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Simple Summary: Chimeric antigen receptor (CAR) T-cells are powerful therapeutic tools that have
revolutionized the treatment of several hematological malignancies. However, their therapeutic
application in acute myeloid leukemia (AML) remains challenging. In this review, the authors
aimed to dissect how AML-leukemic stem cell and AML-bone marrow niche features can impact
on the success of CAR T-cell therapy. The clinical implementation of some of the newly developed
approaches discussed in this review may lead to the development of safe and effective CAR T-cell
strategies for AML, accounting for the disease heterogeneity.

Abstract: Current treatment outcome for acute myeloid leukemia (AML) patients is unsatisfactory
and characterized by high rates of relapse and poor overall survival. Increasing evidence points
to a crucial role of leukemic stem cells (LSC) and the bone marrow (BM) leukemic niche, in which
they reside, in AML evolution and chemoresistance. Thus, future strategies aiming at improving
AML therapeutic protocols are likely to be directed against LSC and their niche. Chimeric antigen
receptor (CAR) T-cells have been extremely successful in the treatment of relapsed/refractory acute
lymphoblastic leukemia and B-cell non-Hodgkin lymphoma and comparable results in AML are
highly desirable. At present, we are at the dawn of CAR T-cell application in AML, with several
preclinical studies and few early phase clinical trials. However, the lack of leukemia-specific targets
and the genetic and phenotypic heterogeneity of the disease combined with the leukemia-induced
remodeling of the BM microenvironment are limiting CAR T-cell exploitation in AML. Here, we
reviewed AML-LSC and AML-BM niche features in the context of their therapeutic targeting using
CAR T-cells. We summarized recent progress in CAR T-cell application to the treatment of AML, and
we discussed the remaining therapeutic challenges and promising novel strategies to overcome them.

Keywords: acute myeloid leukemia; leukemic stem cells; bone marrow niche; chimeric antigen
receptor T-cells

1. Introduction

Acute myeloid leukemia (AML) is a life-threatening blood cancer characterized by
the uncontrolled/abnormal proliferation of myeloblasts that accumulate mainly in bone
marrow (BM) and peripheral blood [1].

With a patient’s average age at diagnosis of 68 years [2], AML mostly affects adults.
Despite the recent progress made in AML diagnosis, risk stratification, and prognosis,

treatments have not considerably changed over the last two decades. In particular, AML
therapeutic pillars consist of an induction therapy, based on cytarabine and anthracycline,
followed by a consolidation regimen, including chemotherapy and/or allogeneic stem cell
transplantation, necessary to kill residual leukemic clones to prevent relapse [1,3]. Patients’
survival is extremely poor, especially for the elderly (≥65 years), only 30% of whom survive
over 1 year post-diagnosis [1], with relapse rates ranging from 9% to 78% [4].
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To date, the biological and clinical complexity of the disease, largely attributable
to its molecular and phenotypic heterogeneity, hinders the development of a successful
treatment for AML [5].

AML cell populations are organized in a hierarchical structure dominated by a rare and
heterogeneous subset of cells [6–8], the so-called leukemic stem cells (LSC). LSC are capable
of initiating and maintaining the disease [6] and have been shown to fuel disease relapse
due to their intrinsic and extrinsic (BM microenvironment-mediated) chemoresistance
properties [9–11].

Due to the central role of LSC in AML pathogenesis and progression, their therapeutic
targeting and elimination are imperative in order to improve patient’s outcome [5].

Recently, the technological progress in high-throughput single-cell approaches offered
an unprecedented resolution on tumor heterogeneity. Indeed, single-cell analyses provide
a powerful tool not only to dissect clonal evolution and hierarchical structure of hemato-
logical disorders [12–17], but also to unravel the unique features of malignant stem cells
and their BM niche dependencies [14–16,18,19]. Results from single-cell analyses have the
potential to gain new insights into the pathogenesis of several hematological diseases and
identify new candidate molecules for targeted therapies [12,14–16,18,19].

Novel therapies are currently under preclinical and clinical investigation in AML, as
extensively described in [20–22], and they mainly aim at targeting LSC, the molecular pro-
cesses altered in LSC and AML blasts, and their interplay with the BM microenvironment.

While recently developed small-molecule inhibitors have a role in subsets of AML
(e.g., IDH1/2 and FLT3 mutated) [20], because of the genetic heterogeneity of this disease
they are unlikely to be broadly applicable.

One strategy that is presently being explored with limited success [21] but with
a potential broader applicability involves the application of chimeric antigen receptor
(CAR) T-cells.

CAR T-cells, which uniquely combine the specificity of a monoclonal antibody with
the efficacy of a cytotoxic T-cell, have revolutionized the treatment of several hematological
malignancies, especially relapsed/refractory acute lymphoblastic leukemia (ALL) and
B-cell non-Hodgkin lymphoma [23].

Comparable applications in AML would be highly beneficial. However, the de-
velopment of immunotherapeutic strategies harnessing the power of engineered T-cells
against AML has been hindered by the disease heterogeneity and complicated by the
chemo-resistant and immune-evasive properties of AML-LSC and by the AML-BM niche
characteristics.

Herein, we reviewed the role of AML-LSC and the leukemia-associated BM remod-
eling in treatment escape. We summarized the recent developments in the application of
CAR T-cells to the treatment of AML and we discussed the main challenges ahead, as well
as potential novel strategies to progress toward successful CAR T-cell therapy for AML.

2. The Role of LSC and the BM Microenvironment in AML

AML-LSC were first identified and functionally defined as the only cells capable of
initiating and maintaining the disease in xenotransplantation settings, due to their unique
self-renewal and proliferation properties [6,24]. Since then, AML-LSC biological and molec-
ular features have been extensively studied to identify their therapeutic vulnerabilities and
determine how they contribute to AML clinical complexity. LSC features are outlined in
Figure 1.
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Figure 1. Summary of leukemic stem cell (LSC) distinctive features. LSC are characterized by phenotypic, mutational, self-
renewal- and quiescence-related heterogeneity. This, in addition to intrinsic and extrinsic chemoresistance, could hamper 
acute myeloid leukemia (AML) treatment efficacy. The efflux pumps expressed on LSC surface and LSC quiescence de-
termine their intrinsic drug resistance. Moreover, the AML-bone marrow (BM) niche represents a LSC cradle which sup-
ports AML cell expansion and survival providing chemoprotection. On the other hand, LSC exhibit unique metabolism 
and altered molecular pathways offering selective therapeutic targets. LSC, leukemic stem cells; BM, bone marrow; MSC, 
mesenchymal stromal cells; Tregs, regulatory T-cells; AML, acute myeloid leukemia; ROS, reactive oxygen species; 
OXPHOS, oxidative phosphorylation; AA, amino acids. 

In the next sections, we discuss some of the key factors challenging AML-LSC thera-
peutic targeting: (1) their similarity with normal hematopoietic stem cells (HSC), (2) their 
heterogeneity, and (3) the leukemia-induced remodeling of the BM niche. 

2.1. LSC vs. HSC: Selective LSC-Targeted Eradication 
Since the AML hierarchical structure was first described, parallelisms with normal 

hematopoiesis have been extensively investigated. 
Like HSC, LSC mainly reside within the BM [25], are highly quiescent, and are able 

to self-renew as well as to give rise to more mature cell subsets [9]. 
Similarly to HSC, LSC display increased chemoresistance, due to their intrinsic prop-

erties (such as their quiescent state and the increased expression of components of multi-
drug efflux pumps) or to the leukemia supportive BM microenvironment [9,25]. 

Furthermore, LSC and HSC share similar immunophenotypic patterns (e.g., CD13, 
CD33, CD71, CD99, CD117, CD133, CD200, CD244) and it is widely accepted that they 
both reside within the lineage negative (Lin−)CD34+CD38− compartment [21,26]. 

These shared features challenge the efficient discrimination between LSC (to be ther-
apeutically targeted) and HSC (to be spared and rescued). 

However, LSC display distinct antigenic, molecular, and metabolic traits that could 
render them selectively targetable. 

Figure 1. Summary of leukemic stem cell (LSC) distinctive features. LSC are characterized by phenotypic, mutational,
self-renewal- and quiescence-related heterogeneity. This, in addition to intrinsic and extrinsic chemoresistance, could
hamper acute myeloid leukemia (AML) treatment efficacy. The efflux pumps expressed on LSC surface and LSC quiescence
determine their intrinsic drug resistance. Moreover, the AML-bone marrow (BM) niche represents a LSC cradle which
supports AML cell expansion and survival providing chemoprotection. On the other hand, LSC exhibit unique metabolism
and altered molecular pathways offering selective therapeutic targets. LSC, leukemic stem cells; BM, bone marrow; MSC,
mesenchymal stromal cells; Tregs, regulatory T-cells; AML, acute myeloid leukemia; ROS, reactive oxygen species; OXPHOS,
oxidative phosphorylation; AA, amino acids.

In the next sections, we discuss some of the key factors challenging AML-LSC thera-
peutic targeting: (1) their similarity with normal hematopoietic stem cells (HSC), (2) their
heterogeneity, and (3) the leukemia-induced remodeling of the BM niche.

2.1. LSC vs. HSC: Selective LSC-Targeted Eradication

Since the AML hierarchical structure was first described, parallelisms with normal
hematopoiesis have been extensively investigated.

Like HSC, LSC mainly reside within the BM [25], are highly quiescent, and are able to
self-renew as well as to give rise to more mature cell subsets [9].

Similarly to HSC, LSC display increased chemoresistance, due to their intrinsic proper-
ties (such as their quiescent state and the increased expression of components of multi-drug
efflux pumps) or to the leukemia supportive BM microenvironment [9,25].

Furthermore, LSC and HSC share similar immunophenotypic patterns (e.g., CD13,
CD33, CD71, CD99, CD117, CD133, CD200, CD244) and it is widely accepted that they
both reside within the lineage negative (Lin−)CD34+CD38− compartment [21,26].

These shared features challenge the efficient discrimination between LSC (to be thera-
peutically targeted) and HSC (to be spared and rescued).

However, LSC display distinct antigenic, molecular, and metabolic traits that could
render them selectively targetable.
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Several surface antigens have been shown to be preferentially expressed in LSC against
HSC and thus proposed as potential biomarkers and therapeutic targets (e.g., CD25, CD32,
CD44, CD47, CD96, CD123, TIM3, CLL1) [27]. Some of these markers are currently being
evaluated as CAR T-cell targets, as discussed in the next paragraph of this review.

Differential gene expression analyses have also revealed LSC-specific signatures, in-
cluding genes involved in various pathways, such as adherens junction, actin cytoskeleton
organization, apoptosis, and MAPK, JAK-STAT, and Wnt signaling pathways [28].

Recently, new analytical methods based on the simultaneous detection of mutations
and whole transcriptome at the single-cell level have allowed unprecedented resolu-
tion in discriminating between normal and malignant single stem cells within the same
tumor [14–16,18].

The application of one of these single-cell integrated approaches in the AML context
has revealed novel LSC-specific candidate surface markers encoded by CD36 and CD74
genes. This approach also uncovered a “mixed” molecular signature specific to AML
early progenitors and characterized by the simultaneous expression of genes associated
with both stemness and myeloid priming as well as altered transcriptional programs
with an increased expression of proliferation-, self-renewal-, stress response-, and redox
signaling-related genes [16].

The increased survival, self-renewal, and expansion capacity of LSC, as compared
to HSC, have been shown to be at least in part due to the constitutive activation of NF-
KB, JAK-STAT, PI3K/AKT/mTOR pathways, to the deletion of tumor suppressor genes
(e.g., PTEN), to the upregulation of anti-apoptotic genes, and to alterations in Wnt/β-
catenin, Hedgehog, and Notch signalings and in microRNA levels (e.g., miR-9 and miR-126)
reported in LSC [9,29].

Metabolically, although LSC and HSC are both marked by small amounts of reactive
oxygen species (ROS) [30], LSC display distinctive features, including their higher depen-
dence on oxidative phosphorylation and on regulators of mitochondrial functionality, redox
balance, and response to stress (e.g., mitophagy-associated proteins including FIS1, the
pro-survival protein BCL-2, a cancer-specific heat shock protein species teHsp90, unfolded
protein response and, the above mentioned, NF-KB pathway) for their preservation [5,30].
Moreover, LSC preferential addiction to amino acid metabolism and enhanced sensitivity
to variations in amino acid availability have also been reported [31,32].

Altogether the characterization of dysregulated pathways in LSC has improved since
their discovery, the lack of exclusive targetable antigens still limits the development of
safe and effective clinical protocols directed against LSC. The application of single-cell
technologies to the identification of novel targets in LSC promises to revolutionize the
development of targeted therapies.

2.2. Sources of Heterogeneity in AML-LSC

AML is a molecularly heterogeneous group of diseases with a complex mutational
landscape. Recently, over 5000 driver mutations across 76 genes or genomic regions were
identified, with 2 or more drivers present in 86% of reported cases [33]. AML heterogenous
nature is complicated by its clonal structure, with multiple genetically distinct clones
co-existing in the same patient [17,34,35].

LSC reflect this clonal architecture and are organized into genetically diverse co-
existing subclones [17,36,37] that are in constant evolution throughout the disease
progression [36].

The initial attempts to universally define the LSC phenotype as Lin−CD34+CD38− [6,24]
were underestimating their phenotypic heterogeneity, potentially due, in part, to antibody-
related technical artefacts [38].

Although LSC have been shown to be highly enriched within the Lin−CD34+CD38−
compartment [7] and the abundance of such a compartment has been directly linked to
patient outcome, survival, relapse, and minimal residual disease [39,40], recent studies
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revealed that LSC immunophenotypic patterns can change between clones within the same
tumor and between AML subtypes.

Indeed, functionally defined LSC have been also detected within the CD34+CD38+,
CD34-CD38+, and CD34-CD38- cellular fractions of AML samples. The proportions of LSC
within each fraction are highly variable between patients, and LSC of different phenotypic
classes are observed in the same sample for the majority of patients [7].

The notion of LSC intra-tumor multivarious immunophenotype is further supported
by a recent study revealing the co-existence of at least two LSC fractions with distinct
immunophenotypic and molecular signatures in more than 80% of AML samples ana-
lyzed. It was shown that one LSC fraction resembled the lymphoid-primed multipotential
progenitors (LMPP) (LMPP-like LSC, Lin-CD34+CD38−CD90−CD45RA+) and the other
resided within the granulocyte-macrophage progenitor compartment (GMP) (GMP-like
LSC, Lin-CD34+CD38+CD123+CD45RA+). These two LSC populations shared a hierarchi-
cal relation, with LMPP-like LSC being upstream of GMP-like LSC. Consistently, LMPP-like
LSC had higher frequencies of leukemia-initiating cells and a gene expression profile more
similar to immature AML subtypes as compared to GMP-like LSC [41].

This discovery further fuels the existing debate related to the LSC cell of origin being
attributed to HSC or committed progenitors [6,8,37,41].

Technological advances in mass cytometry provide a superior tool over flow cytometry
to investigate phenotypic variations and intracellular signaling modifications occurring in
LSC [42]. Using this technique, Behbehani et al. observed that the expression of several
surface markers (e.g., CD7, CD33, CD34, CD38, CD45, CD47, CD71, CD99, CD117, CD123,
CD321, HLA-DR) on Lin-CD34+CD38lo LSC varied according to AML genetic signature
and karyotype and that different AML subtypes were associated with distinct intracellular
signaling in LSC [43]. The association between phenotype and genotype in AML is further
supported by other studies [17,44] reinforcing the hypothesis of a fundamental role of
mutations in antigenic expression instability throughout clonal selection [17] and the
prognostic potential of LSC phenotyping [44].

From a functional point of view, LSC heterogeneity is observed with regard to their
self-renewal and in vivo repopulation abilities (with short-term, long-term, and quiescent
long-term LSC) [8], and their quiescent state [5]. This latter can be related to the AML
genetic background as a recent study showed that the proportion of proliferating LSC
increased within AML samples with core-binding factor (CBF) mutations and sensitive
to chemotherapy as opposed to poor prognosis samples carrying FLT3-ITD mutation and
normal karyotype. These results support the hypothesis that LSC are crucial determinants
of clinical outcome [43].

Importantly, LSC plasticity increases upon relapse, as a potential consequence of
ineffective treatments [42].

Upon disease relapse in AML, LSC considerably increase in number (9–90-fold) and
exhibit higher phenotypic variability [42] and metabolic flexibility, with higher fatty acid
metabolism under amino acid shortage [31], as compared to diagnostic specimens. LSC
changes upon treatment seem to be only in minor proportion linked to the acquisition of
additional genetic aberrations after therapy [42]. Conversely, AML relapse seems to be
associated with the selection of pre-existing drug-resistant clones rather than chemotherapy-
induced mutations [36].

At least two different AML cell subsets, already present at diagnosis, have been shown
to contribute to relapse: early progenitors (LSC) or more committed subsets that have
acquired stemness properties. Of relevance, the cell subset giving rise to the recurrence of
the disease has been linked to different AML French-American-British subtypes and could
further influence the choice of treatment to adopt [36].

In conclusion, as LSC are “moving targets”, future targeted therapeutic approaches
against AML are likely to shift from a universal to increasingly personalized medicine and
may vary according to the stage of the disease to treat.
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Future approaches designed to achieve the targeted eradication of LSC early after
diagnosis may prevent their evolution into more complex targets upon treatment [5].

2.3. The Role of the BM Niche in AML

In physiological conditions, the BM niche is a composite organization of stromal and
hematopoietic cells (including osteoblasts (OB), adipocytes, perivascular mesenchymal
stem, endothelial and nervous cells, megakaryocytes, regulatory T-cells (Tregs), and phago-
cytes) that physically supports HSC and finely controls their self-renewal, proliferation,
differentiation, and migratory activities, as extensively reviewed in [45].

In leukemia, neoplastic cells compete with healthy HSC for the BM niche occupancy,
by remodeling the environment at their own advantage and creating a hostile habitat for
normal hematopoietic stem and progenitor cells (HSPC) [46].

The modifications observed in the BM of AML patients at diagnosis include increased
microvessel density [47], neuropathy [48], reduced frequency of CD146+CD166- mesenchy-
mal progenitors [49], decreased OB pool size [50], and diminished adipocyte counts and
size [51]. The appearance of these changes observed in the BM niche follows a specific tem-
poral order, reflecting the AML developmental phase. The establishment of a pre-leukemic
niche is followed by the development of a leukemia-permissive and lately self-reinforcing
environment [52]. Some of these alterations, such as the microvessel density, the loss
of nestin expression (indicator of nerve damage), and the aberrant cellular composition
of the BM mesenchymal and osteoblastic compartments, have been correlated to AML
clinical features, such as aggressiveness, sensitivity to treatment, and patients’ overall
survival [47–49].

Transgenic mouse models allowing the induction of genetic mutations in distinct BM
stromal cell types have revealed that alterations of the BM microenvironment are not only a
result but also a potential driver of malignant transformation in HSPC, as reviewed in [53].
The role of the BM microenvironment in the pathogenesis of blood cancers is still subject to
debate, although it is considered highly unlikely that it constitutes the first hit of malignant
transformation [53].

Conversely, leukemia-induced functional alterations have been reported in several BM
niche cellular components (including OB, nerves, adipocytes, and mesenchymal stromal
cells (MSC)) in AML mouse models, recapitulating human AML-BM features. Specif-
ically, AML cells can cause OB reduction and malfunctioning [50,54] and sympathetic
neuropathy [55] in vivo, all prerequisites for leukemic spread [50,55]. Moreover, leukemic
cells carry the potential to hinder the adipogenic differentiation of MSC, resulting in loss of
adipocytes in the hematopoietically active red BM [51]. In a recent study using single-cell
RNA sequencing (scRNA-seq), Baryawno et al. were able to finely dissect the cellular com-
position of the BM niche in an AML mouse model and capture the cellular and molecular
trajectories taking place in the BM in the initial phase of AML development. In particular,
they observed alterations in the osteogenic and adipogenic potential of MSC, arrest in OB
maturation, blood vessel remodeling, increased expression of hypoxia-related genes, and
decreased expression of HSC-supportive signaling factors [56], in line with the hypothesis
of the remodeling of an increasingly leukemia permissive and supportive BM niche.

AML cell intrinsic properties can also profoundly alter the tumor immune microenvi-
ronment, hampering the existing anti-tumor response. AML can contribute to defective
T- and natural killer (NK)-cells, by reducing the numbers of T, T helper (Th) 1, and cy-
totoxic T lymphocytes in favor of Tregs and Th17, and by promoting M2-like monocyte
polarization [16,57,58]. The aberrant immune landscape observed in AML patients is in-
duced by the secretion of immunosuppressive cytokines (e.g., interleukin (IL)-4 and -10
and transforming growth factor (TGF)-β) and the block of pro-inflammatory ones. T-cell in-
hibitory enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1) and arginase, of immune
checkpoints (e.g., cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death
ligand-1 (PD-L1)) and the production of nitric oxide, galectins, and ROS have also been
shown to promote an immunosuppressive microenvironment in AML [52,57,58]. Recently,
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using an integrated single-cell analysis Van Galen et al. showed that CD14+ monocyte-like
AML cells are responsible for mediating immunomodulatory activities [16]. Additionally,
the increment of myeloid-derived suppressor cells (MDSC) induced by AML cells enhances
the immunosuppression in AML niche [53]. Furthermore, AML cells can preferentially
evade immune surveillance by downregulating the expression of major histocompatibility
complexes (MHC) and natural killer group 2 member D (NKG2D) ligands, which are
required for immune recognition by T- and NK-cells, respectively [59–61].

Majeti et al. observed that LSC and HSC exhibit a divergent expression of path-
ways related to their crosstalk with the BM niche [28]. Specifically, LSC are unrespon-
sive to Notch and TGF-β niche signaling, reported to hinder HSC growth and myeloid
differentiation [62], and downregulate CXCR4-STAT3/5B signaling pathways, N-cadherin,
and alpha E-catenin [28]. On the contrary, AML cells upregulate CXCR4, VLA-4, CD44,
E-selectin, and CD98 adhesion molecules [45,52], and LSC rely on CXCL12/CXCR4 and in-
tegrin/OPN signaling for their adhesion and persistence, on Wnt/β-catenin and PI3K/Akt
signalings for their self-renewal and maintenance [63], and on SIRPα/CD47 binding for
their survival and functionality [64].

The expression of some adhesion factors (e.g., CXCR4, VLA-4, CD44v6 the most
common AML CD44 isoform, G protein-coupled receptor 56 (GPR56), and junctional
adhesion molecule (JAM)-C) in AML cells/LSC was associated with poor patient survival
and was found increased in specific risk groups (e.g., VLA-4 in non-high-risk pediatric and
adult patients, and GPR56 at mRNA level in intermediate- and high-risk patients) [65].

Cell-to-cell communication between AML and their BM microenvironment not only oc-
curs through direct contact and exchange of soluble factors but also through exosomes [66].

The AML-BM microenvironment can also support leukemia development by provid-
ing energetic supplies and acting as a chemoprotective milieu. For instance, in response to
AML stimuli, endothelial cells and adipocytes support leukemic growth and persistence
by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte
colony-stimulating factor (G-CSF), IL-6, and serving as a source of fatty acids [47,67]. OB
can augment neoplastic cell proliferation, through an AML-OB crosstalk involving IL-1β
and GM-CSF or by inducing leukemic cells to secrete higher levels of IL-8, a pro-angiogenic
factor [68].

BM-mediated chemoprotection can be promoted by several cell types, including
cancer-associated fibroblasts (CAF), -through the release of growth differentiation factor
15 [69], activator of TGF-β signaling in chemo-resistant leukemic cells [70]-, and endothelial
cells, through the production of vascular endothelial growth factor (VEGF) and other
adhesion molecules which trigger survival and proliferative pathways in AML cells [47].
MSC can contribute to AML survival, for example, by inducing the activation of Notch [71]
and c-Myc [72] signaling and increasing the expression of anti-apoptotic factors Bcl-2 and
Bcl-XL [73]. MSC have also been described to act as a source of functional mitochondria for
leukemic cells and LSC, thus fueling their energetic consumption [74].

The hypoxic nature of AML-BM microenvironment can also contribute to AML
chemoresistance by favoring quiescence of leukemic cells [75]. This is due to hypoxia-
induced cell cycle arrest and pro-survival signaling, as indicated by the upregulation of
p27 (a regulator of cell cycle which prevents S-phase entrance), the increased expression of
XIAP (an anti-apoptotic molecule), and the pro-survival PI3K/AKT pathway activation
observed in AML cells upon in vitro culture in hypoxic conditions [76].

A more extensive summary of BM-chemoprotection mechanisms is reviewed in [11].
BM immunohistopathology of leukemia xenograft models localized residual leukemic

cells, after chemotherapeutic treatment, in proximity to the vascular endothelium and to
the endosteum, supporting the role of the BM niche in preserving LSC from the effect of
chemotherapeutic agents [10].

Overall, these peculiar features of the AML niche are likely to impact on drug efficacy
and their function should be taken into account when testing novel therapies.
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2/3D in vitro co-culture systems and 3D in vivo ectopic BM ossicles, which better
recapitulate the complexity of the human pathologic BM, are becoming critical tools to
test drug efficacy in a human-resembling environment, as reported in [77], and to identify
potential new therapeutic targets involved in leukemia-stromal interactions. An exemplifi-
cation of the broad applicability of in vitro BM niche models in the leukemic context was
recently provided by a sophisticated leukemia-on-a-chip technology [78]. This was applied
to the investigation of the B-cell acute lymphoblastic leukemia (B-ALL) microenvironment
but carries great potential in AML.

Moreover, single-cell technologies are emerging as a powerful tool to dissect nor-
mal and, more importantly, pathological niches. They are allowing to understand how
leukemia reshapes the BM microenvironment for the identification of cellular and molec-
ular alterations potentially predictive of patient survival and/or targetable with specific
stromal/immune microenvironment-directed therapeutic approaches [19,56].

Novel strategies investigating the preclinical/clinical utility of exploiting and tar-
geting peculiar features of the AML niche (as hypoxia, adhesion molecules, cellular, and
immune aberrations) to treat the disease are currently under investigation [22,52,53,65].
BM therapeutic targeting could not only hinder AML progression but also sustain and
preserve normal hematopoiesis [51].

3. CAR T-Cells and Their Current Clinical Application in AML Therapy

Chimeric antigen receptor (CAR) T-cell therapy is a form of “adoptive T-cell transfer”,
originally described in the late 1980s by Eshhar et al. [79–81]. The CAR is an artificial
receptor, integrating an extracellular antigen-binding domain comprised of the variable
region (variable heavy [VH] domain-linker-variable light [VL] domain) and the hinge
region of an antibody fused to a transmembrane domain. The transmembrane domain is
connected to cytoplasmic signal transducing chains, such as the TCR-ζ (CD3ζ) and the co-
stimulatory domains (e.g., CD28, 4-1BB, ICOS, OX40), which promote T-cell activation [82].
When the CAR is expressed on the T-cell surface (CAR T-cell), it mediates a non-MHC-
restricted antigen recognition coupled to T-cell activation, a property scientists exploit to
target tumor antigens and eradicate cancer. In a clinical setting, patients could receive
CAR T-cells derived from their own T-lymphocytes engineered ex vivo (autologous CAR T
therapy) [83] or from a donor’s T-cells (allogeneic CAR T therapy) [84].

Autologous CAR T-cell therapy demonstrated promising results in a series of clinical
trials against chronic lymphocytic leukemia [85–87], B-ALL [87–92], and diffuse large B-cell
lymphoma [92–99], leading to the Food and Drug Administration (FDA) and European
Medicines Agency (EMA) approval of two autologous anti-CD19 CAR T drugs, namely
Kymriah™ [100–102] and Yescarta™ [103,104].

In the AML context, CAR T-cell application is at its dawn, with a limited number of
reported clinical trials and benefits in the treated patients. The first clinical application of
CAR T-cells had been reported in 2013 by Ritchie et al. targeting Lewis-Y antigen with
unsatisfactory results [105]. Since then, reported AML CAR T clinical trials targeted mainly
one single antigen (mostly CD33, CD123, and NKG2D ligands) [106]. Up to 2021, across all
AML reported clinical trials, an estimate of 65 AML patients have been treated with CAR T
products, only a quarter of whom have achieved complete remission [106]. As summarized
in [106], most of the anti-CD33 CAR T-cell therapies resulted in partial responses, and no
responses were observed in all 31 patients treated with anti-NKG2D ligands CAR T-cells
across three studies. The most encouraging results have been reported by 3 patients who
reached complete remission within one month after being infused with anti-CLL1 CAR
T-cells [107].

To date, there are more than 20 ongoing AML CAR T clinical trials registered with the
clinicaltrials.gov. This number is expected to grow as more target antigens are evaluated
preclinically. Relevant target antigens include: CD135 [108–110], CD38 [111], folate receptor
(FR)-β [112,113], WT1 [114,115], B7-H3 [116,117], CD70 [118,119], and CD7 [120]. For an
overview on the indexed CAR T clinical trials in AML and the CAR constructs they employ,
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we refer the reader to the recent reviews from Mardiana and Gill [121] and Fiorenza and
Turtle [106].

In the next paragraph, we discuss the main obstacles impeding CAR T-cell successful
application in AML and potential strategies to overcome them.

4. CAR T-Cell Approaches in AML: Challenges and Novel Strategies

Although several preclinical and clinical studies are investigating CAR T-cell ap-
proaches in AML, their successful application remains challenging [122].

Beside the general limitations of CAR T-cell therapies (e.g., toxicities (cytokine release
syndrome and neurotoxicity), relapse, durability of the response, and accessibility to the
treatment) [123,124], CAR T exploitation in AML is further challenged by the complex
pathobiology of this disease.

The obstacles limiting the application of CAR T-cells to AML include the lack of a uni-
versal and tumor-specific antigen, and an immunosuppressive tumor microenvironment,
as reported for solid tumors [121,124,125].

In the next sections, we discuss the challenges for CAR T-cell use in AML in light of
the disease characteristics: (1) identification of specific LSC/leukemic CAR target, (2) AML
heterogeneity, and (3) leukemic BM niche. Limitations and potential rescue strategies are
schematized in Figure 2.
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effects related to the use of CAR T-cells in patients. Strategies to deplete CAR/CAR T-cells (e.g., mRNA electroporation of
the CAR, suicide switches, drug-inducible on–off switches, and antibody-mediated depletion) could be employed to reduce
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the persistence of the toxicity. Due to the absence of an ideal target in AML, CAR T-cells impact normal cells expressing
the target antigen. Thus, it is essential to identify suitable neoantigens and novel potential targets (leukemia-specific).
To overcome on-target/off-tumor toxicity, AND- and NOT-logic-gated CAR can be employed to increase specificity.
Affinity fine-tuning, CAR/CAR T-cell depletion strategies, and a combination of CAR therapies with allogeneic HSPC
transplantation edited out for CAR target are further solutions to be considered. Antigen loss can occur upon CAR treatment.
However, the targeting of neoantigens, stably expressed on leukemic cells, or of multiple antigens should overcome it.
AML inter- and intra-patient heterogeneity renders extremely difficult a general application of CAR T in all AML patients,
suggesting that a personalized approach and combinatorial CAR strategies are required. Lastly, AML-BM niche might affect
CAR T-cell functionality due to its hypoxic and immunosuppressive nature. Moreover, it could protect LSC from CAR
T-cell effectiveness. Strategies to combat immunosuppression should be considered alongside CAR infusion. Armored or
switch receptor CAR can be employed as well. Specific antigen expression or hypoxia can be exploited for CAR trafficking
or niche targeting increasing CAR T potency in the cradle of LSC. To overcome potential alterations of AML T-cells that can
render them not suitable for CAR T-cell manufacturing, allogeneic T-cells engineered to bypass graft-versus-host disease
and rejection and to express CAR can be used. CRS, cytokine release syndrome; CAR, chimeric antigen receptor; LSC,
leukemic stem cells; AML, acute myeloid leukemia; HSPC; hematopoietic stem and progenitor cells; BM, bone marrow;
MDSC, myeloid-derived suppressor cells; Tregs, regulatory T-cells.

4.1. CAR T-Cell Antigens in AML and Strategies to Overcome on-Target/Off-Tumour Effects

The primary barrier to the successful application of CAR in AML is the lack of surface
targets that are specifically expressed on AML leukemic cells in the majority of patients,
but not on normal tissues [126].

The vast majority of markers investigated so far are not restricted to LSC/leukemic
cells but are also found on normal hematopoietic progenitors, on mature cells (e.g., CD7 on
T-cells) and on non-hematopoietic sites (e.g., CD33 on Kupffer cells, CD123 on endothelial
cells, CD44v6 and CD47 on keratinocytes, FLT3 on neurons and testis, CLL1 on lung and
gastrointestinal epithelial cells) [122].

As a consequence, although the CAR T-cells that are being tested for AML exhibit a
potent anti-leukemic effect in preclinical studies, the majority of them only show modest
effectiveness in clinical trials and are associated with myeloablation, cytopenia, and severe
extramedullary effects [106,121,122]. The on-target/off-tumor toxicity effects observed in
AML are less tolerable than the B-cell aplasia induced by anti-CD19 CAR T-cell treatment
in ALL and they can be lethal upon prolonged exposure [121,122]. Thus, clinical evidence
suggests that current CAR T-cell strategies in AML could serve as a bridge to hematopoietic
stem cell transplantation rather than a stand-alone therapy [127,128].

Potential strategies to avoid fatal side-effects, due to the lack of leukemia-specific
antigens, include (1) discovering novel LSC/leukemic specific antigens, (2) optimizing
the design of CAR T-cell treatments, (3) optimizing the design of CAR products, and (4)
controlling CAR T-cell activity in vivo.

(1) To broaden the spectrum of targetable antigens, it is possible to redirect CAR T-
cells to target intracellular neoepitopes when presented by HLA complex on AML cells, as
exemplified by the recently developed CAR against NPM1c epitope-HLA-A2 complex [129].
Additionally, FLT3-ITD is a candidate tumor-specific CAR antigen, as it is endogenously
processed by leukemic cells generating an immunogenic mutated peptide [130].

Moreover, alternative splicing-derived AML neoantigens represent (e.g., CD44v6) or
may represent (e.g., FLT3-Va and NOTCH2-Va) immunotherapeutic targets [131], with
CD44v6 CAR T-cells exhibiting anti-cancer killing preclinically [132] and being currently
investigated in clinic (NCT04097301).

Notably, it is essential to select neoantigens expressed on the vast majority of, if not
all, AML cells and patients to obtain a large applicability.

Moreover, it is unlikely that neoantigens undergo antigen loss and therefore they serve
as optimal immunotherapeutic targets [131].

Epitope-HLA complex targeting may be extended to intracellular proteins selectively
expressed by AML blasts/LSC, as TARP identified through differential gene expression
screening [133].
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As previously mentioned, scRNA-seq can be applied to the identification of novel
targets to be subsequently validated at the protein level. Furthermore, the recently devel-
oped sequentially tumor-selected antibody and antigen retrieval (STAR) system has been
applied to screen and identify nanobodies preferentially binding to AML cells, potentially
informing leukemia-specific CAR T-cell strategies [134].

(2) It has been recently shown that CAR T-cell infusion combined with the trans-
plantation of HSPC, in which the CAR-targeted antigen (e.g., CD33) is edited out prior
to CAR infusion, can be successfully applied to avoid off-tumor toxicity. This strategy
can be extended to other antigens and, after appropriate considerations, translated into
patients [135].

(3) On-target/off-tumor CAR T-cell side effects can be overcome by logic-gated CAR
T-cells, which require the targeting of multiple antigens in order to exert their cytotoxic
effect. Specifically, “AND-gated” dual CAR T-cells can only activate when at least two
markers are expressed on the target cells. Conversely, “NOT-gated” CAR T-cells require the
expression of one marker and the absence of a second one to exert anti-tumor effects [124].
However, high-throughput integrated transcriptome and surface proteome analyses in
AML blasts/LSC failed to identify suitable antigen combinations for the design of dual CAR
strategies, due to the high heterogeneity observed in this leukemia [126]. Another study
has identified CD33-TIM3 and CLL1-TIM3 as potential combinations for the development
of dual CAR approaches and will require further validation [136]. Dual CD13-TIM3 CAR
T-cells evaluated in preclinical settings exhibited anti-leukemic potential with limited HSC
toxicity [134].

The affinity of CAR to their cognate antigens can influence on-target/off-tumor ef-
fects. The effect of CAR affinity on CAR T-cell functionality has generated controversial
results [82], probably due to the antigen-dependent variability and the CAR construct
utilized. Low-affinity CAR can better discriminate cells with different antigen expression
levels, leading to the preferential targeting of malignant cells (overexpressing tumor anti-
gen) over normal cells (expressing the antigen at physiological levels) [82]. Thus, their use
would be ideally placed in AML, to minimize the off-leukemia drawbacks. Low-affinity
CD123 CAR exhibit similar anti-leukemic properties to wild-type and high-affinity ones
but a promising safer profile in vitro, as determined by reduced cytotoxicity against lowly
antigen-positive cells [137]. On the other hand, while decreasing the affinity of CAR T-cells
against FR-β in AML can prevent their off-tumor toxicity in monocytes, it does not provide
sufficient anti-leukemic activity [113]. Further investigations will be necessary to fine-tune
CAR affinities to balance anti-tumor potency and toxicity.

(4) Finally, CAR mRNA electroporation in T-cells, suicide switches, drug-inducible
on–off switches, or antibody-mediated CAR T elimination are strategies to control CAR
T-cell lifespan and limit their side effects [23,124,132,138–140]. However, their translation
in clinic needs accurate evaluation [141].

4.2. AML Phenotypic Heterogeneity Challenges the Identification of Target Antigens for AML
CAR T-Cell Strategies

The inter- and intra-patient genetic and phenotypic heterogeneity of AML limits the
design of a universal CAR T-cell strategy.

As a result, the selection of candidate surface antigens requires a more personalized
approach varying according to the age of the patient [142], disease phenotype [143], and
stage [42,136]. In a recent study, a stable expression at diagnosis and relapse for CD33,
CD123, TIM3, and CD7 has been reported [136]. Further studies investigating the stability
of cell surface markers in LSC/AML blasts throughout the progression of AML are needed,
especially at relapse, when CAR T-cell therapies are more likely to be utilized.

The mutational landscape can also contribute to AML immunophenotypic patterns [43].
For instance, CD123 [144] and CD26 [44] display high expression in FLT3-ITD-mutated
LSC, NPM1c−HLA−A2 complex in NPM1c+HLA−A2+ AML [129], and CD33-FLT3 in
KMT2A-mutated infant patients [142].
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Antigen loss or reduced expression on the tumor cell surface is one of the main causes
of disease relapse in CD19 CAR T-cell therapy [123]. Similarly, in AML, CAR T-cells against
antigens with heterogeneous expression are likely to result in relapse due to incomplete
targeting and clonal selection, especially if single antigens are targeted [127].

Overcoming this limitation is likely to require the targeting of multiple antigens
(CAR/CAR strategy) [139]. Indeed, CAR T-cells concurrently targeting antigens on LSC
and AML blasts (CD123, CD33) have shown remarkable preclinical results [139]. Perna
et al. and Haubner et al. used transcriptomics, surface proteomics, and flow cytometry to
systematically identify targets expressed in primary AML-LSC but absent in HSPC and
healthy tissues [126,136]. By doing so, they identified candidate antigen combinations
for CAR/CAR strategies (e.g., ADGRE2-CD33, CCR1-CLEC12A, CD70-CD33, LILRB2-
CLEC12A [126], CLL1-TIM3 [136]), which will require functional validation. Dual CAR
targeting (involving CD123, CD33, CLL1) is also being tested in clinical trials (NCT03795779,
NCT04156256, NCT04010877). Encouraging results have been reported for CLL1-CD33
CAR T-cell treatment (NCT03795779) [145].

Moving toward a personalized medicine approach, recent clinical studies are investi-
gating patient-tailored approaches combining CAR T-cells against various targets according
to patient’s AML phenotypes (NCT03222674, NCT03473457).

4.3. Targeting the AML Tumour Microenvironment with CAR T-Cells

So far, there is no direct evidence of the impact of the AML niche on CAR T-cell
functions. Given its immunosuppressive and hypoxic nature, it is likely that the AML-
BM niche may hamper CAR T-cell functionality. Thus, CAR T-cell strategies targeting
both leukemia cells and their microenvironment may represent a double-edged approach,
counteracting the pro-leukemic BM microenvironment on one side and directing CAR
T-cells to the LSC-enriched BM on the other.

The microenvironment-mediated impairment of CAR T-cell functions is well docu-
mented in solid tumors and B-cell malignancies, where it can be mediated by various cell
types, including MDSC, macrophages, and Tregs. A similar mechanism may be extended
to AML [125,146].

Despite the immunomodulatory functions of BM-MSC and their role in tumor
evolution [147], few studies have investigated their effect on CAR T-cell functions and
generated conflicting results, showing negative [148], positive [149], or lack of [132,150]
impact. In solid tumors, CAF block T-cell infiltration [125] and contribute to immuno-
suppression and immunotherapy resistance [151] while supporting cancer growth [125].
These observations have led to several preclinical studies testing CAR T-cells against the
fibroblast activation protein (FAP) expressed in CAF. These studies have shown encour-
aging anti-tumor effects but, in some cases, have also displayed severe toxicities due to
the expression of FAP on healthy tissues, as summarized in [125]. To date, only one study
has evaluated the role of the BM-MSC in CAR T-cell resistance in AML context [132] and
further investigation is required.

To counteract the tumor-associated immunosuppressive environment, fourth-generation
“armored” CAR have been engineered to produce immune-stimulatory cytokines (e.g., IL-
12) [124], to release PD-1-blocking single chain variable fragments [152], or to constitutively
express CD40L in order to raise endogenous anti-cancer immune response [153]. Chimeric
constructs, coupling the extracellular domain of an inhibitory T-cell receptor (e.g., PD-1)
with intracellular costimulatory signal, have also been described in CAR T-cells [154].

Additional strategies to counteract the tumor immunosuppressive microenvironment
in the CAR T-cell context are described elsewhere [125,146].

Trafficking receptors (e.g., CXCR4) [155] may be useful to preferentially direct CAR
T-cells to the BM, potentially boosting the eradication of residual LSC. Alternatively, the
combination of CAR T-cells with LSC mobilizers might favor the egress of LSC from their
niche [65] and their consequent killing by CAR T-cells in a non-hostile environment for
CAR T-cells.
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It is still to be determined whether the hypoxic nature of the AML niche positively
or negatively influences CAR T-cell functions. Hypoxic environments have been shown
to promote central memory phenotype in CAR T-cells, which is beneficial for their func-
tionality [156], but on the other hand reduce CAR T proliferation and hinder their effector
memory differentiation and functionality (the latter being due to Tregs recruitment and
enhancement of PD-L1 expression) [125]. Moreover, the hypoxic environment can alter the
surface phenotype of AML cells in vitro [157], suggesting that the effect of hypoxia should
be evaluated when selecting CAR T-cell targets to avoid antigen escape. A recent study
illustrates how hypoxia-sensitive CAR T-cells, able to specifically activate in hypoxic sites
(such as the AML-BM microenvironment) can be employed to avoid unwanted off-site
toxicities [158]. This approach could be investigated to eradicate residual LSC persisting in
the hypoxic BM niche after chemotherapy.

The application of in vitro and in vivo humanized BM niche models will be crucial to
understand how the AML-BM modulates CAR T-cell functions and to identify therapeutic
targets in the pathological niche.

Finally, AML intrinsic features and prior chemotherapy treatments may impact on the
fitness of the underlying T-cell populations used for CAR engineering, challenging the suc-
cessful manufacture of autologous CAR T-cells from AML patients [121]. Allogeneic CAR
T-cells engineered to attenuate graft-versus-host disease and rejection may be employed to
achieve faster and broader product availability [159]. A phase I clinical study is currently
investigating the applicability of universal CD123 CAR T-cells in AML (NCT03190278).

5. Conclusions

The complexity of AML biology has led to unsatisfactory clinical outcomes so far.
The quiescent and immune-evasive nature of LSC makes them critical players in therapy
escape and disease relapse, suggesting that their effective targeting is imperative for
curative treatments. In this context, CAR T-cells represent a promising option, as they
can effectively target tumor cells irrespectively of their quiescent status or their immune
visibility, by mediating MHC-independent tumor recognition and targeting.

In this review, we summarized the main characteristics of AML-LSC and the AML-
BM niche in the context of their therapeutic targeting using CAR T-cells. Moreover, we
highlighted several potential strategies to minimize toxicity while preserving or increasing
CAR T-cell functions.

Although CAR T-cells have been successfully applied for the treatment of several
hematological malignancies and their translation to AML is in its infancy, it is clear that
the pathobiology of the disease represents the main barrier to their successful exploitation.
Specifically, the lack of LSC/AML-specific target antigens, the heterogeneity of the disease
and the potential role of the AML pathologic BM microenvironment stand out as some of
the main obstacles. Additionally, AML patients’ age and their general compromised health
status increase the risks of CAR T-cell related toxicities.

It is increasingly clear that the application of CAR T-cells to AML will require per-
sonalized and multi-targeted approaches and these strategies are currently investigated in
clinical trials.

Luckily, the CAR T-cell research field is continuously evolving and there is still room
for improvement. In particular, recent single-cell technologies can be applied to identify
novel candidate antigen combinations in AML cells and their niche. The advances in CAR
engineering and the introduction of control switches will lead to increased CAR activity
and specificity and reduced toxicity.

Open questions remain: (1) Is there a broadly applicable antigen combination across
AML subtypes? (2) Are some of the emerging strategies (e.g., CAR depletion, niche-
targeting) feasible in a clinical setting? (3) Could CAR T-cells ever be used as a stand-alone
therapy in AML? (4) Can stratification systems be developed to identify patients eligible
for CAR T-cells as a first-line treatment?
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