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Simple Summary: Oral cancer is the most common type of head and neck cancer worldwide. The
detection of oral potentially malignant disorders, which carry a risk of developing into cancer, often
provides the best chances for curing the disease and is therefore crucial for improving morbidity
and mortality outcomes from oral cancer. In this study, we explored the potential applications
of computer vision and deep learning techniques in the oral cancer domain within the scope of
photographic images and investigated the prospects of an automated system for identifying oral
potentially malignant disorders with a two-stage pipeline. Our preliminary results demonstrate the
feasibility of deep learning-based approaches for the automated detection and classification of oral
lesions in real time. The proposed model offers great potential as a low-cost and non-invasive tool that
can support screening processes and improve the detection of oral potentially malignant disorders.

Abstract: Oral cancer is the most common type of head and neck cancer worldwide, leading to
approximately 177,757 deaths every year. When identified at early stages, oral cancers can achieve
survival rates of up to 75–90%. However, the majority of the cases are diagnosed at an advanced
stage mainly due to the lack of public awareness about oral cancer signs and the delays in referrals to
oral cancer specialists. As early detection and treatment remain to be the most effective measures
in improving oral cancer outcomes, the development of vision-based adjunctive technologies that
can detect oral potentially malignant disorders (OPMDs), which carry a risk of cancer development,
present significant opportunities for the oral cancer screening process. In this study, we explored the
potential applications of computer vision techniques in the oral cancer domain within the scope of
photographic images and investigated the prospects of an automated system for detecting OPMD.
Exploiting the advancements in deep learning, a two-stage model was proposed to detect oral
lesions with a detector network and classify the detected region into three categories (benign, OPMD,
carcinoma) with a second-stage classifier network. Our preliminary results demonstrate the feasibility
of deep learning-based approaches for the automated detection and classification of oral lesions in
real time. The proposed model offers great potential as a low-cost and non-invasive tool that can
support screening processes and improve detection of OPMD.

Keywords: oral potentially malignant disorders; leukoplakia; oral cancer; screening; deep learning; con-
volutional neural network; semantic segmentation; instance segmentation; object detection; classification

1. Introduction

Oral cancer is the most common type of head and neck cancer worldwide, with an
estimated 377,713 new cases and 177,757 deaths in 2020 [1]. Surgery is the usual primary
treatment and generally yields high treatment success, with overall survival rates reaching
75–90% in the early stages [2,3]. However, over 60% of the cases are diagnosed at an
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advanced stage and progress with high morbidity and mortality [2,4]. Considering the
alarming incidence and mortality rates, oral cancer screening has been an important part
of many healthcare programs, as a measure to improve early detection of oral cancer [5].
Oral squamous cell carcinoma (OSCC), which makes up over 90% of oral cancer cases, is
often preceded by oral potentially malignant disorders (OPMD), such as leukoplakia and
erythroplakia [6]. The detection of OPMD, which has a risk of malignant transformation, is
of the utmost importance for reducing morbidity and mortality from oral cancer and has
been the main focus of the screening programs [6]. However, the implementation of these
programs, based on visual examination, has been found to be problematic in a real-world
setting as they rely on primary care healthcare professionals, who are often not adequately
trained or experienced to recognize these lesions [6,7]. The substantial heterogeneity in
the appearance of oral lesions makes their identification very challenging for healthcare
professionals and is considered to be the leading cause of delays in patient referrals to
oral cancer specialists [7]. Besides, early-stage OSCC lesions and OPMD are typically
asymptomatic and may appear as small, harmless lesions, leading to late presentation of
patients and ultimately leading to further diagnostic delay.

Advances in the fields of computer vision and deep learning offer powerful methods to
develop adjunctive technologies that can perform an automated screening of the oral cavity
and provide feedback to healthcare professionals during patient examinations as well as
to individuals for self-examination. The literature on image-based automated diagnosis
of oral cancer has largely focused on the use of special imaging technologies, such as
optical coherence tomography [8,9], hyperspectral imaging [10], and autofluorescence
imaging [11–16]. On the other hand, there have been a handful of studies performed
with white-light photographic images [17–21], most of which focus on the identification of
certain types of oral lesions.

The identification of OPMD is crucial for improving early detection of oral cancer
and therefore has an important role in the development of oral cancer screening tools. In
this study, our aim was to explore the potential applications of various computer vision
techniques to the oral cancer domain in the scope of photographic images and investigate
the prospects of a deep learning-based automated system for oral cancer screening.

2. Materials and Methods
2.1. Dataset

The study was conducted in collaboration with the Oncology Institute at Istan-
bul University and approved by the Ethics Committee of Istanbul University (Protocol
number:1489-19). Photographic images of oral lesions with histopathological results were
collected from the archive of the department of Tumour Pathology, which formed the
initial source of our dataset. The rest of the images were collected from publicly available
sources using search engines (http://images.google.com (accessed on 27 August 2020),
https://yandex.com/images/ (accessed on 27 August 2020)). The dataset comprises a di-
verse set of lesions coming from a wide range of oral diseases and anatomical regions. Each
lesion is classified as ‘benign’, ‘OPMD’, or ‘carcinoma’ based on the disease involved and
its risk of progressing into oral cancer, as shown in Table 1. For the carcinoma class, only
OSCC is included in the dataset. Besides the heterogeneity of oral diseases, the images in
the dataset exhibit considerable variability in quality (i.e., lighting, zoom, angle, sharpness)
and resolution.

http://images.google.com
https://yandex.com/images/
https://yandex.com/images/
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Table 1. Lesion classes and corresponding oral diseases included within each class.

Class Disease Number of Lesions

Benign

Dermatologic diseases (geographic tongue, lichen planus,
systemic lupus erythematosus, pemphigoid, erythema

multiforme, pemphigus vulgaris)
90

Fungal diseases (median rhomboid glossitis, candidal
leukoplakia, pseudomembranous candidiasis) 33

Inflammatory process (nicotine stomatitis, gingivitis,
periodontitis, pericoronitis) 30

Developmental defects (fissured tongue, thrush, hairy
tongue, leukoedema, Fordyce granules) 24

Ulcers (aphthous ulcer, traumatic ulcer, viral
ulcers, TUGSE) 54

Keratosis (reactive / traumatic keratosis, linea alba) 36
Hairy leukoplakia 7

OPMD

Leukoplakia 156
Erythroplakia 35

Erythroleukoplakia 46
Submucous fibrosis 11

Carcinoma Squamous cell carcinoma 162

The lesion instances were annotated by an expert oral pathologist (MST) using the
VGG Image Annotator (VIA) tool [22,23]. Bounding polygons were drawn around the
lesion areas and the corresponding class values were added as a region attribute. Our
final dataset for the object detection experiments consisted of 652 images, which were split
into approximately 80% for training, 10% for validation, and 10% for testing in a stratified
fashion by maintaining the same proportion of class labels as in the original dataset. For
the classification task, it was considered more practical to classify close-up lesion areas
individually instead of assigning a global class for an entire image, since some images
contain multiple lesions. Therefore, the lesion areas were rectangle-cropped, and these
target regions were used for the classification experiments. This approach helps not only to
boost the number of images for the classification experiments but also helps with the model
training since oral lesions are often obscured by a complex background and structures such
as teeth and dental tools. The distribution of images based on lesion class and dataset type
is provided in Table 2.

Table 2. Number of images for classification experiments according to lesion class and dataset type.

Dataset Type Benign OPMD Carcinoma Total Number of Lesions

Training 219 203 130 552
Validation 26 22 15 63

Test 29 23 17 69
- 274 248 162 684

The median width and height of the images in our dataset were 546 and 397 pixels,
respectively. The images were resized to approximately 512 pixels along the longest
image dimension for the segmentation and detection experiments. For the classification
experiments, the cropped lesion areas were resized to respective input sizes based on the
pretrained model, as explained in Section 2.5. Zero-padding was applied during resizing
to preserve the aspect ratio of the image.

2.2. Semantic Segmentation Experiments

Semantic segmentation is one of the image recognition tasks that deals with assigning
each pixel of an image to a particular class including background, as shown in Figure 1a [24].
It is an important part of the automated diagnostic systems as it serves to delineate struc-
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tural features such as boundaries of a lesion and provide a pixel-wise segmentation of
anatomical structures. U-Net is a well-known segmentation model developed for biomedi-
cal image segmentation [25]. In order to segment oral lesion areas from their background,
U-Net architecture was employed but with the encoder part replaced by an advanced
convolutional backbone. Qubvel’s segmentation library, built on PyTorch framework (v1.7),
was used for implementing the U-Net based models [26]. Data augmentation and transfer
learning were utilized to overcome overfitting of the models. Test-time augmentation
(TTA) was also implemented to improve predictions at test time. Further details of the
experimental setup are available in Text S1. The performance of the models was measured
based on the dice coefficient score (F1-measure) which is a frequently used metric for
assessing pixel-level segmentation accuracy (Equation (1)). It is computed as the size of the
overlap between the predicted mask and the ground-truth mask divided by the total size
of the two masks.

Dice Score =
2 TP

2 TP + FP + FN
(1)
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Figure 1. Different types of image recognition tasks showing (a) Semantic Segmentation, (b) Instance
Segmentation, and (c) Object Detection.

2.3. Instance Segmentation Experiments

While semantic segmentation is useful for delineating lesion areas from the images of
the oral cavity, it does not differentiate between different lesion instances that may occur
in an image. As shown in Figure 1b, instance segmentation provides an instance-level
recognition by combining object detection and semantic segmentation tasks simultaneously.
Mask R-CNN is one of the most well-known instance segmentation frameworks, which
was developed by Facebook AI Research in 2017 [27]. It predicts a bounding box, a class
label, and a pixel-level mask for each object instance separately. Facebook’s Detectron2
library was utilized for implementing Mask R-CNN with three different ResNet Feature
Pyramid Network (FPN) backbones [28]. Further details of the experimental setup are
available in Text S2.

Average precision (AP) was used as the evaluation metric for the instance segmenta-
tion and object detection experiments. A detection is considered a True Positive (TP) if the
Intersection over Union (IoU) between the ground truth and the prediction is greater than
a given IoU threshold and its predicted class is correct; otherwise, it is a False Positive (FP).
If an object is not detected at all, then it is treated as a False Negative (FN). When precision
is computed at each recall level based on the number of TP, FP, and FN, the area under
the precision-recall curve gives the AP. We compute the AP over a range of IoU (Equation
(2))thresholds from 0.5 to 0.95 with a step size of 0.05 and take the average of these values
to produce the final AP for a given class as in the COCO evaluation (Equation (3)) [29]. We
also report AP calculated at a fixed IoU threshold of 0.5, which is abbreviated as AP50.

AP[class, IoU] =
∫

precisioninterp(r) dr (2)

AP[class] =
1

Number o f IoU thresholds ∑
IoU

AP[class, IoU] (3)
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2.4. Object Detection Experiments

Object detection is an area of computer vision that is concerned with detecting objects
in images and videos, as illustrated in Figure 1c. YOLO architecture belongs to a family
of single-stage object detectors which combines localization and classification tasks in a
single network and therefore runs very fast thanks to its simple architecture [30]. YOLOv5
(PyTorch implementation of YOLOv4) was employed for lesion detection, which stands as
the state-of-the-art algorithm for object detection in real time [31,32]. YOLOv5 is available
in four versions based on the width and the depth of the network: YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. All of the four versions of the model were evaluated for the lesion
detection task and were initialized with pretrained weights on the COCO dataset in order
to prevent overfitting. Mosaic data augmentation was utilized by combining up to four
images into one during training to improve detection of small-scale objects. Moreover, TTA
and model ensembling (i.e., of multiple YOLOv5 versions) were implemented to improve
performance at test time. Further details of the experimental setup are available in Text S3.
The model performance is evaluated in terms of AP metric as in Mask R-CNN experiments.

2.5. Classification Experiments

Since oral lesions are often obstructed by structures such as teeth and dental tools,
and some images contain multiple lesions of different classes, lesion areas were isolated as
explained in Section 2.1 and classification experiments were performed on these cropped
images. Various Convolutional Neural Network (CNN) architectures were evaluated for
the lesion classification task, such as ResNet-152 [33], DenseNet-161 [34], Inception-v4 [35],
and EfficientNet-b4 [36]. Additionally, an ensemble model of DenseNet161 and ResNet-152
was built, which uses the average of the outputs produced by two models for prediction.
Images were resized to 224 pixels for ResNet-152, DenseNet-161, and the average ensemble
models, 299 pixels for Inception-v4, and 380 pixels for EfficientNet-b4 model. All models
were initialized with weights pretrained on the ImageNet dataset provided by open-source
PyTorch libraries [37–39]. The same data augmentation techniques were utilized across the
models. Further details of the experimental setup are available in Text S4 and Table S2.

We computed the confusion matrices on the test set to summarize model predictions.
Performance metrics such as precision, recall, and F1 score were computed as described in
Equation (4), Equation (5), and Equation (6). To account for class imbalance, we reported a
weighted macro-average F1-score, which is the weighted average of F1-scores for each class.
Confusion matrices and related metrics were calculated using scikit-learn library [40].

Precision = TP
TP+FP (4)

Recall = TP
TP+FN (5)

F1 = 2×Precision×Recall
Precision+Recall (6)

3. Results
3.1. Semantic Segmentation Experiments

U-Net architecture was evaluated with different convolutional backbones for the lesion
segmentation task. Hyperparameters were optimized based on the performance on the
validation set (details available in Table S1 and Figure S1). The results for the background
vs. lesion segmentation task are shown in Table 3. The EfficientNet-b7 model achieved a
dice score of 0.926 without TTA and 0.929 with TTA. The predicted mask outputs and their
corresponding ground-truth masks are provided for the test images in Figure 2, using the
best performing model.
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Table 3. Test results of U-Net with various backbones for the background vs. lesion segmentation
task. The models were evaluated based on the dice (F1) score as the evaluation metric using the best
model checkpoints.

Backbone Dicetest Dicetest with TTA

EfficientNet-b3 0.925 0.927
Densenet-161 0.921 0.927
Inception-v4 0.915 0.922

EfficientNet-b7 0.926 0.929
ResNeXt-101_32x8d 0.923 0.928
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Figure 2. Semantic segmentation of oral lesions with EfficientNet-b7 model on test set. Each column is
displaying a single test example with the original image in the top row, the ground-truth segmentation
in the middle row, and the predicted segmentation in the bottom row. Lesion and background masks
are shown in green and blue colours, respectively.

3.2. Instance Segmentation Experiments

The test results of Mask R-CNN experiments with ResNet-50, ResNet-101, and
ResNeXt-101 FPN backbones are presented in Table 4 with and without TTA. The learning
curve plots are provided in Figure S2. The ResNeXt-101 FPN model achieved an AP score
of 43.90 for box detection and 37.85 for mask detection without TTA on the test set. At the
fixed IoU threshold of 0.5, the ResNeXt-101 FPN model achieved AP scores of 79.74 and
78.00 for box and mask detection, respectively. The model predictions are illustrated for
the test images in Figure 3, using the best performing model.

3.3. Object Detection Experiments

Different versions of YOLOv5 were evaluated for the one-class lesion detection task.
Model hyperparameters were optimized based on the performance on the validation set.
The learning curve plots are provided in Figure S3 and the test results of each model are
reported in Table 5. The model outputs are presented in Figure 4 using YOLOv5l with
selected confidence and non-max suppression (NMS) thresholds.
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Table 4. Mask-RCNN results on test set with ResNet-50, ResNet-101, and ResNeXt-101 FPN back-
bones. The results are provided with and without TTA. SpeedGPU measures per image inference
speed in milliseconds (ms) using one Tesla T4 GPU and includes image pre-processing, inferencing,
post-processing and NMS.

Backbone Box AP Box AP50 Mask AP Mask AP50 SpeedGPU

ResNet-50 FPN 42.53 80.51 37.23 74.08 46
ResNet-50 FPN + TTA 42.65 82.63 37.98 76.19 361

ResNet-101 FPN 41.85 81.86 37.70 74.41 56
ResNet-101 FPN + TTA 40.54 83.64 37.52 72.96 442

ResNeXt-101 FPN 43.90 79.74 37.85 78.00 89
ResNeXt-101 FPN + TTA 43.35 81.60 37.80 78.92 786
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Table 5. YOLOv5 results for lesion detection with the best model checkpoints on the test set. SpeedGPU

measures per image inference speed in milliseconds (ms) using one Tesla T4 graphics processing unit
(GPU) and includes image pre-processing, inferencing, post-processing, and non-max suppression.

Model AP AP50 SpeedGPU

YOLOv5s 0.579 0.920 4.4
YOLOv5m 0.607 0.896 6.9
YOLOv5l 0.644 0.951 10.6

YOLOv5l + TTA 0.622 0.953 21.2
YOLOv5x 0.613 0.902 18

YOLOv5x + TTA 0.630 0.940 35.3
YOLOv5s & 5m

ensemble 0.637 0.923 9
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Figure 4. Lesion detection results with YOLOv5l on the test set. The top and bottom rows show
the ground-truth boxes and the model predictions, respectively. The values printed on top of the
predicted boxes are the confidence scores for each predicted box.

3.4. Classification Experiments

The precision, recall, and F1-scores of the evaluated CNN models are reported in
Table 6 on the test set. Furthermore, confusion matrix and per-class precision and recall
results are provided for the EfficientNet-b4 model in Figure 5 and Table 7. Moreover, the
predicted class probabilities and the true labels of the test images are displayed in Figure 6
or the EfficientNet-b4 model.

Table 6. Classification results of different CNN models on the test set of cropped lesion regions with
the best model checkpoints. Precision, recall, and F1-score are reported as weighted macro-averages.

Model Input Size Precision Recall F1-Score

EfficientNet-b4 380 0.869 0.855 0.858
Inception-v4 299 0.877 0.855 0.858

DenseNet-161 224 0.879 0.841 0.844
Ensemble 224 0.849 0.841 0.843

ResNet-152 224 0.826 0.812 0.811
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Table 7. Class-wise precision, recall, and F1-score results for the test set with the EfficientNet-b4
model.

Class Precision Recall F1-score Support

Benign 0.89 0.86 0.88 29
OPMD 0.74 0.87 0.90 23

Carcinoma 1.00 0.82 0.90 17
Weighted average 0.87 0.86 0.86 69
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4. Discussion

Oral cancer is a disease that has recently increased worldwide but is still not fully under-
stood. OSCC accounts for more than 90% of oral cancers. The cause of OSCC is multifactorial,
including extrinsic factors such as tobacco products and alcohol and intrinsic factors such
as malnutrition and iron-deficiency anaemia [41]. Many OSCCs have been documented to
be associated with or preceded by OPMD, especially leukoplakia [41,42]. Therefore, correct
classification of oral lesions, especially white ones, is critical in clinical practice.

Exploiting the advancements in deep learning, a two-stage model is presented in
this study to detect oral lesions with a detector network and classify the detected region
as benign, OPMD, or carcinoma, based on the risk of malignant transformation with a
second-stage classifier network. The proposed model can enable the detection of oral
lesions, including benign and OPMD, in real time, and presents significant opportunities
for the development of a vision-based oral cancer screening tool.

Segmentation and/or detection of lesion areas is an essential step for the identification
of oral lesions. Therefore, several segmentation and detection algorithms were evaluated to
isolate the region of interest, i.e., the lesion area, from photographic images of oral lesions.
For pixel-wise semantic segmentation, U-Net models performed well on the segmentation
task with the EfficientNet-b7 model achieving the highest dice score of 0.929. As shown
in Figure 2, lesions of various types and sizes were segmented with good precision. To
our knowledge, this is the first report of semantic segmentation of oral lesions using
photographic images. While the results with U-Net-based models are very promising, the
application of semantic segmentation may be limited in certain tasks, as it treats multiple
lesion instances in an image as a single lesion object. In that respect, instance segmentation
may be more applicable, which aims to detect and segment each lesion instance separately.

The capability of the well-known Mask R-CNN architecture was studied for the
instance segmentation of oral lesions from photographic images. In experiments with Mask
R-CNN, using different ResNet backbones, all models achieved similar results in terms
of box and mask AP on the instance segmentation task. Overall, the best performance
without TTA was obtained by the ResNeXt-101 model in line with the reported results on
the COCO dataset [28]. Despite a few false positive and negative predictions, the model
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demonstrated the capability of detecting and segmenting lesions simultaneously with good
precision. The model also performed well with challenging cases such as when the lesion
was occluded in the oral cavity or had a relatively smaller size with respect to the image
size. One drawback of Mask R-CNN is slow inference speed due to its complex architecture.
While it can be useful for applications that do not require real-time inference, it falls behind
many object-detection models in terms of inference speed.

As a single-stage object detector, the performance of the state-of-the-art YOLOv5 architec-
ture was evaluated for the detection of oral lesions. The YOLOv5l model performed the best
among all versions, with an AP of 0.644 and an AP50 of 0.951 on the test set and an inference
speed of 10.6 ms per image on Tesla T4 graphics processing unit (GPU). With TTA applied,
YOLOv5l achieved 0.953 on AP50 although this comes at a cost of slight reduction in AP
since TTA generally works to increase recall at a cost of reduced precision. As expected, the
model performance improved with bigger models, with the exception of YOLOv5x, which
was prone to overfitting during training and achieved a lower AP compared to YOLOv5l on
the test set. This could be due to the small size of our dataset, which is better suited to less
complex models on this task. We further showed that the ensemble of two smaller models
such as YOLOv5s and YOLOv5m can achieve almost the same AP as YOLOv5l but at a higher
inference speed. With a very high inference speed and low computational cost, YOLOv5
offers great potential for deployment in a real-world application.

Different types of CNN models, including an ensemble model of DenseNet-161 and
ResNet-152, were evaluated for the multi-class classification of oral lesions based on the
risk of malignant transformation. Among all models, EfficientNet-b4 and Inception-v4
achieved the highest F1-score of 0.855 on the test set. The larger input dimensions and
the advanced architectures of these models were likely to have provided performance
gains over the other models that were evaluated for the classification task. We further
analysed the results of EfficientNet-b4, which outperformed other models in terms of
model complexity, computational cost, and accuracy combined. As shown in Table 7,
the OPMD class had the lowest precision, with four benign and three carcinoma lesions
misclassified as OPMD. Misclassification of carcinoma lesions as OPMD may not pose a
significant risk since both types of lesions should be referred to a medical professional
immediately. On the other hand, misclassification of benign lesions as OPMD may lead
to increased referrals to oral cancer specialists and present an additional burden on the
clinical staff. Nevertheless, the recall for OPMD was relatively high, which is encouraging
since the detection of OPMD is of great importance for oral cancer screening.

The scope of the studies in the related literature have mostly been limited to certain
types of oral lesions, such as mouth sores [17,18] or tongue lesions [19], which represent
only a small fraction of the oral lesions. In a more recent study by Welikala et al., the authors
investigated the feasibility of deep learning methods for detection and classification of oral
lesions based on referral decisions using a more comprehensive dataset [20]. Although the
results were encouraging, particularly for the binary classification of oral lesions as “non-
referral” or “referral”, the models did not achieve good performance on the detection and
multi-class classification of oral lesions. The classifiers were trained with the whole images
of the oral cavity, instead of the target lesion areas, which may have impacted the accuracy
of the models. Recently, Fu et al. proposed to use cascaded deep networks to detect OSCC
from photographic images and compared the performance of the model with that of human
readers [21]. The authors used a pretrained detector network as a pre-processing step to
crop the lesion area and a classifier network to classify the candidate patches as oral cancer
or normal mucosa. While the proposed model was shown to perform on par with human
experts in identifying OSCC lesions, the study failed to investigate the model’s capacity
for differentiating between OSCC and non-OSCC oral diseases or between non-OSCC
oral diseases and normal oral mucosa. In this work, we demonstrated the feasibility of
classifying oral lesions into three categories based on their risk of progression into oral
cancer, with reasonable precision and recall across all classes despite the size of our dataset
and the variability of images. Unlike previous work, we utilized more recent and advanced
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architectures for classification, such as Inception-v4 and EfficientNet-b4, which provided
significant improvements in evaluated metrics. As the models are trained with more
images representing all the clinical variations of oral lesions, the model performance is
expected to further improve significantly.

Finally, we proposed an end-to-end, two-stage model for identifying oral lesions
by combining object detection and classification tasks in a serial manner. In our pro-
posed pipeline, YOLOv5l is used for detecting lesion regions from the whole image and
EfficientNet-b4 is used for classifying the detected lesion region into three categories.
The selected networks achieved overall good performance in terms of both accuracy and
inference time, which makes them highly suitable for deployment in a real-time applica-
tion. As illustrated in Figure 7, the proposed model offers great potential for automated
identification of various oral lesion types and paves the way for a low-cost, non-invasive,
and easy-to-use oral cancer screening tool. It can be deployed as a mobile application for
self-screening of the oral cavity or to support the oral cancer screening process at primary
care centres, such as dental practices. Moreover, it could be used for remote follow-up of
patients who have undergone surgery or received treatment for any disease recurrence.
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Figure 7. Proposed two-stage pipeline for oral cancer screening. It includes the detection of oral
lesions from photographic images in the first stage and the classification of the detection region in the
second stage using deep learning algorithms. YOLOv5l and EfficientNet-b4 models were selected for
the pipeline as they achieved overall good performance in terms of both accuracy and inference time.

5. Conclusions

This study presents the potential applications of deep learning algorithms for seg-
mentation, detection, and multi-class classification of oral lesions as benign, OPMD, or
carcinoma. Based on the results obtained, a two-stage deep learning pipeline is proposed
for oral cancer screening which enables automated detection and classification of various
oral lesion types in real time with low computational costs. We envisage that the proposed
model paves the way for a low-cost, non-invasive, and easy-to-use tool that can support
screening processes and improve detection of OPMD. A larger dataset with more examples
of challenging lesion types can bring significant gains to all of the models; therefore, it will
be the focus of future studies.
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