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Simple Summary: DLX homeobox family genes encode transcription factors that have indispensable
roles in embryonic and postnatal development. These genes are critically linked to the morphogene-
sis of craniofacial structures, branchial arches, forebrain, and sensory organs. DLX genes are also
involved in postnatal homeostasis, particularly hematopoiesis and, when dysregulated, oncogen-
esis. DLX1/2, DLX3/4, and DLX5/6 exist as bigenes on different chromosomes, sharing intergenic
enhancers between gene pairs, which allows orchestrated spatiotemporal expression. Genomic
alterations of human DLX gene enhancers or coding sequences result in congenital disorders such
as split-hand/foot malformation. Aberrant postnatal expression of DLX genes is associated with
hematological malignancies, including leukemias and lymphomas. In several mouse models of T-cell
lymphoma, Dlx5 has been shown to act as an oncogene by cooperating with activated Akt, Notch1/3,
and/or Wnt to drive tumor formation. In humans, DLX5 is aberrantly expressed in lung and ovarian
carcinomas and holds promise as a therapeutic target.

Abstract: Homeobox genes control body patterning and cell-fate decisions during development.
The homeobox genes consist of many families, only some of which have been investigated regarding
a possible role in tumorigenesis. Dysregulation of HOX family genes have been widely implicated
in cancer etiology. DLX homeobox genes, which belong to the NK-like family, exert dual roles in
development and cancer. The DLX genes are the key transcription factors involved in regulating
the development of craniofacial structures in vertebrates. The three DLX bigenes have overlapping
expression in the branchial arches. Disruption of DLX function has destructive consequences in
organogenesis and is associated with certain congenital disorders in humans. The role of DLX genes
in oncogenesis is only beginning to emerge. DLX2 diminishes cellular senescence by regulating p53
function, whereas DLX4 has been associated with metastasis in breast cancer. In human ovarian
cancer cells, DLX5 is essential for regulating AKT signaling, thereby promoting cell proliferation
and survival. We previously implicated Dlx5 as an oncogene in murine T-cell lymphoma driven
by a constitutively active form of Akt2. In this mouse model, overexpression of Dlx5 was caused
by a chromosomal rearrangement that juxtaposed the Tcr-beta promoter region near the Dlx5 locus.
Moreover, transgenic mice overexpressing Dlx5, specifically in immature T-cells, develop spontaneous
thymic lymphomas. Oncogenesis in this mouse model involves binding of Dlx5 to the Notch1
and Notch3 gene loci to activate their transcription. Dlx5 also cooperates with Akt signaling to
accelerate lymphomagenesis by activating Wnt signaling. We also discuss the fact that human DLX5
is aberrantly expressed in several human malignancies.

Keywords: homeobox genes; HOX; DLX; hematopoiesis; development; cancer; lymphoma; leukemia; Aka

1. Introduction

Homeobox genes were discovered more than three decades ago. They include a large
group of genes that are essential in the development of multicellular organisms of the
Metazoan division of the animal kingdom [1]. Cancer is often deemed as development gone
awry. While some homeobox genes have oncogenic functions, others exert an opposite
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role. Homeobox genes have been categorized into 11 gene classes, which have been further
categorized into many families during evolution [2,3]. The homeobox motif is a 180-bp
DNA sequence encoding the homeodomain, which is highly conserved [4]. The protein
product contains the homeodomain composed of helices in which helices II and III form
helix-turn-helix (HTH) motifs [5]. This structure permits homeodomain proteins to bind to
specific DNA consensus sequences and function as transcription factors [6]. Drosophila con-
tains clustered NK-related homeobox genes, and these genes possess homeobox sequences
of the ANTP class [7]. The vertebrate NK-like homeobox genes have essential roles in
development and cancer [8]. The NKL class is subdivided into many gene families, such as
NKX, NANOG, MSX, TLX, and DLX families [9]. While NKX, TLX, and MSX family genes
have been implicated in T-cell acute lymphoblastic leukemia (T-ALL), the role of the DLX
family has been less well studied in cancer [10].

2. Structure and Origin of the DLX Gene Clusters

The DLX genes are homologs of Drosophila Distal-less (Dll), which was initially found
to be specifically expressed in developing limbs [11]. DLX genes are now also known to
be involved in the morphogenesis of branchial arches, forebrain, and sensory organs [12].
DLX genes are comprised of six members in both human and mouse. Interestingly, DLX1/2,
DLX3/4, and DLX5/6 occur as bigene clusters in the genome on different chromosomes, by
sharing intergenic enhancers between two genes, which allow orchestrated spatiotemporal
expression [13–15]. For example, in mice, Dlx1 and Dlx2 are located on chromosome 2
at 42.61 cM and 42.65 cM, respectively, Dlx3 and Dlx4 are located on chromosome 11 at
59.01 cM, and Dlx5 and Dlx6 are located on chromosome 6 at 2.83 cM. Each of the gene
pairs has one gene located in the plus (+) strand and one on the minus (−) strand in a
tail-to-tail orientation. The Dlx1/2 bigene is linked to the HoxD cluster on chromosome 2,
with intergenic enhancer elements i12a and i12b [16]. The Dlx3/4 bigene is linked to the
HoxB cluster on mouse chromosome 11, with five intergenic cis elements [17,18]. The Dlx5/6
bigene is associated with the HoxA cluster on chromosome 6, with i56a/b (or i56i/ii) as
the intergenic enhancer [19–21] (Figure 1). The intergenic enhancer plays a major role
in regulating the expression of Dlx5/6. The mi56i-Cre transgenic mice exhibit the same
expression pattern of Cre in the R26R strain as those of endogenous Dlx5 and Dlx6 in the
facial skeleton and specific brain structures in term embryos [22].

The gene pairs orient in a tail-to-tail arrangement with the enhancer in between. It is
hypothesized that these three Dlx clusters could be duplicates of an ancestral Dlx pair,
which may have occurred during evolution, with the first gene pair being the result of a
tandem gene duplication [23,24]. The expression patterns are similar among these gene
pairs, although the Dlx1/2 enhancer (I12a/b) has little similarity to that of Dlx5/6 (I5i, I56ii).
However, these enhancers have been conserved across species. The Dlx1/2 enhancer has
greater than 75% homology among humans, mice, and zebrafish. Likewise, the Dlx5/6
enhancer shares more than 80% similarity among these three species [16]. The homeoboxes
of the various Dlx genes are highly homologous, suggesting they may have somewhat
redundant roles.
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Figure 1. Structure of mouse and human Dlx gene family. The Dlx genes are comprised of three exons. The homeobox motif
(light blue) resides within part of Exon2 and Exon3. The Dlx1/2 bigene is linked to the HoxD cluster on chromosome 2 in
both human and mouse, with intergenic enhancer elements i12a and i12b. The Dlx3/4 bigene is linked to the HoxB cluster
on mouse chromosome 11, with five intergenic cis elements. The Dlx5/6 bigene resides along with the HoxA cluster on
chromosome 6, with i56a/b (or i56i/ii) as the intergenic enhancer.

3. Dlx Genes in Normal and Aberrant Development

Dlx gene family members have indispensable roles in embryonic morphogenesis and
postnatal development. Disturbances in the regulatory mechanisms of Dlx gene expression
or function result in severe consequences. Dlx1 and Dlx2 are expressed in the proximal and
distal first and second arches. Mutations of Dlx1 or Dlx2 alter the proximodistal patterning
of the branchial arches, suggesting that Dlx1 and Dlx2 have overlapping roles in craniofacial
development [25]. Knockout of Dlx1 or Dlx2 alone results in abnormalities of the forebrain,
and homozygous knockout mice have been shown to die prematurely or at birth [26].
Dlx1/Dlx2 double mutant mice were found to have defects in the striatal subventricular
zone and differentiation of late born striatal neurons [27]. Dlx gene members have also been
implicated in the morphogenesis of eyes, nose, ears, and teeth. Dlx1/2 is essential for the
formation of the retina, and the absence of Dlx1/2 results in the apoptosis of retinal ganglion
cells and a diminished ganglion cell layer [28], and new born mice were unable to survive
with this defect [27]. Interestingly, Dlx5 and Dlx6 are also expressed in the developing
forebrain. Dlx1 and Dlx2 can bind to the intergenic enhancer of Dlx5/6 and regulates the
expression of this bigene. Consequently, expression of Dlx5/6 was downregulated in Dlx1/2
double mutant mice [29].

The Dlx5 gene is expressed in the branchial arches, restricted brain regions, extend-
ing appendages, and bones during embryogenesis. Dlx5 knockout mice die shortly after
birth, suffering from craniofacial abnormalities and malformations of the vestibular or-
gan [30]. The craniofacial abnormalities include exencephaly, hypoplastic nasal capsules,
and dysmorphic proximal mandibular arch skeleton [12]. In addition to those same de-
fects, Dlx5/6 double knockout mice exhibit a novel defect in limb development known as
split-hand/split-foot malformation (SHFM). However, the spatiotemporal-specific overex-
pression of the Dlx5 gene, in the apical ectodermal ridge of Dlx5/6-null mice can rescue this
limb malformation, indicating that Dlx5 and Dlx6 have redundant roles [31]. The craniofa-
cial and limb defects in Dlx5 knockout and Dlx5/6 double knockout mice are potentially due
to defects in osteoblast maturation [32]. Dlx5 and Dlx6 also play a role in the developing
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vestibular apparatus. Dlx5/6-null embryos have otic induction, but cannot form dorsal otic
derivatives [33]. The orchestrated expression of Dlx1/2, Dlx3, and Dlx6 are essential for
control of enamel formation via direct regulation of ameloblast differentiation [34].

Dlx5 and Dlx6 also play a role in testis development. In fetal Leydig cells, Dlx5 tran-
scriptionally activates the steroidogenic acute regulatory protein gene (STAR) via GATA-4,
thereby, regulating steroidogenesis [35]. Despite the essential function of Dlx genes in
craniofacial development, their regulatory mechanism is not well defined. Interestingly,
a MADS-box transcription factor MEF2C, which is a key to cardiac morphogenesis, vas-
cular development, and myogenesis, controls the expression of Dlx5/6 in the branchial
arches [36] (Figure 2). Moreover, Tp63 is also involved in limb development, and it can
bind to the Dlx5/6 promoter. Tp63 knockout mice exhibit severe limb defects with reduced
expression of Dlx genes [37]. In addition to the intergenic enhancer, there is an enhancer
outside of the DLX5/6 bigene cluster. This new enhancer can drive the expression of a
reporter gene in the inner ears and bones of transgenic mice. The deletion of this cis element
on human chromosome 7 accounts for a familial syndrome involving hearing loss and
craniofacial defects due to reduced expression of DLX5/6 [38]. P63 can also bind to the Dlx3
promoter [39]. Dlx3 regulates bone formation by controlling the expression of Dlx5, Dlx6,
Runx2, and Sp7 [40] (Figure 2). Dlx2, Dlx5, and Dlx6 are expressed most strongly in less
mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and
osteocytes, suggesting that Dlx2 and Dlx5/6 can stimulate osteoblastic differentiation and
that Dlx3 plays a discrete role in late-stage osteoblast differentiation [32]. The OSX zinc fin-
ger protein is a cofactor that binds to Dlx5 to activate the osteoblast differentiation program,
and the p53 tumor suppressor can suppress this program by competitive binding to OSX,
which thereby diminishes Dlx5 function [41]. Such differentiation can be suppressed by p53.
Human DLX proteins play an important role in bone development, and disruption of DLX
function underlies the etiology of certain bone/joint diseases. For example, a 4-bp deletion
of the DLX3 gene has been reported in families with tricho-dento-osseous syndrome (TDO),
which is characterized by abnormalities involving hair, teeth, and bone development.
Transgenic mice harboring such a deletion demonstrated enhanced trabecular bone volume
and mineral density, suggesting a novel role for Dlx3 in osteoclast differentiation and bone
resorption [42].

Dlx4 is expressed in the mesenchyme of murine palatal shelves during embryonic
development, and a specific mutation in DLX4 (c.546delG) causes familiar cleft lip and/or
palate [43]. Macrodactyly is a congenital disease characterized by overgrowth of soft
tissues and bones. RNA-seq analysis has revealed that DLX5 is upregulated by an acti-
vating mutation in the phosphatidylinositol 3-kinase, catalytic alpha gene (PIK3CA) in
macrodactyly-derived bone marrow mesenchymal stem cells (BMSCs), implying that DLX5
has contributes to bone overgrowth due to constitutive PI3K/AKT signaling [44]. DLX also
has a role in chondrocyte proliferation. Chondrocyte hypertrophy is a hallmark of os-
teoarthritis (OA) pathology. Knockdown of Dlx5 in BMSCs reduced cell hypertrophy and
apoptosis. Overexpression of DLX5 in human-cartilage-derived mesenchymal progenitors
increased the expression of hypertrophy markers and enhanced apoptosis, suggesting
that DLX5 is a biomarker of OA changes in human knee joint tissues by contributing
to hypertrophy and apoptosis in BMSCs [45]. Utilizing the regulatory features of DLX
transcription factors has practical applications. For example, recently DLX was found be
able to reprogram somatic cells into induced pluripotent stem cells (iPSCs), with DLX4
being able to functionally replace c-MYC to support efficient reprogramming of human
dental pulp cells, in combination with OCT3/4, SOX,2 and KLF4 [46].
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Figure 2. Regulation of Dlx expression. (A) Mef2c binds to a novel enhancer (E) outside of the Dlx5/6 bigene. The Dlx5/6
product activates the Hand2 gene, which is essential for cardiac morphogenesis, vascular development, and myogenesis;
(B) P63 transactivates Dlx3/4 as well as Dlx5/6 via binding to their promoters. Dlx3 can also regulate Dlx5/6 expression.
Osx functions as a coactivator of Dlx5 in an osteogenic transcriptional network, whereas p53 binds to Osx to inhibit its role.

4. DLX Genes in Normal Hematopoiesis

Some transcription factors that are essential for the development of the nervous system
are also involved in hematopoiesis. For example, Gata2 knockout mice have severe defects
in neurogenesis as well as hematopoiesis [47]. Dlx genes have similar dual roles in neural
and hematopoietic systems. For instance, Dlx genes have been found to be co-expressed
with Bmp4 in some tissues during embryogenesis, and Bmp4 is a TGF-β family member
that plays an important role in the differentiation of early mesodermohematogenic cells and
hematopoietic stem cells [48,49]. DLX1 interacts with SMAD4 via its homeobox domain,
which interferes with the transactivation of SMAD4 (Figure 3). Thus, DLX1 can regulate
the function of members of the TGF-β family during hematopoiesis [50]. In the developing
thymus, Dlx1 and Dlx2 have been detected in thymocytes from 13.5- and 16.5-day-old
embryos. Although Dlx1 knockout mice did not have any discernable developmental
defects in either the thymus or thymocyte development, expression of Dlx1 in neural crest
derivatives suggested a potential redundant role in cell migration/migration with other
homeobox genes [51].

Actually, Dlx genes play a critical role in the development of a subtype of lymphocytes.
In the bone marrow of adult mice, Dlx1, Dlx2, and predominantly Dlx3 are transiently
expressed in immature Mac-1(lo) NK cells, whereas in mature splenic NK cells, such ex-
pression was abolished [52]. The persistent expression of Dlx genes leads to functionally
immature NK cells arrested at the Mac-1(lo) stage. Moreover, persistent Dlx1 expression
stalls the differentiation of T-cells and B-cells [52]. This occurs at least partially via the
transactivating aryl hydrocarbon receptor (AhR), which is a transcription factor essential
for the development of some immune cell subsets [53] (Figure 3). Another DLX family
member, DLX4, is expressed in normal hematopoietic cells and human leukemia cell lines
with erythroid characteristics. Antisense oligonucleotides targeting DLX4 have been shown
to trigger apoptosis in the human erythroleukemia cell line K562, in connection with a
reduction in GATA1 and MYC mRNA levels [54]. During megakaryopoiesis, DLX4 expres-
sion increases, but during erythropoiesis, it decreases. DLX4 induces IL1β production,
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which turns on NF-κB signaling and potentiates a megakaryocytic transcriptional pro-
gram. Blocking NF-κB activity reverses this program toward differentiation into erythroid
lineages [55] (Figure 3).
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Figure 3. Role of DLX4 in hematopoiesis. DLX1 regulates BMP4 signaling via binding to SMAD4 and inhibiting its
transactivation activity. DLX1 also directly regulates the expression of transactivating aryl hydrocarbon receptor (AhR)
during T/B cell differentiation. DLX4 also enhances NF-κB signaling to promote IL1β production in a megakaryocytic
transcriptional program. In addition, DLX4 has been shown to sustain the viability of K562 erythroleukemia cells by
promoting the expression of GATA1 and MYC.

5. DLX Genes in Aberrant Hematopoiesis

T-cell acute lymphoid leukemia (T-ALL) is thought to originate from arrested T-cell
progenitors during differentiation. Due largely to specific chromosomal rearrangements,
the aberrant expression of certain NKL homeobox genes disrupt T-cell differentiation and
give rise to T-ALL. However, the role of NKL homeobox genes is highly context dependent.
For example, the MSX1 gene is normally expressed in common lymphoid progenitors
(CLP) and remains active in NK cells. Interestingly, MSX1 behaves as an oncogene in
T-ALL but acts as a tumor suppressor gene in NK-cell leukemia [56,57]. Acute myeloid
leukemia (AML) frequently has activating mutations in the FMS-like tyrosine kinase-3
gene (FLT3), which are a poor prognostic marker. Notably, DLX1/2 are downstream targets
of aberrant FLT3 signaling via the MAPK pathway. Inhibition of FLT3 results in reduced
levels of DLX1/2, which in turn enhances TGF-β signaling [58]. In leukemic patients with
the t(4;11)(q21;q23) chromosomal translocation, which generates a MLL-AF4 fusion protein
(now known as KMT2A-AFF1), the expression of DLX2, DLX3, and DLX4 was diminished;
these findings indicate that intact MLL/KMT2A1 normally regulates the expression of these
DLX family members [59]. In pediatric B-ALL patients with a MLL-AF4 rearrangement, the
DLX3 gene has aberrant CpG methylation, which results in reduced expression of DLX3; in
contrast, patients with a TEL-AML1 rearrangement, which has a better prognosis, did not
have such methylation [60]. Hypermethylation of the DLX5 gene occurs frequently in AML
and myelodysplastic syndrome (MDS). Such silencing of DLX5 is associated with a lower
rate of complete remission and poorer overall survival, suggesting a tumor suppressing
role of DLX5 in AML and MDS [61].
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Transgenic mice expressing a constitutive activation of the Akt2 oncogene specifi-
cally in immature T-cells, Lck-MyrAkt2 mice, develop a high rate of spontaneous thymic
lymphomas, including some founders that acquire a recurring chromosomal inversion
that juxtaposes the enhancer of the T-cell receptor-β (Tcrb) locus and the Dlx5/6 bigene,
thereby, resulting in overexpression of Dlx5 and, to a lesser extent, Dlx6 [62] (Figure 4).
Similar to other Dlx family members, mouse Dlx5 and human DLX5 are not expressed in
mature thymocytes [52,62]. However, DLX5 mRNA, but not DLX6 mRNA, was abundantly
expressed in three of seven human T-cell lymphomas we tested [62]. Subsequent transgenic
mouse experiments revealed that forced expression of Dlx5 in immature T-cells using a
Lck promoter (Lck-Dlx5 mice), also induced thymic lymphomas [63]. Whole transcrip-
tome analysis showed that these thymic lymphomas consistently showed upregulation
of Notch1 and Notch3, and in vitro experiments revealed that these lymphoma cells were
highly sensitive to Notch inhibitors [63]. Additionally, Dlx5 was found to directly bind to
the regulatory elements of the Notch1 and Notch3 genes, as revealed by ChIP-seq analysis
(Figure 5), and Dlx5 was able to transactivate luciferase expression by binding to these
elements in vitro [63].
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Figure 4. Activation of the Dlx5 gene triggers T-cell lymphoma. Expression of a constitutively acti-
vated form of Akt2 (MyrAkt2) in immature mouse thymocytes induces T-cell lymphoma via activation
of Dlx5 gene expression, due to a recurrent chromosome rearrangement with Tcrb. Constitutive
activation of the Akt pathway promotes survival in cells that undergo aberrant VDJ rearrangement
and would otherwise undergo apoptosis, whereas the acquisition of T-cell-specific overexpression of
Dlx5 gene provides a proliferative advantage that, together, result in lymphomagenesis.
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Figure 5. Dlx5 directly induces T-cell lymphoma by activating Notch. A transgenic mouse model
expressing Dlx5 gene under the control of a Lck promoter develops a high incidence of T-cell
lymphomas with overexpression of Notch genes, Notch1 and Notch3. These lymphoma cells were
very sensitive to γ-secretase inhibitors and exhibited upregulation of Akt signaling and upregulation
of Cyclin D.

Other NKL members such as MSX2, TLX1, and NKX2-5 can also upregulate Notch3
by interacting with NOTCH pathway repressors [10]. Moreover, Akt signaling and c-
Myc levels are consistently elevated in Dlx5-induced lymphomas, and pharmacological
inhibition of Akt and c-Myc triggers these lymphoma cells to undergo apoptosis [64].
These observations suggests that prolonged expression of Dlx5 in progenitor T-cells trigger
lymphomagenesis via the activation of oncogenic pathways commonly involved in T-
lymphomagenesis, including Notch, Myc, and Akt. On the one hand, activation of these
signaling pathways promotes cell survival and inhibit apoptosis when Tcr rearrangements
go awry. On the other hand, frequent upregulation of Wnt signaling has also been reported
in pediatric T-ALL [65], and an activating mutation of the β-catenin gene, Ctnnb1, has
been shown to induce T-ALL in mice without Notch upregulation [66]. The medium
survival of these Ctnnb1-mutant mice was 14 weeks as compared with 24 weeks in Lck-
MyrAkt2 mice and 39 weeks in Lck-Dlx5 mice. This suggests that Ctnnb1 behaves as a strong
oncogene in a T-cell transgene setting, whereas active Akt2 is less oncogenic, and Dlx5 is
weakly oncogenic [67]. Interestingly, however, the median survival of Lck-MyrAkt2;Dlx5
double transgenic mice was 10 weeks, suggesting a synergistic effect between Akt and
Dlx5 (Figure 6) [67]. This synergism is likely due to the fact that β-catenin is strongly
expressed and resides in nucleus of the T-cell lymphomas from the Lck-MyrAkt2;Dlx5
double transgenic mice.
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Figure 6. Survival curve of Lck-Dlx5 mice with T-cell lymphomas as compared with Lck-MyrAkt2
and double transgenic Lck-MyrAkt2; Dlx5 mice. The median survival was 24 weeks in Lck-Dlx5 mice,
39 weeks in Lck-MyrAkt2 mice, and 10 weeks in Lck-MyrAkt2;Dlx5 mice.

Despite the multiple genes and pathways activated in these lymphomas, Wnt signal-
ing appeared to be the key driver, because inhibition of the Wnt pathway triggered rapid
cell death [67]. Whether Dlx5 can directly bind to the Ctnnb1 locus to increase its expression
when the cellular context is changed by the addition of Akt hyperactivation is an intriguing
question. Further study by RNA-seq analysis has demonstrated that the cholesterol biosyn-
thesis pathway is highly upregulated in lymphoma cells from Lck-MyrAkt2;Dlx5 mice.
The β-catenin/Tcf complex directly binds to genes encoding key members of this pathway,
such as Cyp51, Hmgcr, Ncoa2, Pmvk, Sp1, Srebf1, Srebf2, Tbl1x, and Tbl1xr1. Moreover,
statin and other cholesterol inhibitors were shown to effectively limit the proliferation of
lymphoma cells from Lck-MyrAkt2;Dlx5 mice at low concentrations and cause cell death at
higher concentrations [67] (Figure 7).
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Figure 7. Dlx5 cooperates with activated Akt (MyrAkt) to accelerate T-cell lymphoma in a GEM
model. The Wnt pathway was activated when mouse T-cells expressed both Dlx5 and MyrAkt2
transgenes. Inhibition of the β-catenin/Tcf complex resulted in apoptosis. β-catenin/Tcf directly
transactivates several key components in the cholesterol synthesis pathway, such as Cyp51, Hmgcr,
and Ncoa2. The augmented cholesterol synthesis at least partially underlies the oncogenic role of
Wnt signaling, as statin treatment triggered cell death in these cells.
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6. Involvement of DLX Genes in Other Malignancies

Normal cells cannot proliferate infinitely due to telomere erosion, which forces cells to
enter a state of replicative senescence by activating ATM/p53 signaling. Interestingly, DLX2
expression has been shown to result in a prolonged replicative life span by diminishing
protein components of the TTI1/TTI2/TEL2 complex [68]. This complex is essential for
the proper folding and stabilization of ATM and other members of the PI3K-related kinase
family kinase (PIKK), resulting in weakened ATM/p53 signaling and senescence bypass.
The investigators also found that overexpression of DLX2 displayed a mutually exclusive
relationship with p53 defects in cancer patients [68]. In related work, Yilmaz and colleagues
have shown that DLX2 protect against transforming growth factor β (TGFβ)-induced cell-
cycle arrest and apoptosis [69]. TGFβ acts as a tumor suppressor by inhibiting cell cycle
progression during the early stages of carcinogenesis, whereas it shows tumor promoting
activity at later stages. The investigators found that Dlx2 exerted important functions in
flipping this switch, doing so in part by directly suppressing the transcription of TGFβ
receptor II and the cell cycle inhibitor p21 (CDKN1A), diminishing SMAD signaling,
enhancing c-MYC transcription, and increasing EGFR signaling. Dlx2 expression was also
found to promote tumor invasion and metastasis [69].

TGFβ signaling is known to induce epithelial to mesenchymal transition (EMT) via
upregulation of SNAIL [70]. Moreover, overexpression of Dlx2 induces the expression of
SNAIL, and knockdown of Dlx2 blocks TGFβ-induced EMT [71]. Dlx2 also induces the
expression of the glutamine metabolism enzyme glutaminase (GLS1), and knockdown of
Dlx2 reduces glutamine metabolism, which results in SNAIL expression [72]. In glioblas-
toma multiforme (GBM) patients, high levels of DLX2 have been associated with a poor
survival outlook, and knockdown of DLX2 in GBM cells reduced cyclin D1 expression [73].
However, the role of DLX2 appears to be cancer-type dependent. For example, during
glucose deprivation-driven metabolic stress in breast cancer cells, DLX2 was induced by
reactive oxygen species, and knockdown of DLX2 protected cells from necrosis [74]. More-
over, expression of DLX2 and DLX5 have been reported to be mutually exclusive in breast
cancer, with DLX2 expression being significantly correlated with a favorable prognosis,
whereas DLX5 was associated with metastasis [75].

DLX4 is also involved in switching TGFβ signaling from tumor suppressing to tumor
promoting. DLX4 has been shown to inhibit TGFβ-induced expression of p15(Ink4b)
and p21 by binding to and inhibiting Smad4 from forming complexes with Smad2 and
Smad3 [76]. Moreover, the same investigation revealed that expression of DLX4 stimulated
the expression of c-Myc independently of TGFβ/Smad signaling. In breast cancer, patients
whose tumors express high levels of DLX4 respond poorly to topoisomerase II (TOP2)-
targeting chemotherapy, which kills tumor cells by inducing DNA double-strand breaks
(DSB) [77]. Mechanistically, DLX4 was found to interact with Ku proteins to promote
DNA-dependent protein kinase activity and end-joining repair of DSBs, thereby, reducing
sensitivity of tumor cells to TOP2 poisons. In other work, DLX4 was shown to promote
EMT in breast cancer cells through TWIST [78]. DLX4 directly bound to the TWIST gene
promoter to regulate its expression, and DLX4 overexpression enhanced expression of
TWIST. Furthermore, knockdown of DLX4 decreased TWIST expression, resulting in
reduced migration ability of breast cancer cell lines. In one study, the gene copy number
of DLX4 was elevated in about 22% of primary breast cancer and 24% of the cancers
with sentinel lymph node (SLN) metastasis [79]. DLX4 has also been documented to
promote expression of iNOS via binding to STAT1, and the elevated levels of this enzyme
triggered angiogenesis by producing nitric oxide [80]. High DLX4 expression in ovarian
cancer strongly correlated with elevated levels of iNOS and poor survival. Furthermore,
expression of DLX4 in ovarian cancer cells potentiated endothelial cell proliferation in vitro
and microvessel formation in xenograft tumors [80]. DLX4 also induced the expression
of CD44 in ovarian cancer cells, and inhibition of CD44 abolished DLX4′s ability of DLX4
to promote tumor-mesothelial cell interactions in these cells [81]. Induction of CD44
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by DLX4 was connected with enhanced NF-κB activity, which was stimulated by IL-1β,
a transcriptional target of DLX4.

The MYC gene has been shown to be a transcriptional target of DLX5 [82]. DLX5
binds to the MYC promoter and activates MYC expression in vitro, as shown by a MYC
promoter assay in HEK 293 cells. Moreover, overexpression of DLX5 results in increased
cell proliferation by upregulating MYC. In a screen of the NCI 60 cancer cell line panel,
DLX5 was frequently upregulated in cell lines derived from several tumor types, including
ovarian cancer [83], and data from The Cancer Genome Atlas indicate that DLX5 is a poor
prognosis marker in ovarian cancer (Figure 8). We found that overexpression of DLX5
promoted ovarian cancer cell proliferation by augmenting IRS-2/AKT signaling [83]. DLX5
potentiated AKT signaling to promote tumor cell proliferation, and knockdown of DLX5 re-
duced cell viability and downregulated IRS-2 and AKT phosphorylation. Moreover, DLX5
was found to directly bind the IRS2 promoter and regulate IRS2 expression (Figure 9) [83].
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DLX5 and other homeobox genes such as HOXA have been shown to be methylated
in early stage lung cancers [84]. In a study of human non-small cell lung cancer (NSCLC),
DLX5 was determined to be activated by KDM4A-mediated demethylation, and in turn,
DLX5 induced the expression of MYC and β-catenin, thereby, promoting proliferation and
metastasis [85]. Kato et al. found that the expression level of DLX5 protein significantly
correlated with tumor size and poorer prognosis in NSCLC patients [86]. Moreover, knock-
down of DLX5 with small interfering RNAs markedly suppressed the proliferation of
NSCLC cells [86]. The homeobox genes DLX2, DLX5, and HOXB2 were each overexpressed
in a subgroup of small cell lung cancer cell lines [87]. In endometrial carcinomas, DLX5 was
upregulated in tumors of the endometrioid subtype, but not in those with papillary serous
features [88]. Recently, miRNA have been implicated in regulating DLX gene function in
carcinogenesis. For example, in prostate cancer, miR-489-3p directly targets DLX1 and
downregulates its expression; overexpression of miR-489-3p was shown to induce apopto-
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sis [89]. In hepatocellular carcinoma, miR-122 was reported to be downregulated; miR-122
was able to bind to the 3′UTR of DLX4 mRNA, resulting in down regulated expression of
DLX4 protein [90].
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7. Conclusions

The Antennapedia (ANTP) class makes up the largest of the homeobox gene classes
in animal genomes [2]. Hox and ANTP-like homeobox gene classes play key roles in the
development of bilaterians, animals with bilateral symmetry as an embryo. This gene
group was fundamental to the origin of metazoan life on earth [91]. As a subgroup of
such ancient master regulators, DLX homeobox family genes play important roles not
only in embryogenesis primarily involving neuronal differentiation, cranial and limb
development, but also in postnatal homeostasis, such as hematopoiesis and, when dysreg-
ulated, oncogenesis. DLX family members are implicated in crosstalk with other signaling
and developmental pathways in tissue specific microenvironments. Disturbances of DLX
proteins by genomic alterations either at the enhancer level or within the coding region
result in congenital disorders such as tricho-dento-osseous syndrome and split-hand/foot
malformation. Dysregulation of DLX gene expression is also involved in various types
of cancers, including leukemias and lymphomas. With a deeper understanding of DLX’s
role in human disease, future therapeutic approaches aimed at correcting aberrant DLX
gene expression, via pharmacological or biological means, hold promise for alleviating
these diseases.
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