitude of the downregulation of the
metabolites after surgery was higher in both the serum and urine samples, although this
was not statistically significant; the difference was larger in the urine samples. (Table 4 and
Figure 3).

4.2. Lipids and Derivatives

Among the identified classes of metabolites, lipids were the most frequently identified
and included fatty acids, bile acids, carnitines, phosphatidylglycerol, phosphatidylinositol,
prostaglandins, and products of the mevalonate pathway. All lipid metabolites except one
were identified in the serum samples. Most lipid metabolites (80%) were upregulated after
surgery with a moderate change in their profile (median FC = 4). Isopentenyladenine, the
only lipid identified in the urine samples linked to the mevalonate pathway, was down-
regulated (median FC = 31). Based on our review of the literature, the most common lipid
metabolic alterations linked to carcinogenesis are in fatty acid metabolism, arachidonic
acid metabolism, cholesterol metabolism, and peroxisome proliferator-activated receptors
(PPAR) signaling [25]. PPAR plays a significant role in chronic inflammatory conditions
leading to cancer development [26]. The uptake, activation, and synthesis of fatty acids
by tumors is facilitated through enzymes such as acetyl coenzyme A, and fatty acid syn-
thase (FASN) [27,28]. The upregulation of FAS in early-stage lung cancer tumors has been
associated with aggressive clinical behavior and a poor prognosis [29,30]. The key enzyme
stearoyl coenzyme A desaturase 1 (SCD1), involved in the formation of palmitoleic and
oleic acids has been implicated in adenocarcinomas of the lung in tumor initiation and
invasion and is a potential target for therapeutic intervention [31]. Members of the adeno-
sine triphosphate-binding cassette (ABC) family of proteins have been correlated with a
poor response to platinum-based chemotherapy in NSLC [32]. ATP citrate lyase (ACLY),
which is involved in fatty acid synthesis, has been associated with tumorigenesis and is a
potential prognostic biomarker [28,33]. In the current study, 2-propylpent-3-enoic acid, a
fatty acid, was upregulated in the serum samples by 50-fold post-surgery. We could not
find any previous association of this metabolite to the pathogenesis of cancer. Isopenteny-
ladenine, a product of the mevalonate pathway, decreased by 31-fold in the urine samples
after surgery. The mevalonate pathway is frequently overactive in cancer cells [34] and
regulates cholesterol synthesis and the formation of 3-hydroxy-3-methylgrutaryl coenzyme
A (HMG-CoA). HMG-CoA is reduced to mevalonate by HMG-CoA reductase (HMGCR);
HMGCR is a potential therapeutic target for cholesterol lowering drugs (such as statins)
to treat cancer [34–37]. Chenodeoxycholic/deoxycholic/glycoursodeoxycholic acid, a bile
acid, was upregulated by 28-fold in serum post-surgery. Bile acids have been implicated in
the pathogenesis of several malignancies including colorectal, breast, hepatocellular, and
renal cancers [38,39].

4.3. Proteins and Derivatives

Of the metabolites we identified, 23% were related to protein metabolism, with almost
similar frequencies of up- and downregulation. However, as a class of metabolites, the
overall magnitude of the alteration and the decrease in the metabolite levels after surgery
was significant (Table 4, Figure 3). Cancer cells proliferate and survive by upregulating
the synthesis of essential and nonessential amino acids, facilitated by specific transport
systems, stromal cells, gene silencing, and redox homeostasis. Various cell signaling
pathways are altered to generate nucleotides, reactive oxygen species (ROS), scavenging
molecules, and oncometabolites to favor the proliferation of cancer cells [40–42]. We
found that two metabolites identified in the urine samples, leucyl proline (Pro Leu) and
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ADMA, which have previously been associated with cancer pathogenesis, profoundly
decreased after surgery (Table 5). Pro Leu, a dipeptide composed of L-leucine and L-proline,
was downregulated by 625-fold in urine. Recent reviews have highlighted a clinically
significant role for proline in cancer metabolism [43]. Through a series of reactions, proline
metabolism is initiated by converting proline into pyrroline-5-carboxylate, facilitated by
the enzyme proline dehydrogenase/proline oxidase (PRODH/POX). High levels of proline
result in the upregulation of PRODH, which in turn results in the production of ROS.
PRODH is induced by p53 and can be up- or downregulated depending upon the type of
the cancer and cell environment [44]. ADMA, an amino acid, decreased by 16-fold in urine
post-surgery. Higher levels of this metabolite have been found in lung cancer patients [45].
The dipeptide aspartyl glycine was downregulated by 50-fold in urine. Pre-clinical studies
using cancer cell lines have indicated that glycine consumption and the mitochondrial
glycine biosynthetic pathway are associated with cancer cell proliferation [46]. Glutamic
acid n-butyl ester was upregulated in urine by 65-fold. Glutamic acid (glutamate) is
a proteinogenic nonessential amino acid and a bioenergetic substrate for proliferating
malignant cells. It is involved in tumor development as a growth factor and a signal
mediator facilitated through metabotropic glutamate receptors and ionotropic glutamate
receptors found in cancerous tumors [47].

4.4. Purines and Pyrimidines

Purines are the most commonly found metabolites in normal cells. They are the
primary building blocks in DNA and RNA synthesis and provide the energy and cofactors
needed for normal and essential cellular functions [48]. Altered purine metabolism in
cancer cells is a component of proliferation, tumor immune response, invasiveness, and
metastasis and has led to novel therapeutic interventions in the field of oncology such as
the antipurine metabolite drugs 6-mercaptopurine, 6-thioguanine, and methotrexate [49].
In this study, the magnitude of the alteration of purines after surgery was significant
(Table 4 and Figure 3). Noticeably, N6-methyladenosine was identified in urine, and was
upregulated by 27-fold post-surgery. N6-methyladenosine is an endogenous methylated
adenine produced by the degradation of transfer ribonucleic acid (tRNA) and found in
urine [23]. This is the most commonly identified post-transcriptional modification of
mRNA and is primarily a reversible process facilitated by the enzymes methyltransferase
and demethylase. Recent research has revealed a critical role for N6-methyladenosine in the
oncogene regulation and pathogenesis of several human cancers, including NSCLC [50–53].
Methyl uric acid, a xanthine and a purine derivative, was downregulated by 198-fold. Uric
acid metabolism may have a potential role in carcinogenesis through its role both as an
anti and pro oxidant [54]. In a small pilot study involving breast cancer patients, urinary
methyl uric acid identified by LC-QTOF was reduced by 0.6-fold in urine compared to the
patients with no cancer [55].

4.5. Carboxylic Acid Derivatives and Carbohydrates

There were seven metabolites identified as carboxylic acid or derivatives. Fumaric
acid was found to be decreased by 17-fold after surgery and was detected in the urine
samples. This is one of compounds of the Krebs cycle and a biproduct of succinic acid
oxidation. It has been found to be significantly altered in the serum of lung cancer patients
compared to healthy individuals [56,57].

The altered glucose metabolism in cancer cells has been known for the past 100 years
and is based on the “Warburg effect”, which is related to the increased uptake and uti-
lization of glucose with disproportionately increased lactate production by proliferating
cancer cells in the presence of sufficient oxygen or hypoxic conditions [58]. In our study,
all identified metabolites related to carbohydrates were upregulated with a relatively mini-
mal change (median FC = 2), except beta-cortol, which was downregulated by 8-fold and
found in the serum samples. Beta-cortol belongs to a group of cortisol metabolites that are
O-glycosyl compounds, in which a sugar is bonded through one carbon to another group
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via a O-glycosidic bond [36]. An altered cortisol metabolism has been demonstrated in
advanced cancers [59]. There is evidence that microcellular lung cancer produces ACTH
(and hence increased cortisol levels), which could serve as potential biomarker for the early
diagnosis of lung cancer [60].

4.6. Endocrine Factors

The androgens androstanediol and androstenedione were identified in the serum
samples. While androstenedione was modestly elevated (FC = 8), androstanediol was
downregulated by 54-fold. Androgens may have a role in the pathophysiology of lung
cancer as androgen receptors have been found in lung cancer tumors. A retrospective study
of NSCLC patients by Harlos et al. [61] indicated that androgen pathway manipulation was
prognostic and associated with improved survival in lung cancer patients who received
5-alpha reductase inhibitors. Dopamine and epinephrine are catecholamines. Both were
upregulated after surgery and identified in the serum samples. While dopamine only
increased by 5-fold, epinephrine increased by 134-fold post-surgery. These compounds
have opposite roles in tumor angiogenesis. Dopamine and epinephrine inhibit and pro-
mote tumor angiogenesis, respectively [62]. Tetrahydrobiopterin/sapropterin (BH4, THB)
is a biopterin that was upregulated post-surgery by 8-fold. Biopterin may have a role
in tumor progression [63]. N-desmethylaminopyrine, a phenyl pyrazole, increased by
10-fold in serum. We could not find any previously known association of this compound to
carcinogenesis.

A summary of the metabolites of significance in this study and the associated metabolic
pathways employed in carcinogenesis is presented in Table 6.

Table 6. Metabolites of significance and the associated metabolic pathways.

Metabolite Regulation Metabolic Pathway

Pro Leu down Proline metabolism facilitated by
PRODH/POX

3-Methyluric acid down Purine Metabolism
Androstanediol down Androgen pathway through AR in NSCLC
Aspartyl glycine down Mitochondrial glycine biosynthetic pathway

Isopentenyladenine down Mevalonate pathway
Fumaric acid down Krebs cycle

Asymmetric dimethylarginine (ADMA) down Overexpression of protein arginine methyl
transferase

Epinephrine up Angiogenesis
2-Propylpent-3-enoic acid up Fatty acid metabolism

L-Glutamic acid n-butyl ester up Growth factor, metabotropic/ionotropic
glutamate receptors

Chenodeoxycholic/Deoxycholic/
Glycoursodeoxycholic acid up Over expressed FXR

N6-Methyladenosine up Degradation of tRNA
Notes: AR, androgen receptors; FXR, farnesoid X receptor; NSCLC, non–small cell lung cancer; PRODH/POX,
proline dehydrogenase/proline oxidase; tRNA, transfer ribonucleic acid.

4.7. Strengths and Limitations of the Study

This study is limited by the small sample size and the large number of metabolites
which were assessed. These two factors render this study underpowered for any mean-
ingful multivariable analysis to determine the effect of clinical and pathological variables
on the metabolic profile of this cohort. Nonetheless, this study is designed to address the
effect of treatment intervention (i.e., surgical tumor extraction) on the patient’s metabolic
profile. The pre- and post-exposure design set up each patient to serve as their own control,
thus eliminating any bias introduced by comparisons between individuals. Furthermore,
surgical resection in early-stage cancer patients achieves a more complete eradication of
cancer compared to radiation and/or systemic (chemo) therapy. Surgery thus represents a
unique intervention to compare two metabolic states in the same patient population, which
may be considered “with” and “without” cancer.
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5. Conclusions

We have conducted a prospective observational study in a single cohort of early-stage
NSCLC patients to compare biofluid metabolomics before and after the surgical removal of
pulmonary tumors. We detected a dysregulation of the primary metabolic pathways in urine
and serum samples by both NMR and LC-QTOF-MS, evidenced by the changes in 31 and
17 metabolites in the serum and urine samples, respectively, obtained from 35 patients. There
was no significant difference in the distribution of metabolites between the serum and urine
samples, but the pattern of dysregulation was different. More metabolites were upregulated in
the serum samples with a consistent pattern of dysregulation in the urinary metabolites after
surgery. The chemical class of the metabolites did not influence the proportion of metabolites
that were up- or downregulated. The magnitude of downregulation after surgery was higher
than that of upregulation in both the serum and urine samples, and although not statistically
significant, this difference was larger in the urine samples. Alteration in purines/pyrimidines
and proteins and derivatives was larger than that of other classes of metabolites detected in our
study, suggesting the importance of these as potential biomarkers for screening, diagnostics,
or monitoring. Based on the magnitude of alteration and the previously known association
to NSCLC and/or any other cancer, we identified six metabolites of significance: in both
the serum and urine samples, leucyl proline, ADMA, isopentenyladenine, and fumaric
acid were downregulated after surgery; N6-methyladenosine and deoxycholic acid moieties
were upregulated. Four other metabolites with a significant dysregulation, FC > 100 after
surgery, included 3-methyl uric acid, N(alpha)-t-butoxycarbonyl-L-leucine, hypoglycin, and
epinephrine; there is no known direct association of these metabolites to cancer pathogenesis,
and this is a new observation. Further studies with larger cohorts that include patients with
advanced-stage lung cancer are warranted to expand on our findings and progress toward
the clinical application of metabolomics in cancer diagnosis and treatment.

Author Contributions: Conceptualization, N.A., M.A., B.K.; methodology, N.A., B.K., M.A.; software,
M.A.; validation, N.A. and M.A.; formal analysis, N.A., Z.N.; investigation, N.A., M.A., L.W., N.M.;
resources, N.A., M.A., B.K., L.T., G.B., S.K.S., A.M., S.S.-I., G.Q.; data curation, N.A., Z.N.; original
draft preparation, N.A.; manuscript review and editing, N.A., M.A., B.K., N.M., L.W.; supervision,
N.A.; project administration, N.A., M.A., L.W.; funding acquisition, N.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the CancerCare Manitoba Foundation, grant number 761075015.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Review Board of the University of
Manitoba, protocol code H2017:247, approved 31 July 2017.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Metabolite data from NMR and LC-QTOF-MS, not reported in Table 2
is available on: https://doi.org/10.6084/m9.figshare.14781396.v1.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. Schvartsman, G.; Ferrarotto, R.; Massarelli, E. Checkpoint inhibitors in lung cancer: Latest developments and clinical potential.

Ther. Adv. Med. Oncol. 2016, 8, 460–473. [CrossRef] [PubMed]
2. Barlesi, F.; Mazieres, J.; Merlio, J.-P.; Debieuvre, D.; Mosser, J.; Lena, H.; Ouafik, L.H.; Besse, B.; Rouquette, I.; Westeel, V. Routine

molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the
French Cooperative Thoracic Intergroup (IFCT). Lancet 2016, 387, 1415–1426. [CrossRef]

3. Rosell, R.; Karachaliou, N. Large-scale screening for somatic mutations in lung cancer. Lancet 2016, 387, 1354–1356. [CrossRef]
4. Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson,

S.L.; Su, P.-F. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA J. Am. Med. Assoc.
2014, 311, 1998–2006. [CrossRef] [PubMed]

https://doi.org/10.6084/m9.figshare.14781396.v1
http://doi.org/10.1177/1758834016661164
http://www.ncbi.nlm.nih.gov/pubmed/27800034
http://doi.org/10.1016/S0140-6736(16)00004-0
http://doi.org/10.1016/S0140-6736(15)01125-3
http://doi.org/10.1001/jama.2014.3741
http://www.ncbi.nlm.nih.gov/pubmed/24846037


Cancers 2021, 13, 3012 15 of 17

5. Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [CrossRef] [PubMed]
6. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell

proliferation. Science 2009, 324, 1029–1033. [CrossRef] [PubMed]
7. Bamji-Stocke, S.; van Berkel, V.; Miller, D.M.; Frieboes, H.B. A review of metabolism-associated biomarkers in lung cancer

diagnosis and treatment. Metabolomics 2018, 14, 81. [CrossRef]
8. Yu, L.; Li, K.; Zhang, X. Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: Mini review.

Oncotarget 2017, 8, 115774–115786. [CrossRef] [PubMed]
9. Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P.; et al. Biomarkers in

Lung Cancer Screening: Achievements, Promises, and Challenges. J. Thorac. Oncol. 2019, 14, 343–357. [CrossRef]
10. Mathe, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.;

Anami, K.; et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer
Res. 2014, 74, 3259–3270. [CrossRef]

11. Haznadar, M.; Cai, Q.; Krausz, K.W.; Bowman, E.D.; Margono, E.; Noro, R.; Thompson, M.D.; Mathe, E.A.; Munro, H.M.;
Steinwandel, M.D.; et al. Urinary Metabolite Risk Biomarkers of Lung Cancer: A Prospective Cohort Study. Cancer Epidemiol.
Prev. Biomark. 2016, 25, 978–986. [CrossRef] [PubMed]

12. Ros-Mazurczyk, M.; Wojakowska, A.; Marczak, L.; Polanski, K.; Pietrowska, M.; Polanska, J.; Dziadziuszko, R.; Jassem, J.;
Rzyman, W.; Widlak, P. Panel of serum metabolites discriminates cancer patients and healthy participants of lung cancer
screening—A pilot study. Acta Biochim. Pol. 2017, 64, 513–518. [CrossRef]

13. Fahrmann, J.F.; Grapov, D.; DeFelice, B.C.; Taylor, S.; Kim, K.; Kelly, K.; Wikoff, W.R.; Pass, H.; Rom, W.N.; Fiehn, O.; et al. Serum
phosphatidylethanolamine levels distinguish benign from malignant solitary pulmonary nodules and represent a potential
diagnostic biomarker for lung cancer. Cancer Biomark. 2016, 16, 609–617. [CrossRef]

14. Cameron, S.J.; Lewis, K.E.; Beckmann, M.; Allison, G.G.; Ghosal, R.; Lewis, P.D.; Mur, L.A. The metabolomic detection of lung
cancer biomarkers in sputum. Lung Cancer 2016, 94, 88–95. [CrossRef] [PubMed]

15. Peralbo-Molina, A.; Calderon-Santiago, M.; Priego-Capote, F.; Jurado-Gamez, B.; Luque de Castro, M.D. Identification of
metabolomics panels for potential lung cancer screening by analysis of exhaled breath condensate. J. Breath Res. 2016, 10, 026002.
[CrossRef]

16. Ahmed, N.; Bezabeh, T.; Ijare, O.B.; Myers, R.; Alomran, R.; Aliani, M.; Nugent, Z.; Banerji, S.; Kim, J.; Qing, G. Metabolic
Signatures of Lung Cancer in Sputum and Exhaled Breath Condensate Detected by 1H Magnetic Resonance Spectroscopy: A
Feasibility Study. Magn. Reson. Insights 2016, 9, 29. [CrossRef]

17. Tang, Y.; Li, Z.; Lazar, L.; Fang, Z.; Tang, C.; Zhao, J. Metabolomics workflow for lung cancer: Discovery of biomarkers. Clin.
Chim. Acta 2019, 495, 436–445. [CrossRef] [PubMed]

18. Tee, S.-S.; Keshari, K.R. Novel approaches to imaging tumor metabolism. Cancer J. 2015, 21, 165. [CrossRef]
19. García-Figueiras, R.; Baleato-González, S.; Padhani, A.R.; Oleaga, L.; Vilanova, J.C.; Luna, A.; Gómez, J.C.C. Proton magnetic

resonance spectroscopy in oncology: The fingerprints of cancer? Diagn. Interv. Radiol. 2016, 22, 75. [CrossRef]
20. Ahmed, N.; Kidane, B.; Wang, L.; Qing, G.; Tan, L.; Buduhan, G.; Srinathan, S.; Aliani, M. Non-invasive exploration of metabolic

profile of lung cancer with Magnetic Resonance Spectroscopy and Mass Spectrometry. Contemp. Clin. Trials Commun. 2019, 16,
100445. [CrossRef] [PubMed]

21. Xi, B.; Gu, H.; Baniasadi, H.; Raftery, D. Statistical analysis and modeling of mass spectrometry-based metabolomics data. In Mass
Spectrometry in Metabolomics; Springer: New York, NY, USA, 2014; pp. 333–353.

22. Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A
metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [CrossRef]

23. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N. HMDB
4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [CrossRef]

24. Sayers, E.W.; Barrett, T.; Benson, D.A.; Bolton, E.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; DiCuccio, M.; Federhen, S.
Database resources of the national center for biotechnology information. Nucleic Acids Res. 2010, 39, D38–D51. [CrossRef]

25. Hao, Y.; Li, D.; Xu, Y.; Ouyang, J.; Wang, Y.; Zhang, Y.; Li, B.; Xie, L.; Qin, G. Investigation of lipid metabolism dysregulation and
the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinform. 2019, 20, 29–39. [CrossRef]

26. Liu, Y.; Colby, J.K.; Zuo, X.; Jaoude, J.; Wei, D.; Shureiqi, I. The role of PPAR-δ in metabolism, inflammation, and cancer: Many
characters of a critical transcription factor. Int. J. Mol. Sci. 2018, 19, 3339. [CrossRef]

27. Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 2016, 16, 732. [CrossRef] [PubMed]
28. Salvador, M.M.; de Cedrón, M.G.; Rubio, J.M.; Martínez, S.F.; Martínez, R.S.; Casado, E.; de Molina, A.R.; Sereno, M. Lipid

metabolism and lung cancer. Crit. Rev. Oncol. Hematol. 2017, 112, 31–40. [CrossRef] [PubMed]
29. Visca, P.; Sebastiani, V.; Botti, C.; Diodoro, M.G.; Lasagni, R.P.; Romagnoli, F.; Brenna, A.; De Joannon, B.C.; Donnorso, R.P.;

Lombardi, G. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res. 2004, 24,
4169–4174. [PubMed]

30. Wang, Y.; Zhang, X.; Tan, W.; Fu, J.; Zhang, W. Significance of fatty acid synthase expression in non-small cell lung cancer.
Zhonghua Zhong Liu Za Zhi Chin. J. Oncol. 2002, 24, 271–273.

31. Huang, J.; Fan, X.-X.; He, J.; Pan, H.; Li, R.-Z.; Huang, L.; Jiang, Z.; Yao, X.-J.; Liu, L.; Leung, E.L.-H. SCD1 is associated with
tumor promotion, late stage and poor survival in lung adenocarcinoma. Oncotarget 2016, 7, 39970. [CrossRef]

http://doi.org/10.1126/science.123.3191.309
http://www.ncbi.nlm.nih.gov/pubmed/13298683
http://doi.org/10.1126/science.1160809
http://www.ncbi.nlm.nih.gov/pubmed/19460998
http://doi.org/10.1007/s11306-018-1376-2
http://doi.org/10.18632/oncotarget.22404
http://www.ncbi.nlm.nih.gov/pubmed/29383200
http://doi.org/10.1016/j.jtho.2018.11.023
http://doi.org/10.1158/0008-5472.CAN-14-0109
http://doi.org/10.1158/1055-9965.EPI-15-1191
http://www.ncbi.nlm.nih.gov/pubmed/27013655
http://doi.org/10.18388/abp.2017_1517
http://doi.org/10.3233/CBM-160602
http://doi.org/10.1016/j.lungcan.2016.02.006
http://www.ncbi.nlm.nih.gov/pubmed/26973212
http://doi.org/10.1088/1752-7155/10/2/026002
http://doi.org/10.4137/MRI.S40864
http://doi.org/10.1016/j.cca.2019.05.012
http://www.ncbi.nlm.nih.gov/pubmed/31103622
http://doi.org/10.1097/PPO.0000000000000111
http://doi.org/10.5152/dir.2015.15009
http://doi.org/10.1016/j.conctc.2019.100445
http://www.ncbi.nlm.nih.gov/pubmed/31650068
http://doi.org/10.1097/01.ftd.0000179845.53213.39
http://doi.org/10.1093/nar/gkx1089
http://doi.org/10.1093/nar/gkq1172
http://doi.org/10.1186/s12859-019-2734-4
http://doi.org/10.3390/ijms19113339
http://doi.org/10.1038/nrc.2016.89
http://www.ncbi.nlm.nih.gov/pubmed/27658529
http://doi.org/10.1016/j.critrevonc.2017.02.001
http://www.ncbi.nlm.nih.gov/pubmed/28325263
http://www.ncbi.nlm.nih.gov/pubmed/15736468
http://doi.org/10.18632/oncotarget.9461


Cancers 2021, 13, 3012 16 of 17

32. Yoh, K.; Ishii, G.; Yokose, T.; Minegishi, Y.; Tsuta, K.; Goto, K.; Nishiwaki, Y.; Kodama, T.; Suga, M.; Ochiai, A. Breast cancer
resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin.
Cancer Res. 2004, 10, 1691–1697. [CrossRef]

33. Butler, L.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer:
Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 2020. [CrossRef]

34. Thurnher, M.; Gruenbacher, G.; Nussbaumer, O. Regulation of mevalonate metabolism in cancer and immune cells. Biochim.
Biophys. Acta BBA Mol. Cell Biol. Lipids 2013, 1831, 1009–1015. [CrossRef]

35. Fiala, O.; Pesek, M.; Finek, J.; Minarik, M.; Benesova, L.; Bortlicek, Z.; Topolcan, O. Statins augment efficacy of EGFR-TKIs in
patients with advanced-stage non-small cell lung cancer harbouring KRAS mutation. Tumor Biol. 2015, 36, 5801–5805. [CrossRef]
[PubMed]

36. Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond-the role of the mevalonate pathway in cancer
biology. Biochim. Biophys. Acta BBA Rev. Cancer 2020, 1873, 188351. [CrossRef] [PubMed]

37. Hassanabad, A.F.; Mina, F. Targeting the Mevalonate Pathway for Treating Lung Cancer. Am. J. Clin. Oncol. 2020, 43, 69–70.
[CrossRef] [PubMed]

38. Debruyne, P.R.; Bruyneel, E.A.; Li, X.; Zimber, A.; Gespach, C.; Mareel, M.M. The role of bile acids in carcinogenesis. Mutat. Res.
Fundam. Mol. Mech. Mutagenesis 2001, 480, 359–369. [CrossRef]

39. Di Ciaula, A.; Wang, D.Q.-H.; Molina-Molina, E.; Baccetto, R.L.; Calamita, G.; Palmieri, V.O.; Portincasa, P. Bile acids and cancer:
Direct and environmental-dependent effects. Ann. Hepatol. 2017, 16, S87–S105. [CrossRef]

40. Muhammad, N.; Lee, H.M.; Kim, J. Oncology therapeutics targeting the metabolism of amino acids. Cells 2020, 9, 1904. [CrossRef]
41. Vettore, L.; Westbrook, R.L.; Tennant, D.A. New aspects of amino acid metabolism in cancer. Br. J. Cancer 2020, 122, 150–156.

[CrossRef]
42. Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [CrossRef]
43. Phang, J.M. Proline metabolism in cell regulation and cancer biology: Recent advances and hypotheses. Antioxid. Redox Signal.

2019, 30, 635–649. [CrossRef]
44. D’aniello, C.; Patriarca, E.J.; Phang, J.M.; Minchiotti, G. Proline metabolism in tumor growth and metastatic progression. Front.

Oncol. 2020, 10, 776. [CrossRef]
45. Bayraktutan, Z.; Kiziltunc, A.; Bakan, E.; Alp, H.H. Determination of Endothelial Nitric Oxide Synthase Gene Polymorphism and

Plasma Asymmetric Dimethyl Arginine Concentrations in Patients with Lung Cancer. Eurasian J. Med. 2020, 52, 185. [CrossRef]
[PubMed]

46. Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K.
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336, 1040–1044. [CrossRef]
[PubMed]

47. Stepulak, A.; Rola, R.; Polberg, K.; Ikonomidou, C. Glutamate and its receptors in cancer. J. Neural Transm. 2014, 121, 933–944.
[CrossRef] [PubMed]

48. Pedley, A.M.; Benkovic, S.J. A new view into the regulation of purine metabolism: The purinosome. Trends Biochem. Sci. 2017, 42,
141–154. [CrossRef]

49. Yin, J.; Ren, W.; Huang, X.; Deng, J.; Li, T.; Yin, Y. Potential mechanisms connecting purine metabolism and cancer therapy. Front.
Immunol. 2018, 9, 1697. [CrossRef] [PubMed]

50. Deng, X.; Su, R.; Feng, X.; Wei, M.; Chen, J. Role of N6-methyladenosine modification in cancer. Curr. Opin. Genet. Dev. 2018, 48,
1–7. [CrossRef]

51. He, L.; Li, H.; Wu, A.; Peng, Y.; Shu, G.; Yin, G. Functions of N6-methyladenosine and its role in cancer. Mol. Cancer 2019, 18, 1–15.
[CrossRef]

52. Zhu, Z.; Qian, Q.; Zhao, X.; Ma, L.; Chen, P. N6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by
regulating TIMP3 stability. Gene 2020, 731, 144348. [CrossRef]

53. Xu, R.; Pang, G.; Zhao, Q.; Yang, L.; Chen, S.; Jiang, L.; Shen, Y.; Shao, W. The momentous role of N6-methyladenosine in lung
cancer. J. Cell. Physiol. 2020, 236, 3244–3256. [CrossRef]

54. Yiu, A.; Van Hemelrijck, M.; Garmo, H.; Holmberg, L.; Malmström, H.; Lambe, M.; Hammar, N.; Walldius, G.; Jungner, I.;
Wulaningsih, W. Circulating uric acid levels and subsequent development of cancer in 493,281 individuals: Findings from the
AMORIS Study. Oncotarget 2017, 8, 42332. [CrossRef]

55. Park, J.; Shin, Y.; Kim, T.H.; Kim, D.-H.; Lee, A. Urinary Metabolites as Biomarkers for Diagnosis of Breast Cancer: A Preliminary
Study. J. Breast Dis. 2019, 7, 44–51. [CrossRef]

56. Zhang, L.; Zheng, J.; Ahmed, R.; Huang, G.; Reid, J.; Mandal, R.; Maksymuik, A.; Sitar, D.S.; Tappia, P.S.; Ramjiawan, B.
A high-performing plasma metabolite panel for early-stage lung cancer detection. Cancers 2020, 12, 622. [CrossRef]

57. Hori, S.; Nishiumi, S.; Kobayashi, K.; Shinohara, M.; Hatakeyama, Y.; Kotani, Y.; Hatano, N.; Maniwa, Y.; Nishio, W.; Bamba, T.
A metabolomic approach to lung cancer. Lung Cancer 2011, 74, 284–292. [CrossRef]

58. Bose, S.; Le, A. Glucose metabolism in cancer. Heterog. Cancer Metab. 2018, 1063, 3–12.
59. Werk, E.E., Jr.; MacGee, J.; Sholiton, L.J. Altered cortisol metabolism in advanced cancer and other terminal illnesses: Excretion of

6-hydroxycortisol. Metabolism 1964, 13, 1425–1438. [CrossRef]

http://doi.org/10.1158/1078-0432.CCR-0937-3
http://doi.org/10.1016/j.addr.2020.07.013
http://doi.org/10.1016/j.bbalip.2013.03.003
http://doi.org/10.1007/s13277-015-3249-x
http://www.ncbi.nlm.nih.gov/pubmed/25702091
http://doi.org/10.1016/j.bbcan.2020.188351
http://www.ncbi.nlm.nih.gov/pubmed/32007596
http://doi.org/10.1097/COC.0000000000000630
http://www.ncbi.nlm.nih.gov/pubmed/31842152
http://doi.org/10.1016/S0027-5107(01)00195-6
http://doi.org/10.5604/01.3001.0010.5501
http://doi.org/10.3390/cells9081904
http://doi.org/10.1038/s41416-019-0620-5
http://doi.org/10.1038/s12276-020-0375-3
http://doi.org/10.1089/ars.2017.7350
http://doi.org/10.3389/fonc.2020.00776
http://doi.org/10.5152/eurasianjmed.2020.19220
http://www.ncbi.nlm.nih.gov/pubmed/32612429
http://doi.org/10.1126/science.1218595
http://www.ncbi.nlm.nih.gov/pubmed/22628656
http://doi.org/10.1007/s00702-014-1182-6
http://www.ncbi.nlm.nih.gov/pubmed/24610491
http://doi.org/10.1016/j.tibs.2016.09.009
http://doi.org/10.3389/fimmu.2018.01697
http://www.ncbi.nlm.nih.gov/pubmed/30105018
http://doi.org/10.1016/j.gde.2017.10.005
http://doi.org/10.1186/s12943-019-1109-9
http://doi.org/10.1016/j.gene.2020.144348
http://doi.org/10.1002/jcp.30136
http://doi.org/10.18632/oncotarget.16198
http://doi.org/10.14449/jbd.2019.7.2.44
http://doi.org/10.3390/cancers12030622
http://doi.org/10.1016/j.lungcan.2011.02.008
http://doi.org/10.1016/0026-0495(64)90036-8


Cancers 2021, 13, 3012 17 of 17

60. Milosevic, I. Immunofluorometrical Exploring of FSH Levels in the Serum of Patients with Histologically Verified Macrocellular
Lung Cancer. Clin. Immunol. 2007, S50–S51. [CrossRef]

61. Harlos, C.; Musto, G.; Lambert, P.; Ahmed, R.; Pitz, M.W. Androgen pathway manipulation and survival in patients with lung
cancer. Horm. Cancer 2015, 6, 120–127. [CrossRef] [PubMed]

62. Chakroborty, D.; Sarkar, C.; Basu, B.; Dasgupta, P.S.; Basu, S. Catecholamines regulate tumor angiogenesis. Cancer Res. 2009, 69,
3727–3730. [CrossRef] [PubMed]

63. Rabender, C.; Alam, A.; Waters, M.; Mikkelsen, R. Biopterin metabolism drives tumor progression. Cancer Res. 2015, 75. [CrossRef]

http://doi.org/10.1016/j.clim.2007.03.320
http://doi.org/10.1007/s12672-015-0218-1
http://www.ncbi.nlm.nih.gov/pubmed/25792547
http://doi.org/10.1158/0008-5472.CAN-08-4289
http://www.ncbi.nlm.nih.gov/pubmed/19383906
http://doi.org/10.1158/1538-7445.AM2015-1210

	Introduction 
	Materials and Methods 
	Patient Enrollment and Biofluid Sample Collection 
	Nuclear Magnetic Resonance (NMR) 
	Sample Preparation for NMR Analysis 
	NMR Analysis 

	Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS) 
	Sample Preparation for LC-QTOF-MS 
	LC-QTOF-MS Analysis 

	Statistical Analysis and Metabolite Identification 

	Results 
	Patient Enrollment, Inclusion, and Exclusion 
	Inclusion, Exclusion, and Classification of Identified Metabolites 
	Pattern of Frequency and Distribution of the Identified Metabolites 
	Pattern of Dysregulation of the Identified Metabolites Post-Surgery 
	Magnitude of Dysregulation of the Identified Metabolites Post-Surgery 
	Metabolites of Significance with >10 FC Dysregulation and Their Association with Pathogenesis of Cancer 

	Discussion 
	Study Desgin and Metobolic Profile 
	Lipids and Derivatives 
	Proteins and Derivatives 
	Purines and Pyrimidines 
	Carboxylic Acid Derivatives and Carbohydrates 
	Endocrine Factors 
	Strengths and Limitations of the Study 

	Conclusions 
	References

