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Simple Summary: Photodynamic therapy (PDT) is a minimally invasive treatment option that can
kill cancerous cells by subjecting them to light irradiation at a specific wavelength. The main problem
related to most photosensitizers is the lack of tumor selectivity, which leads to undesired uptake in
normal tissues resulting in side effects. Passive targeting and active targeting are the two strategies
to improve uptake in tumor tissues. This review focused on active targeting and summarizes recent
active targeting approaches in which highly potent photosensitizers are rendered tumor-specific by
means of an appended targeting moiety that interacts with a protein unique to, or at least significantly
more abundant on, tumor cell surfaces compared to normal cells.

Abstract: Photodynamic therapy (PDT) is a well-documented therapy that has emerged as an effec-
tive treatment modality of cancers. PDT utilizes harmless light to activate non- or minimally toxic
photosensitizers to generate cytotoxic species for malignant cell eradication. Compared with con-
ventional chemotherapy and radiotherapy, PDT is appealing by virtue of the minimal invasiveness,
its safety, as well as its selectivity, and the fact that it can induce an immune response. Although
local illumination of the cancer lesions renders intrinsic selectivity of PDT, most photosensitizers
used in PDT do not display significant tumor tissue selectivity. There is a need for targeted delivery
of photosensitizers. The molecular identification of cancer antigens has opened new possibilities
for the development of effective targeted therapy for cancer patients. This review provides a brief
overview of recent achievements of targeted delivery of photosensitizers to cancer cells by targeting
well-established cancer biomarkers. Overall, targeted PDT offers enhanced intracellular accumulation
of the photosensitizer, leading to improved PDT efficacy and reduced toxicity to normal tissues.

Keywords: photodynamic therapy; photosensitizer; targeted therapy; antibodies; ligands

1. Introduction

Photodynamic therapy (PDT) is a novel minimally invasive treatment option that
has been used to treat a wide variety of cancers and other diseases [1–4]. PDT includes
a photosensitizer that is inactive in the dark. When irradiated with visible light, usually
long wavelength red light, in the presence of oxygen, the photosensitizer will be activated
to act as an energy transducer, transferring energy to molecular oxygen (Figure 1). This
transfer results in the generation of a series of highly reactive oxygen species (ROS), such as
singlet oxygen (1O2) [5–7]. PDT destroys cancer tissues via three mechanisms: (1) During
light irradiation, ROS species are generated, which will kill cancer cells directly; (2) PDT
will destroy a tumor through irreversible damage to the tumor vasculature; and (3) PDT
will stimulate the immune response directed against tumor cells [5–8] (Figure 1). Based
on these mechanisms, PDT has several advantages for cancer treatment, including its
minimal invasiveness, targeted toxicity of the defined tumor tissues using targeted visible
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light irradiation, and the ability to bypass the several resistance mechanisms displayed by
malignant cells [9–11].

Cancers 2021, 13, x  2 of 20 
 

 

its minimal invasiveness, targeted toxicity of the defined tumor tissues using targeted vis-
ible light irradiation, and the ability to bypass the several resistance mechanisms dis-
played by malignant cells [9–11]. 

 
Figure 1. Modified Jablonski scheme illustrating the principles and mechanisms of photodynamic therapy. Reprinted with 
permission from Ref. [8]. Copyright 2006 Springer Nature. 

Various photosensitizers have been reported. Photofrin (porfimer sodium) (Figure 2) 
is the first approved PDT agent for the treatment of cancer and is still widely used to treat 
lung, esophageal, bladder cancers, and cervical cancer [12–15]. The limitations of Photo-
frin include its lack of purity, poor tissue penetration at the activation light (630 nm) and 
prolonged skin phototoxicity [16]. Theses drawbacks encouraged the development of sec-
ond-generation PDT agents, including macrocyclic compounds, such as Verteporfin [17], 
which is a 1:1 mixture of regioisomers, Foscan (mTHPC) [18], silicon phthalocyanine 4 (Pc 
4) [19], Tookad [20], Talaporfin and protoporphyrin IX (PPIX) precursors, such as 5-ami-
nolevulinic acid (5-ALA, Levulan) [21] (Figure 2). Compared to Photofrin, most of the 
second-generation PSs are pure single compounds and have high singlet oxygen quantum 
yields (Table 1). Pc 4 also has a very high quantum yield for fluorescence, enabling it to 
also be utilized for theranostic approaches, see below. They are excited at longer wave-
lengths, which allows deeper penetration of the light into the tissue and can be used to 
treat deep-seated tumors, resulting in improved treatment efficacy. The main drawbacks 
associated with second-generation photosensitizers are poor water solubility and slow 
body clearance rate. Although 5-ALA shows high tumor selectivity to glioblastoma and 
bladder cancers, the lack of selectivity to desired targets remains a problem for most pho-
tosensitizers. While specific delivery of light to the tumors renders selectivity to PDT treat-
ment, most photosensitizers are non-selectively distributed in the body and will cause 
side effects, e.g., accumulation in skin, causing patients to shield themselves from bright 
light for several days. The development of third-generation PSs aimed to improve the 
pharmacological characteristics and tumor selectivity. PSs have shown improved tumor 
accumulation when incorporated into delivery systems, such as liposomes [22–25], mi-
celles [26–28], gold nanoparticles [29–31], and silica-based nanoparticles [32]. Approaches 
of using nanoparticles to passively deliver photosensitizers to tumors have been exten-
sively reviewed by others [33–35] and will not be discussed here. The most promising 
results are obtained from studies that actively targeted antigens or biomolecules that are 
over expressed on cancer cells or tumor vasculature. In this review, we will discuss recent 
developments of targeting PDT treatment, either through direct attachment of a targeting 
moiety to PSs or through attachment of a targeting moiety to delivery systems. 

Light

Excited singlet state 

Ground State

Excited 
triplet state

.O2
-.OH

H2O2

Tumor cell necrosis and 
apotosis

Inflammation

Neutrophil

Dendritic cell

Damage to 
neovasculature

PS1

PS0

A
bs

or
pt

io
n

Fl
uo

re
sc

en
ce

In
te

rn
al

 co
nv

er
si

on

Intersystem 
crossing

Ph
os

ph
or

es
ce

nc
e

In
te

rs
ys

te
m

 
cr

os
sin

g

3O2

1O2

Figure 1. Modified Jablonski scheme illustrating the principles and mechanisms of photodynamic therapy. Reprinted with
permission from Ref. [8]. Copyright 2006 Springer Nature.

Various photosensitizers have been reported. Photofrin (porfimer sodium) (Figure 2)
is the first approved PDT agent for the treatment of cancer and is still widely used to
treat lung, esophageal, bladder cancers, and cervical cancer [12–15]. The limitations of
Photofrin include its lack of purity, poor tissue penetration at the activation light (630 nm)
and prolonged skin phototoxicity [16]. Theses drawbacks encouraged the development of
second-generation PDT agents, including macrocyclic compounds, such as Verteporfin [17],
which is a 1:1 mixture of regioisomers, Foscan (mTHPC) [18], silicon phthalocyanine 4
(Pc 4) [19], Tookad [20], Talaporfin and protoporphyrin IX (PPIX) precursors, such as 5-
aminolevulinic acid (5-ALA, Levulan) [21] (Figure 2). Compared to Photofrin, most of the
second-generation PSs are pure single compounds and have high singlet oxygen quantum
yields (Table 1). Pc 4 also has a very high quantum yield for fluorescence, enabling it to also
be utilized for theranostic approaches, see below. They are excited at longer wavelengths,
which allows deeper penetration of the light into the tissue and can be used to treat deep-
seated tumors, resulting in improved treatment efficacy. The main drawbacks associated
with second-generation photosensitizers are poor water solubility and slow body clearance
rate. Although 5-ALA shows high tumor selectivity to glioblastoma and bladder cancers,
the lack of selectivity to desired targets remains a problem for most photosensitizers. While
specific delivery of light to the tumors renders selectivity to PDT treatment, most pho-
tosensitizers are non-selectively distributed in the body and will cause side effects, e.g.,
accumulation in skin, causing patients to shield themselves from bright light for several
days. The development of third-generation PSs aimed to improve the pharmacological
characteristics and tumor selectivity. PSs have shown improved tumor accumulation
when incorporated into delivery systems, such as liposomes [22–25], micelles [26–28], gold
nanoparticles [29–31], and silica-based nanoparticles [32]. Approaches of using nanopar-
ticles to passively deliver photosensitizers to tumors have been extensively reviewed by
others [33–35] and will not be discussed here. The most promising results are obtained
from studies that actively targeted antigens or biomolecules that are over expressed on
cancer cells or tumor vasculature. In this review, we will discuss recent developments of
targeting PDT treatment, either through direct attachment of a targeting moiety to PSs or
through attachment of a targeting moiety to delivery systems.
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Figure 2. Structures of some photosensitizers and protoporphyrin IX precursor 5-ALA.

Table 1. Summary of photosensitizers in clinical use.

Photosensitizer Absorption
(nm)

Extinction
Coefficient

(ε, M−1cm−1)

Fluorescence
Quantum Yield

(ΦF)

Single Oxygen
Quantum Yield (Φ∆) Cancer Types

Photofrin 630
3000

in methanol
(MeOH)

0.05 in MeOH [36] 0.35 in MeOH [37]

Lung cancer, esophagus,
bile duct cancer, bladder cancer,

glioblastoma, ovarian cancer,
breast cancer, skin

metastases [38]

Verteporfin 690 34,000
in MeOH 0.051 in MeOH [39] 0.77 in MeOH [37] Pancreatic cancer, breast

cancer [17]

Foscan 652 40,000
in MeOH 0.18 in MeOH 0.42 in MeOH [40]

Squamous cell carcinoma,
head and neck

carcinoma [41,42]

Pc4 672 20,000
in acetonitrile 0.4 in acetonitrile 0.43 in

acetonitrile [43,44]
Squamous cell carcinoma, basal

cell carcinoma [45]

Tookad 753 100,000 in
water [20] NA a NA Prostate cancer,

Esophagus [20,46]
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Table 1. Cont.

Photosensitizer Absorption
(nm)

Extinction
Coefficient

(ε, M−1cm−1)

Fluorescence
Quantum Yield

(ΦF)

Single Oxygen
Quantum Yield (Φ∆) Cancer Types

Talaporfin 664
40,000 in

phosphate buffered
saline (PBS)

0.19 in PBS 0.77 in PBS [47]

Early lung cancer, malignant
brain tumor, refractory
esophageal cancer, liver

metastasis, colorectal
neoplasms [48–51]

Levulan b 630 3000 in MeOH 0.06 in MeOH [52] 0.56 in 1–3% TX100 [53]
Skin cancer, bladder cancer,

glioblastoma,
Esophagus [21,54,55]

Metvix b 630 3000 in MeOH 0.06 in MeOH [52] 0.56 in 1–3% TX100 [53] Skin cancer [56]

Hexvix b 630 3000 in MeOH 0.06 in MeOH [52] 0.56 in 1–3% TX100 [53] Bladder cancer [57]

RM-1929
(cetuximab-IR700

conjugate)
689 210,000 in PBS 0.24 in PBS [58] 0.3 in PBS [59] Head and neck cancer [60,61]

a: NA: not available; b: data are based on 5-ALA-induced protoporphyrin IX.

2. Targeting via Antibody

The advances of monoclonal antibodies provide opportunities to use their specific
binding properties for targeted drug delivery. The approach using antibodies to specifically
conjugate to PSs for targeted PDT is called photoimmunotherapy (PIT). Among the PSs for
PIT, phthalocyanine dye IR700 is the most widely used. Compared to other photosensitiz-
ers, IR700 has excellent water solubility and it emits light at 700 nm when irradiated by
690 nm light; therefore, IR700 can serve both as a diagnostic tool (fluorescence imaging) and
as a therapeutic approach (PDT). In 2011, Mitsunaga et al. first reported near-infrared pho-
toimmnuotherapy (NIR-PIT) by conjugating IR700 to monoclonal antibodies (mAb) [62].
Conjugation of IR700 to epidermal growth factor receptors (EGFR)—targeting panitu-
mumab (Pan-IR700) showed selective uptake in EGFR expressing A431 cells and effective
tumor shrinkage after irradiation was observed in EGFR expressing A431 tumors (Figure 3).
Mab-IR700 was most effective when bound to the cell membrane, while non-bound mab-
IR700 had no phototoxicity. It has been found that NIR-PIT induces immunogenic cell
death (ICD), which elicits a host immune response against tumor [63,64] potentially adding
to its efficacy to eradicate cancer. Interestingly, ICD-induced morphological changes are
only observed in target-expressing cells, but not in target-non-expressing cells, which is
different from traditional PDTs that cause apoptosis/necrosis in both targeted cells and
adjacent non-targeted cells and normal tissues [63,65,66].

Presently, various antibodies have been tested for NIR-PIT, including anti-CEA-IR700
for pancreatic cancer [67], anti-CD47 for bladder cancer [68], anti-PSMA for prostate
cancer [69,70], anti-CD44 for oral cancer [71], anti-DLL3 for small cell lung cancer [72], and
anti-CD133 for glioma [73] (Table 2). All of these IR700-based mAb conjugates showed
the ability to selectively bind to and kill cancer cells that express the target antigen. No
phototoxicity was observed in adjacent non-expressing cells. Excitingly, an EGFR-targeted
antibody cetuximab-IR700 conjugate RM-1929 has entered global phase III trials for the
treatment of head and neck cancers [60,61].
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Figure 3. (a) General structure of antibody-based IR700 conjugates for NIR-PIT. (b) Pan-IR700 selectively accumulate in
EGFR-expressing A431 tumors (right), but not in EGFR-non-expressing 3T3 tumors (left). (c) PIT with Pan-IR700 significantly
inhibited A431 tumor growth. (d) PIT with Pan-IR700 significantly prolonged animal survival time. (***: p < 0.001).
Reprinted with permission from Ref. [62]. Copyright 2011 Springer Nature.

Table 2. Summary of IR700-based photoimmunotherapy.

PIT Conjugate Antibody Targeting Antigen Tumor Type References

Tra-IR700 transtuzumab Epidermal growth factor
receptor 2 (EGFR 2) (HER2)

3T3/HER2 mouse embryonic
fibroblasts [62]

Pan-IR700 panitumumab Epidermal growth factor
receptor 1 (EGFR 1) (HER1) A431 epidermal carcinoma [62]

Anti-CEA-IR700 Anti-CEA mAb Carcinoembryonic antigen
(CEA) BxPC3 pancreatic cancer [67]

Anti-CD47-IR700 Anti-CD47 mAb B6H12 CD47 639V bladder cancer [68]

Anti-PSMA-IR700 Anti-PSMA mAb Prostate specific membrane
antigen (PSMA) PC3pip prostate cancer [69]

Anti-CD44-IR700 Anti-CD44 mAb IM7 CD44 MOC1 and MOC2 oral cavity
squamous cell carcinoma [71]

Rova-IR700 rovalpituzumab Delta-like protein 3 (DLL3) SBC5 small cell lung cancer [72]

AC133-IR700 AC133 mAb CD133
CD133-OE U251 glioma

tumor and NCH421k
glioblastoma stem cell

[73]

RM-1929 Cetuximab Epidermal growth factor
receptor (EGFR) Head and neck cancer [60,61]

While great success has been achieved with full-length antibodies, antibodies do not
penetrate evenly into tumor parenchyma, due to their relatively large size which limits the
effectiveness of therapy [74,75]. Recently, smaller antibody fragments, such as diabodies
and minibodies have been developed as alternatives for full-length antibodies [76]. Di-
abodies are bivalent scFV dimers [77] and minibodies are bivalent dimers of scFv-CH3
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fusion proteins [78]. In contrast to full antibodies (~150 kDa), diabodies (~55 kDa) and
minibodies (~80 kDa) are much smaller, but retain the essential specificities and affinities of
full antibodies (Figure 4). Watanabe et al. compared the effectiveness of PIT using diabody
(Db-IR700) and minibody (Mb-IR700) against prostate specific membrane antigen (PSMA)
to PIT using full length IgG antibody against PSMA (IgG-IR700) [79]. In in vitro studies,
selective uptake of IR700 was observed in the cell membrane of PSMA-positive cells when
incubated with IgG-IR700, Db-IR700 or Mb-IR700, and rapid phototoxic cell death was ob-
served after NIR light irradiation. In contrast, no localization of IR700 was observed when
PSMA-negative cells were incubated with the conjugates, and the cells were not killed by
exposure to NIR light. Biodistribution studies using 125I-labeled IgG, Db and Mb showed
that the peak accumulation time in PSMA-positive tumors was 24 h for IgG-IR700 and
Mb-IR700 and 6 h for Db-IR700. While different pharmacokinetic profiles were observed
between the three conjugates, equal effectiveness of photoimmunotherapy was observed
with both full-length IgG-IR700 and antibody fragment Db-IR700 and Mb-IR700. Therefore,
the use of Db-IR700 shortened the time interval between injection and NIR exposure, which
potentially will aid in clinical application. The other alternative for a full-length antibody
is an affibody. Affibody molecules are engineered proteins that have a 58-amino acid
sequence folded into three alpha helices [80,81]. Affibody molecules have very small size
with a molecular weight at about 6–7 kDa, therefore, they have a much shorter circulation
time. Burley et al. conjugated an EGFR specific affibody ZEGFR:03115 to IR700 and tested it
in a glioblastoma model [82]. ZEGFR:03115-IR700 showed significant activity in inducing cell
death in EGFR-positive U87-MGvIII glioblastoma cells in vitro. Consistent with previous
mAb-IR700 treatment, necrotic cell death was observed within 1 h post PIT treatment.
In vivo imaging studies demonstrated clear tumor visualization as early as 1 h post in-
jection in both subcutaneous and orthotopic U87-MGvIII tumor models, while that for
intact antibodies took at least 24 h. Again, in vivo PIT using ZEGFR:03115-IR700 significantly
inhibited U87-MGvIII tumor growth. Furthermore, similar to mAb-IR700, affibody-IR700
conjugates can also induce ICD after light irradiation [83]. These studies demonstrated
that replacement of full-length antibodies with smaller fragment of antibodies can achieve
effective PIT with improved pharmacokinetics [79,82–84].
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3. Targeting by Small Ligands and Peptides

Compared to antibodies, small organic ligands and peptides have excellent tumor
penetration properties, which in combination with their selective binding and rapid in-
ternalization, make them ideal alternatives to antibodies for tumor targeting applications.
Unlike antibodies, the small ligands/peptides themselves are less immunogenic than the
larger antibodies and are expected to have minimal side effects [86]. The most promising
compounds include folic acid derivatives targeting the folate receptor (FR), glutamic acid
urea compounds targeting PSMA, cyclic peptides against integrin αvβ3, somatostatin
analogues targeting somatostatin receptor (SSTR), and aromatic sulfonamides specific to
carbonic anhydrase IX (CAIX). For targeted delivery of PDT, these ligands can be either
conjugated directly to photosensitizers, or can be conjugated to the delivery systems for
photosensitizers.

3.1. Folate Receptor

Folate receptors (FR) are folate-binding membrane proteins that are overexpressed in
many solid tumors [87,88]. FRs bind folate with high affinity. Folic acid derivatives (FA)
represent the first small molecule ligands that have been successfully used for selective
delivery of chemotherapeutic and imaging agents to cancer cells [89]. Targeted PDT using
folic acid derivatives also appears to be a promising treatment for various cancers [90–95].
Wang et al. conjugated FA with pyropheophorbide (Pyro) [92]. Compared to free Pyro,
increased cellular uptake of Pyro was observed when cells were incubated with FA-Pyro.
FA-Pryo also improved the treatment efficacy of PDT. With only one or two light irradia-
tions, KB tumors were eradicated. The FA-Pyro conjugate was also reported to be effective
on ovarian cancer [95]. It was found that PDT with FA-Pyro can activate the immune
response by inducing the secretion of immunoactivating cytokines (IL2 and IFNγ), reduc-
ing the production of immunosuppressive cytokines (TGFβ) and releasing extracellular
vesicles which are prone to activating immune cells. The authors also showed that FA-Pyro
PDT at the tumor can activate CD4+ and CD8+ T cells, indicating that FA-Pyro-based PDT
can elicit antitumor immune response.

In addition to direct conjugation to PSs, folic acid has also been used to target delivery
systems for targeted delivery of PSs. Huang et al. designed and prepared a novel water-
soluble folic acid-graphene oxide (FA-GO) system for targeted PDT [91]. The FA-GO
existed in sheet-like shapes with a thickness of about 1.2 nm. The PS Chlorin e6 (Ce6) was
then loaded into the system. The large surface area of GO resulted in a loading efficacy
as high as 80%. Compared to non-targeted GO-Ce6, FA-GO-Ce6 significantly increased
selective accumulation of Ce6 in MGC803 stomach cancer cells and light irradiation caused
90% cell death, indicating the potency of PDT. Similar results were reported with folic
acid modified graphene oxide hybrid loaded with zinc oxide (FA-GO-ZnO) [96]. PDT
by FA–GO-ZnO (Figure 5) generated reactive oxygen species (ROS), which significantly
reduced cell viability. Moreover, increased caspase 3 activity was observed after PDT,
indicating the apoptotic cell death induced by PDT.

Porphysomes are recently developed liposome-mimicking nanoparticles that self-
assemble from porphyrin–phospholipid conjugates [97]. They have extremely high por-
phyrin density (>80,000 per nanoparticle). The porphysome bilayers can increase the
efficacy of PS delivery and improve PDT efficacy. Due to the dense packing, the photoactiv-
ity (fluorescence and generation of singlet oxygen) of porphyrin is quenched. Porphysomes
have been modified by folic acid (folate–porphysome, FP) to enable targeting to the folate
receptor [94,98]. By FA-mediated endocytosis, FP was internalized into FR-positive cells
rapidly resulting in a 58.7-fold enhanced uptake compared to non-targeting porphysomes.
Fluorescence signal from porphyrin was observed after the FR-positive cells was incubated
with FP for 24 h, in contrast, no fluorescence was observed when the FR-positive cells
were incubated with non-targeting porphysomes, indicating that FR-targeting results in
disassembly of FP nanostructure and subsequence fluorescence activation. Further, in vitro
and in vivo studies showed FR-selective PDT efficacy. Therefore, FR-targeting triggered
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nanostructure disruption providing an activation method to de-quench the tightly packed
porphyrin, enhancing PDT efficacy.
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3.2. Prostate Specific Membrane Antigen

Prostate specific membrane antigen (PSMA) is a type-II transmembrane protein that
is highly overexpressed in prostate cancers [99–104]. PSMA’s transmembrane location
and internalization make it an ideal target for imaging and therapy [105–110]. The first
PSMA-targeting PDT was reported in 2009 by Liu et al. [111] who used a peptidomimetic
inhibitor of PSMA to conjugate the porphyrinic photosensitizer, pyropheophorbide-a.
Among the PSMA ligands, the glutamic acid urea derivative gained most interest due to
their high affinity for PSMA, specificity for PSMA, and fast and efficient internalization in
PSMA-positive cells [112–117]. We have developed a unique highly negatively charged
PSMA ligand based on the fact that arginine-rich S1 binding pocket is highly positively
charged [118,119]. The ligand, PSMA-1, is rationally designed to include three D-glutamic
acids in the structure. The D-glutamic acids will form strong ion pairs with the positively
charged guanidine groups of arginine in the substrate binding pocket of PSMA to im-
prove the binding affinity [106]. We have conjugated it to a Pc 4 derivative (Pc413) and
IR700 [105]. These two conjugates demonstrated selective and specific uptake in PSMA-
positive PC3pip cells. Both can effectively inhibit PC3pip tumor growth after NIR light
irradiation. Others have tried to conjugate PSMA ligand to pyropheophorbide [120] and
bacteriochlorophyll [121]. A nine D-peptide-linker was inserted between the PSMA ligand
and the PSs to prolong the plasma circulation time of the conjugates (12.65 h). Over the
24-h post conjugate administration, an increased fluorescence ratio between PSMA-positive
PC3pip and PSMA-negative PC3flu tumors was observed, which reached 3.1 at 24 h. The
improved tumor accumulation led to an effective PDT in PC3pip tumors.

In addition to simple molecule PSMA-1-Pc413, Mangadlao et al. synthesized PSMA-
targeting gold nanoparticles (AuNP) for targeted delivery of Pc 4, in which Pc 4 was
non-covalently absorbed into pegylated AuNPs [122]. Although PSMA-targeted AuNP-
PEG5K-PSMA-Pc4 accumulated four times more in PC3pip tumor than in PC3flu tumor as
measured by gold nanoparticle accumulation, the difference of the fluorescent from Pc4
between PC3pip and PC3flu was not that significant. More recently, Luo et al. improved
the nanoparticle system by covalently conjugating a Pc 4 derivative, Pc158, to AuNP
through a cathepsin cleavable linker [123]. These studies showed that covalent conjugation
of Pc158 to AuNPs improved the selectivity and fluorescence discrimination between
PSMA positive and negative tumors. One interesting phenomena of the PSMA-targeted
AuNP-Pc158 was the recovery of fluorescence in the tumor after PDT (Figure 6). Following
irradiation, which bleaches out fluorescence from the PDT agent, fluorescence of the
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tumors recovered and even increased without more administration of the PSMA-targeted
AuNP-Pc158. In contrast, the small molecule PSMA-1-Pc413 showed good accumulation in
the tumor at 24 h, but no Pc413 fluorescence recovery was observed after one light PDT
irradiation. As a result, sequential PDT after a single administration of PSMA-targeted
Au-NPs was more potent in inhibiting PC3pip tumor growth as compared to mice that
received PSMA-1-Pc413 with sequential PDTs. Careful quantification of targeted tumor
fluorescence and gold content indicated that there was a time-dependent release of Pc158
from the nanoparticles into the tumor cells and a time dependent PDT-induced increase
of the targeted nanoparticles into the tumors due to their long blood half-life. Delivery of
Pc158 via PSMA-targeted gold nanoparticles improved tumor accumulation of Pc158 via
several mechanisms, resulting in significant tumor growth inhibition as compared to small
molecule delivery, i.e., PSMA-1-Pc413.
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with PSMA-targeting AuNPs-Pc158 effectively inhibits large tumor (>500 mm3) growth. Reprinted with permission from
Ref. [123]. Copyright 2020 American Chemical Society.

As a final note, PSMA is overexpressed in the neovasculature of most solid human
tumors and potentially provides a biomarker for PSMA-targeted PDT for a number of
human tumors [124,125].

3.3. Integrin αvβ3

Tumor angiogenesis supplies oxygen and nutrients to tumors. It has an important role
in tumor progression as well as the development of metastasis [126]. Anti-angiogenesis
has become an effective therapy for cancer treatment. Integrin αvβ3 is a heterodimer that
plays an important role during tumor angiogenesis [127]. The protein is over expressed not
only on activated tumor endothelial cells but also on tumor cells, allowing for anti-integrin
therapy targeting both tumor vasculature and tumor cells [128,129]. Among the integrin
inhibitors, the cyclic arginine-glycine-aspartate peptide (cRGD) is the best known [130–133].
Photosensitizers protoporphyrin IX [134] and pyropheophorbide [111,135] have been suc-
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cessfully conjugated to cRGD, which demonstrated successful targeting and improved
PDT efficacy. Li et al. conjugated cRGD and IR700 to albumin [136]. When TOV21G
ovarian cancer cells were incubated with the cRGD modified albumin nanoconjugates,
cellular delivery of IR700 was increased 121-fold as compared to cells incubated with
control nanoconjugates. Dynamin-mediated caveolae-dependent endocytosis pathways
were suggested to be involved in integrin-targeted IR700 delivery. Phototoxicity was also
found to be specific to integrin. These studies indicated that modifying the surface of
nanoparticles by targeting ligands can selectively deliver the nanoparticles to receptors.
Dou et al. studied the numbers of cRGD peptides on IR700 conjugated polymers (Figure 7),
and found that the accumulation of IR700 in the tumor increased with increased number of
cRGDs on the polymers [137]. Monomeric cRGD (700DX-PEG-PGlu-cRGD) showed some
improvement to increase the accumulation of 700DX; however, the accumulation of IR700
was much less compared with 700DX-PEG-PGlu-cRGD5 and 700DX-PEG-PGlu-cRGD15.
Microscopic studies of tumors found accumulation of RGD targeting polymers not only
within the cells but also on tumor-associated vasculature. The accumulation of IR700 on
vasculature increased when more cRGDs was incorporated on the polymers. These results
suggest that the number of cRGD peptides can control intratumoral distribution pattern
of photosensitizers.
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Figure 7. (a) Fluorescence images of mice bearing U87MG tumors after injected with arginine-glycine-aspartate peptide
(RGD) modified IR700-polymers. (b) Confocal images showing intratumor distribution of photosensitizers. (c) In vivo PDT
of mice bearing U87MG. Reprinted with permission from Ref. [137]. Copyright 2018 Springer Nature.

3.4. Somatostatin Receptor

Somatostatin receptors (SSTRs) are transmembrane proteins that belong to the G-
protein coupled receptor (GPCRs) family and are responsible for translating extracellular
signals to intracellular responses [138]. SSTRs, especially SSTR subtype 2 (SSTR2) are
found expressed at relatively higher levels in many tumor cells and in tumor blood vessels
relative to normal tissues [139]. Upregulated SSTR in tumors makes it an attractive cellular
target for PDT, since a photosensitizer-conjugate can be used to target tumor cells as well as
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neovasculature. Somatostatin and its analogues bind to SSTR with high binding affinity in
the nanomolar range [139]. Octreotate and octreotide are cyclic peptides containing two D-
amino acids. Compared to natural somatostatin, they have improved serum stability [140].
Starkey et al. conjugated octreotate to a porphyrin-based photosensitizer to target tumor
vasculature [141]. It was found that SSTR-targeted PDT led to tumor vascular shutdown,
while untargeted PDT or EGFR-targeted PDT failed to produce an adequate vascular
response. Conjugation of a cyclometalated luminescent Ir(III) complex to octreotide showed
selective and specific uptake and improved phototoxicity in SSTR-positive cells Hela
cells [142]. Similar results were observed with SSTR targeting Ce6-octreotate conjugate [143]
and somatostatin–ruthenium (II) polypyridine conjugate [144,145].

3.5. Carbonic Anhydrase IX

As stated before, oxygen is one of the essential components for PDT. During light
activation, the excited photosensitizers (PSs) will transfer energy to molecular oxygen and
generate singlet oxygen (1O2) and other ROS species, which can damage biomolecules
causing them to initiate cell death [5–7]. Therefore, sufficient oxygen is needed for success-
ful PDT. Unfortunately, tissue hypoxia is a key feature of many solid tumors [146]. Fast
consumption of PDT further aggravates the hypoxic condition, reducing the efficacy of
PDT [147]. Carbonic anhydrase IX (CAIX) is constitutively up-regulated in solid tumors
and its overexpression in cancer tissues is strongly regulated by hypoxia [148]. Attempts
have been tried to overcome the effect of hypoxia by targeting CAIX using small aromatic
sulfonamide inhibitor of CAIX [149,150]. For example, an acetazolamide (AZ)-conjugated
BODIPY photosensitizer (AZ-BPS) was designed and synthesized [150]. AZ-BPS showed
improved uptake and greater phototoxicity in CAIX-positive MDA-MB-231 cells than
CAIX-negative MCF-7 cells. In addition, AZ-BPS was more than 142-fold more potent
than untargeted BPS against MDA-MB-231 cells. It was also found that AZ-BPS induced
cell death through mitochondria dysfunction. In vivo studies showed that PDT by AZ-
BPS significantly inhibited tumor growth compared to PDT by BPS. PDT by AZ-BPS
decreased the levels of angiopoietin-2 (ANGPT2) and vascular endothelial growth factor A
(VEGFA) which promote the initiation of angiogenesis and maturation of new vessels. In
contrast, PDT by BPS increased the VEGFA expression, which indicated the resistance to
BPS-induced PDT. Therefore, PDT targeting CAIX provided both anti-angiogenesis and
PDT effects to the hypoxia tumors, achieving a better treatment outcome.

4. Conclusions and Perspectives

Photodynamic therapy has become an effective alternative to traditional anticancer
therapy. PDT has shown efficacy in patients with inoperable cancers and have extended
patients’ overall survival time in clinical studies. Compared to chemotherapy and radio-
therapy, PDT-based cancer treatment significantly reduces side effects and improves target
specificity because only the lesion under light irradiation is treated. The selectivity of PDT
can be further improved by targeted delivery of photosensitizers to cancer cells to improve
their selectivity to tumor tissues and to reduce their accumulation in normal tissues. In
this review, we briefly reviewed recent developments of targeted PDTs including targeting
through antibody and targeting using small molecular ligands or peptides. Clearly, the de-
velopment of novel photosensitizers with tumor-specific properties leads to more effective
PDT and new applications for these drugs. Currently, cetuximab-IR700 conjugate RM-1929
has entered phase III clinical trials.

In addition to treatment, diagnosis and prognosis are also important in winning the
war against cancer. The fluorescence properties of photosensitizers can be exploited for
fluorescence diagnostic imaging; this technology is also known as photodynamic diagnosis
(PDD). PDD and PDT enable the diagnosis and simultaneous treatment of the cancer
and permit a real-time follow-up of the progress of the disease, which is also known as
“theranostics” [151]. Fluorescence image-guided surgery (FIGS) of glioblastoma using
non-targeted photofrin and 5-ALA was first reported in 2000 [152]. Later on, a new
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strategy combing FIGS and PDT was reported [153,154]. However, in both cases, non-
targeted photofrin and 5-ALA were used. Molecular targeting plays an important role in
theranostics [151], it is imperative to develop more specific photosensitizers which can
specifically and differentially diagnose cancer cells and kill them. Since the quantum yield
of light from Pc 4, and presumably its Pc413 derivative, was so high (Table 1), Wang et al.
demonstrated that PSMA-targeted Pc413 could be utilized for fluorescence image-guided
surgery (IGS), adding to the utility of PSMA-targeted PDT [155]. IGS achieved more
complete tumor resection compared to white light surgery (WLS). More importantly, PDT
after IGS showed significantly delayed tumor recurrence and extended animal survival as
compared to WLS and IGS groups. Therefore, PSMA-1-Pc413 can be used as an effective
adjuvant therapy after image-guided surgery to destroy unresectable cancer tissue or
missing cancer cells, reducing the frequency of positive margins and tumor recurrence.
Finally, in orthotopic prostate cancer models it was also shown that the PSMA-targeted
Pc413 could identify prostate cancer cells within the lymph nodes, providing novel avenues
for further study.

Due to the unique mechanisms of PDT, it has been utilized in combination with
chemotherapy to overcome chemo-resistant cancers and achieve a synergistic therapeutic
effect with chemotherapy [9,156–160]. Although intriguing results have been found for
the treatment of cancer by combination of PDT and chemotherapy, both are limited by
off-target tissue accumulation leading to cell death in normal tissue. Ito et al. reported
a T−DM1−IR700 conjugate, in which both photosensitizer IR700 and chemotherapeutic
drug DM-1 were conjugated to the antibody Trastuzumab [161]. The conjugate therefore
can achieve both NIR-PIT and chemotherapy. In small tumor models, T-DM1-IR700 did not
show improved antitumor activity when compared to T-IR700. However, T-DM1-IR700 was
more effective in large tumor models which could not receive sufficient NIR light. More
recently, a multifunctional mesoporous CuS nanoplatform (FA-CuS/DTX@PEI-PpIXCpG
nanocomposites) targeting folate receptor was reported [162]. The smart nanoplatform
combined PDT, photothermal therapy (PTT) and docetaxel (DTX)-enhanced immunother-
apy. A synergistic effect was observed, which resulted in highly superior antitumor activity
in triple negative 4T1 tumors. These studies indicated that targeted PDT in combination
with other treatments can be a new treatment options for caner.

The other important perspective of PDT is antitumor immune responses induced by
PDT [5–7]. PDT-induced immune response first occurs in the treated area, then extends
throughout the body. Therefore, PDT is not only a simple local therapy, but it can also have
systemic effects. PIT has been reported to be effective against metastatic diseases with PDT
only administered to the main tumor mass [60,163,164].

Finally, it has been reported that cells can develop resistance during PDT [165–167].
Mechanisms of resistance to PDT include upregulation of antioxidant and anti-apoptotic
proteins [168], enhanced activity of membrane transporter ATP-binding cassette G member
2 (ABCG2) to efflux 5-ALA-induced PPIX and other photosensitizers from cells [169]. In-
creased levels of endogenous nitric oxide have also been reported to induced cell resistance
to PDT with 5-ALA [170,171]. It needs to be noted that although targeted PDT can enhance
the efficacy of PDT, cancer cells may still develop resistance to the treatment. Different
strategies will be needed to overcome resistance to PDT.

In summary, great achievements have been made with targeted PDTs. They represent
suitable therapeutic alternatives and have great potential for the treatment of a wide
variety of cancers. More targeted photosensitizers are expected to move to clinical trials in
the future due to their therapeutic enhancements including efficacy, specificity, marginal
toxicity to normal cells, and minimal side effects.
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