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Simple Summary: Serum metabolite profiles were compared in healthy participants and lung cancer
individuals in two independent screening studies. A reduced level of lipids, particularly cholesteryl
esters, was observed in cancer patients. Despite several compounds showing significant differences
between cancer patients and healthy controls within each study, only a few cancer-related features
were common when both studies were compared, including reduced levels of LPC(18:0). A large
heterogeneity of serum metabolomes was observed, both within and between studies, which impaired
the accuracy of classifiers based on specific metabolites.

Abstract: Serum metabolome is a promising source of molecular biomarkers that could support early
detection of lung cancer in screening programs based on low-dose computed tomography. Several
panels of metabolites that differentiate lung cancer patients and healthy individuals were reported,
yet none of them were validated in the population at high-risk of developing cancer. Here we
analyzed serum metabolome profiles in participants of two lung cancer screening studies: MOLTEST-
BIS (Poland, n = 369) and SMAC-1 (Italy, n = 93). Three groups of screening participants were
included: lung cancer patients, individuals with benign pulmonary nodules, and those without any
lung alterations. Concentrations of about 400 metabolites (lipids, amino acids, and biogenic amines)
were measured by a mass spectrometry-based approach. We observed a reduced level of lipids, in
particular cholesteryl esters, in sera of cancer patients from both studies. Despite several specific
compounds showing significant differences between cancer patients and healthy controls within
each study, only a few cancer-related features were common when both cohorts were compared,
which included a reduced concentration of lysophosphatidylcholine LPC (18:0). Moreover, serum
metabolome profiles in both noncancer groups were similar, and differences between cancer patients
and both groups of healthy participants were comparable. Large heterogeneity in levels of specific
metabolites was observed, both within and between cohorts, which markedly impaired the accuracy
of classification models: The overall AUC values of three-state classifiers were 0.60 and 0.51 for the
test (MOLTEST) and validation (SMAC) cohorts, respectively. Therefore, a hypothetical metabolite-
based biomarker for early detection of lung cancer would require adjustment to lifestyle-related
confounding factors that putatively affect the composition of serum metabolome.
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1. Introduction

Lung cancer is an aggressive, usually asymptomatic disease with a high mortality rate
that is the leading cause of cancer-related deaths. Every year, nearly two million people
die from this cancer worldwide. Late diagnosis and its aggressive character determine
the poor outcome of this malignancy. In about 70% of patients, lung cancer is detected
in advanced stages, which precludes radical local treatment and worsens prognosis (the
average 5-year survival of about 10–20%). However, in the case of the disease detected at
the early stages, the prognosis is much better (the average 5-year survival varies between
65 and 85%) [1]. Primary prevention (the reduction of consumption of tobacco products)
is of utmost importance, but early detection (secondary prevention) is currently the only
way to defeat this disease. Early lung cancer detection became a reality in this decade due
to the introduction of low-dose computed tomography (LDCT) lung cancer screening [2].
This test significantly reduces lung cancer mortality, which was demonstrated for the first
time by the NLST study conducted in the USA (years 2001–2010), showing a 20% reduction
in lung cancer mortality in the group subjected to the LDCT [3]. The potential of LDCT
screening programs to reduce lung cancer mortality was further confirmed by the European
NELSON study [4] and the Danish Lung Cancer Screening Trial [5]. However, currently
conducted LDCT tests detect in most screens unidentified subcentimeter nodules (the
so-called indeterminate pulmonary nodules, IPN), which lead to a significant percentage of
false-positive results (positive predictive value of 3.8% in the NLST). Therefore, a large frac-
tion of individuals with lung nodules detected by the LDCT test undergo futile diagnostic
and therapeutic procedures [6]. This increases the socioeconomic implication in the form
of higher costs and possible harm for screened individuals. Hence, higher specificity of the
screening test should result in higher diagnostic accuracy and cost-effectiveness, which
would be possible by supplementing the LDCT with other auxiliary diagnostic tests that
could either preselect individuals for LDCT examination or discriminate between benign
and malignant chest abnormalities detected by LDCT [7,8].

A promising candidate for the support of LDCT in lung cancer screening is a biomarker-
based molecular test. The hypothetical biomarker of early lung cancer could be detected
in the blood, which is a particularly valuable source of molecular information on disease-
related processes, with many actual and prospective applications as a “liquid biopsy” of
cancer. For over a decade, intensive studies to identify new biomarkers of early lung
cancer were focused on various components of the blood, including circulating tumor
cells (CTC), circulating free DNA (cfDNA), autoantibodies, and components of the pro-
teome, peptidome, and transcriptome of serum/plasma [9–12]. Moreover, cancer-related
metabolites present in the blood appeared as an emerging source of biomarkers for the
detection and diagnosis of different malignancies [13], including lung cancer. Several
studies reported signatures of serum/plasma metabolites that differentiated patients with
lung cancer from healthy individuals or patients with nonmalignant lung diseases. Ex-
amples of serum metabolites with a potential discriminating value are choline-containing
phospholipids and sphingolipids [14–16]. Two relatively large studies using NMR-based
analysis of plasma or serum metabolome revealed a promising diagnostic potential of
multicomponent lung cancer signatures built of different types of small metabolites [17,18].
Another study, using MS-based approaches, revealed a large set of metabolites whose
serum levels discriminated lung cancer patients from matched controls and allowed for
building multicomponent cancer classifiers [19]. However, lung cancer patients enrolled in
the above-mentioned studies included both early and advanced clinical cancer cases, thus
the potential relevance of proposed signatures for early detection of lung cancer and their
potential applicability in lung cancer screening remains to be verified.

Recently, our group published the results of a pilot study aimed to identify serum
metabolites that differentiated patients with screening-detected lung cancer from healthy
participants of the Gdansk Lung Cancer Screening Study [20,21]. Here, we aimed to extend
and validate these findings using a larger set of samples collected in the frame of two
single-center screening studies: MOLTEST in Gdansk, Poland (n = 369) and SMAC in
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Milano, Italy (n = 93). Three balanced groups of individuals (lung cancer cases, benign
lung nodules, and healthy controls) were included and their serum metabolite profiles
were compared using a comprehensive quantitative MS-based approach.

2. Materials and Methods
2.1. Study Subject

A major part of the material included in this study (test cohort) was collected during
the MOLTEST-BIS Lung Cancer Screening Program performed by the Medical University of
Gdansk between 2015 and 2018. This program enrolled over 6000 participants and offered
LDCT examinations for current or former smokers with at least a 20 pack-year history,
aged from 50 to 75 years. This report involves three groups of participants of the MOLTEST
study (123 individuals in each group): (i) patients who were ultimately diagnosed with
lung cancer, (ii) participants with CT-detected lung nodules that were confirmed benign by
histopathology, and (iii) participants with no CT-detected lung nodules that have no other
cancer-related health problem. Groups were matched according to age and smoking history.
Furthermore, part of the material included in this study (validation cohort) was collected
during the Smokers Health Multiple Action (SMAC) study performed by the Humanitas
Clinical and Research Center, Milano between 2018 and 2021. This study included about
2000 participants (inclusion criteria: age = 55 years old and exposure to smoking more
than 30 packs-year). This report involves three groups of participants of the SMAC-1
study (31 individuals in each group). The characteristics of all groups are presented in
Table 1; all cancer cases available in both studies were included together with matched
controls from both noncancer groups. Studies were approved by the appropriate Ethics
Committees (Medical University of Gdansk, approval no. NKBBN/376/2014, and the
Humanitas Clinical and Research Center, approval no. CE Humanitas ex D.M. 390/18),
and all participants provided informed consent indicating their voluntary participation in
the project and provision of blood samples for future research.

Table 1. Characteristics of donor cohorts.

Group Healthy Controls Benign Lung Nodules Lung Cancer Cases

Polish Cohort (MOLTEST)
n = 123 123 123

Clinical stage:

- -

- IA 49
- IB 10

- IIA 9
- IIB 10

- IIIA 17
- IIIB 7
- IVA 16
- IVB 5

Histopathology:

- -

- Adenocarcinoma 61
- Squamous cell carcinoma 35
- Not otherwise specified

NSCLC 15

- SCLC 6
- Other cancer (incl. mixed

types) 6

Sex:
- Female 53 57 56
- Male 70 66 67

Age: years (median) 53–79 (67) 51–79 (67) 53–79 (67)
Smoking: pack-year (median) 27–132 (45) 26–133 (43) 24–138 (48)
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Table 1. Cont.

Group Healthy Controls Benign Lung Nodules Lung Cancer Cases

Italian Cohort (SMAC)
n = 31 31 31

Clinical stage:

- -

- IA 10
- IB 4

- IIA 1
- IIB 8

- IIIA 5
- IIIB 1
- IVA 1
- IVB 1

Histopathology:

- -

- Adenocarcinoma 24
- Squamous cell carcinoma 3
- Not otherwise specified

NSCLC 3

- SCLC 1
- Other cancer (incl. mixed

types) 0

Sex:
- Female 9 13 12
- Male 22 18 19

Age: years (median) 55–78 (62) 51–85 (67) 55–85 (71)
Smoking: pack-year (median) 9–80 (42) 25–100 (45) 10–82 (46)

2.2. Serum Sample Preparation

Peripheral blood was collected into a 5 mL BD Vacutainer Tube, incubated for 30 min
at room temperature to allow clotting, and then centrifuged at 1000× g for 10 min to
remove the clot. The serum was aliquoted and stored at −80 ◦C before further processing.

2.3. Targeted Metabolomics

Ten µL of serum was analyzed by a targeted quantitative approach using a combined
direct flow injection and liquid chromatography (LC) high-resolution mass spectrometry
(HRMS) assay using the Absolute IDQ p400 HR kit (test plates in the 96-well format;
Biocrates Life Sciences AG, Innsbruck, Austria) according to the manufacturer’s protocol.
This strategy hypothetically allows simultaneous quantification of 407 metabolites or
their isomer groups: 42 amino acids and biogenic amines, 55 acylcarnitines, 60 di- and
triglycerides, 196 (lyso)phosphatidylcholines, 40 sphingolipids, 14 cholesteryl esters, and
hexose. The method combines derivatization and extraction of analytes with selective
mass-spectrometric detection using integrated isotope-labeled internal standards absolute
quantification. Mass spectrometry analyses were carried out on Orbitrap Q Exactive Plus
(Thermo Fisher Scientific, Waltham, MA, USA) equipped with a 1290 Infinity UHPLC
(Agilent, Santa Clara, CA, USA) system using an Agilent Zorbax Eclipse XDB-C18 (3.5 µm)
3.0 × 100 mm column and controlled by Xcalibur 4.1. software. The acquired data
were processed using Xcalibur 4.1. and MetIDQ DB110-2976 (Biocrates Life Sciences
AG) software. Concentrations of all metabolites were calculated in µM.

2.4. Data Normalization

Two types of missing values in the metabolomics dataset were detected: measure-
ments lacking due to the internal calibrant error and “zero” values below the level of
detection/quantitation. Ten and fifty percent missing values in each patient’s group were
allowed for either type of error [22], respectively; otherwise, the compound was excluded
from further analyses. Measurements missing due to the calibrant error were filled by val-
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ues imputed using the k-nearest neighbor approach [23]); the nearest observed data were
identified using correlation distance metric, and the mean value of the three nearest neigh-
bors was used (based on measurements collected for the same patient’s group using the
same test plate). “Zero” values were replaced with random numbers generated from nor-
mal distribution truncated to a segment between 0 and the limit of detection/quantitation
for a given test plate (according to the modified method described in [22]). The final dataset
comprised 385 metabolites where missing values were imputed. After the imputation of
the missing values, the dataset was batch corrected using an empirical Bayes method [24];
we assumed that samples measured using one multiple sample plate represent one batch.
Before batch adjustment, data were transformed using the log base 2 function. Batch-
corrected data were analyzed using the nonlinear dimension reduction algorithm (UMAP)
for the dataset structure visualization [25].

2.5. Statistical Analyses

To estimate the significance of differences in levels of metabolites used in quantita-
tive analyses (259 compounds with less than 50% initial “zero” values in each group),
the Kruskal−Wallis test was applied, followed by the posthoc Conover test for pairwise
comparisons [26]. Moreover, the eta-squared effect size was calculated for Kruskal−Wallis,
whereas the Conover test statistic was standardized by the square root of the sample’s
size which interpretation corresponds to Pallant “r” effect size [27]. Additionally, the
Jonckheere−Terpstra test [28] was evaluated to investigate the trend across order groups.
Finally, the Lancaster probability integration method [29] was used to combine results
from the Kruskal−Wallis test between cohorts. Furthermore, the chi-square independence
test was applied to test whether the absence/presence status of the remaining 126 com-
pounds was a group-related feature. The Benjamini−Hochberg procedure for the FDR
correction was applied when necessary. All statistical hypotheses were tested at the 5%
significance level.

2.6. Sample Classification

The classification model was constructed using the multinomial logistic regression
(MLR) approach. The 10-fold cross-validation (10-CV) was applied. At each fold, the
test set was extracted from the MOLTEST cohort by taking ten samples from each group,
then the internal multiple random cross-validation (MRCV) procedure was applied for
the remaining samples. The MRCV steps were as follows: (i) data split intro train (70%)
and test (30%) subsets, (ii) forward feature selection for MLR on train subset with stop
criterion ∆BIC ≤ 2, (iii) classification of predicted probability to one of the possible groups
by maximum a posteriori, (iv) evaluation of accuracy on the train and test subset. The
MRCV procedure was repeated 100 times at each fold. The resulting set of 100 models
served for feature ranking generation. Features (i.e., metabolites) included in each model
were sorted by their order of addition in the forward procedure, then the elbow technique
was used to extract the most relevant compound for the final MLR model. Finally, the
classification parameters were evaluated using the initial MOLTEST test set and validated
using the SMAC set. The overall accuracy, AUC, sensitivity, specificity, and balanced
accuracy were calculated at each fold of 10-CV, and the mean values were calculated with
a 95% confidence interval (CI).

3. Results

Metabolite profiles were established in a set of 462 serum samples collected from partic-
ipants of two independent lung cancer screening studies (Table 1). There were 385 metabo-
lites detected by a mass spectrometry-based approach, among which 259 metabolites
were quantified in the majority of samples and used in quantitative analyses, including
32 amino acids and biogenic amines, one sugar (hexose), and 226 lipids or their isotope
groups (24 acylcarnitines, 53 glycerides, 105 glycerophospholipids, 32 sphingolipids, and
12 cholesteryl esters). This subset of metabolites consisted of 117 high-abundance com-
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pounds quantified in all samples and 142 compounds where data imputation methods were
used to find missing values, which were used in further quantitative analyses (Figure 1A).
We found that cholesteryl esters (i.e., major components of the so-called total cholesterol),
whose amount represented more than half of detected lipids, were the most abundant
group of serum metabolites. Other abundant groups of lipids were choline-containing
glycerophospholipids and glycerides, which represented about 25% and 14% of total serum
lipids, respectively (Figure 1B). A whole set of detected metabolites was analyzed by an
unsupervised approach to detect a potential “global pattern” of differences among both
included cohorts (MOLTEST and SMAC) and three compared groups of patients: partici-
pants with no LDCT-detected lung abnormalities (Ctr), participants with LDCT-detected
lung nodules that were confirmed benign by histopathology (LN), and patients who were
ultimately diagnosed with lung cancer (LC). The data were transformed by the UMAP
dimension reduction tool from a 385-dimensional metabolic space to a 2-dimensional view
with preservation of the dataset structure. Low-dimensional data projection allowed the
exploration of the global spatial dataset structure and thus potential sample clustering.
We found a large interindividual heterogeneity of samples and no separation of either the
three patient groups or the two cohorts was observed, which is illustrated in Figure 1C.

1 
 

 

 
 
 

 

 
 

Figure 1. General characterization of the serum metabolite profile: (A)—numbers of metabolites
in different classes used in quantitative and binary analyses (chart shows the relative contribution
of compounds used in either type of analysis). (B)—relative contribution of different classes of
lipids to the aggregated concentration of whole detected lipids. (C)—the global structure of the
dataset. Spatial visualization was created using the UMAP data transformation from 385-dimensional
metabolic space to 2D view, preserving the structure of the high-dimensional data to explore the
potential sample clustering. Samples from MOLTEST and SMAC cohorts are marked with circles
and triangles, respectively (Ctr—controls, LN—benign lung nodules, LC—lung cancer).

The set of 259 quantitated serum metabolites was used to detect potential differences
between three groups of the screening participants in both cohorts (MOLTEST and SMAC)
analyzed together (154 individuals in each group). To estimate the significance of dif-
ferences among these groups, the Kruskal−Wallis analysis of variance test was applied,
followed by posthoc pairwise comparisons (data presented in Table S1). The total (aggre-
gated) serum concentration of 10 classes of metabolites is depicted in Figure 2. In general,
we observed a reduced concentration of lipid class, but not amino acids or biogenic amines
class, in serum samples of lung cancer patients. Further, the difference in the total con-
centration of cholesteryl esters was also statistically significant between cancer patients
and the two other groups of individuals (i.e., healthy controls and individuals with benign
lung nodules). Then, we searched for specific metabolites in which concentration was
significantly different between groups. There were 23 metabolites (from all classes but
amino acids) whose levels showed statistically significant differences between groups of
patients (corrected p-value < 0.05). These included 22 metabolites that showed differences
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between cancer patients and healthy controls, 17 metabolites that showed differences
between cancer patients and individuals with benign lung nodules, and 2 metabolites that
showed differences between healthy controls and individuals with benign lung nodules
(pairwise test p-value < 0.05; details in Table S1).

1 
 

 

 
 
 

 

 
 

Figure 2. Aggregated concentrations of different classes of metabolites in serum samples of healthy
controls (Ctr), individuals with benign lung nodules (LN), and lung cancer patients (LC). Boxplots
show the minimum and maximum values, lower and upper quartile, and median (outliers are
marked with gray circles); represented are FDR-corrected results of the Kruskal−Wallis test for a
general variance and the posthoc test p-values for a significance of differences between pairwise
compared groups (n = 154 in each group).

However, only a few of these compounds showed similar differences among groups
when cohorts from two different screening programs were analyzed separately, which
is discussed in more detail in the next paragraph. Additionally, the level of 126 low-
abundance metabolites was below the detection threshold in more than 50% of samples.
These compounds were used in the binary-type of analysis (i.e., present vs. absent) aimed
to detect potentially different distributions of missed measurements. However, none of
these metabolites revealed statistically significant differences between groups of patients
(Table S2).

The analysis of differences between the three groups was also performed separately
for the MOLTEST and SMAC cohorts, then differentiating metabolites were revealed after
the integration of both datasets. Considering a different number of samples in either
cohort (123 and 31 samples per group, respectively) the effect size was used to estimate the
significance of differences (Table S3). A reduced level of total serum lipids was observed
in cancer samples from both subsets of individuals, yet different lipid classes seemed to
contribute to this general observation (Figure 3A).
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2 

 

Figure 3. Levels of selected metabolites separately in two cohorts participating in lung cancer
screening programs: (A)—aggregated concentration of total lipids, triglycerides, and cholesteryl
esters in serum samples of healthy controls (Ctr), individuals with benign lung nodules (LN), and
lung cancer patients (LC). (B)—concentration of selected compounds in serum samples from three
analyzed groups. Boxplots show the minimum and maximum values, lower and upper quartile, and
median (outliers are marked with gray circles); represented are the eta squared effect size values
for a general variance and the Pallant r effect size for a significance of differences between pairwise
compared groups (n = 123 and 31 in each group for MOLTEST and SMAC cohort, respectively);
significance levels of effect size: N—negligible, S—small, M—medium, L—large.

A significantly reduced level of cholesteryl esters was characteristic for cancer patients
from the SMAC subset but not the MOLTEST subset, where this difference, though ob-
served, was less significant (notably, controls have lower levels of cholesteryl esters in the
Polish cohort than in the Italian cohort). On the other hand, a significantly reduced level
of triglycerides was characteristic for cancer patients from the MOLTEST subset, while
the overall level of TGs increased in samples of cancer patients from the SMAC subset.
Important discrepancies between the MOLTEST and SMAC subsets were noted also for
specific compounds. Nineteen out of twenty-three differentiating metabolites mentioned
in the earlier paragraph remained significant only in one subset of patients or the trend for
differences was opposite in both subsets. This could be exemplified by asparagine (Asn),
which was significantly downregulated in MOLTEST cancer samples and upregulated in
SMAC cancer samples. Only four metabolites showed coherence between both datasets:
LPC(18:0), PC(32:3), DG(39:0), and CE(20:5). All these compounds were significantly
downregulated (effect size medium or small) in samples of lung cancer patients from both
MOLTEST and SMAC subsets (Figure 3B). Hence, a large part of the differences between
cancer and control samples appeared to be specific for the patients’ cohort, yet a few of
them seemed to be more universal.

In the final step, the set of 259 quantitated metabolites was used to test and validate
the multicomponent signature aimed to classify patients with lung cancer and benign lung
nodules based on the levels of specific compounds. Samples collected in the MOLTEST
study were used respectively as the training and test sets while samples collected in the
SMAC study were used as the independent validation set. The three-class model (Ctr
vs. LN vs. LC) was analyzed. The training step allowed the establishment of the rank
of features (i.e., quantitated metabolites) that were the most important for classification,
and the feature with maximum deviation in the elbow plot was the cut point at each cross-
validation. Tested signatures included from 7 to 11 components; PC(41:5) and TG(52:4)
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were selected to the classification model in each iteration of 10-CV, while PC(38:6), PC(40:6),
and SM(38:1) were selected in at least 5 out of 10 iterations. The overall mean accuracy
of obtained models was 48% (compared to 33.3% expected by chance in a 3-class model)
in the training set (with the mean AUC = 0.59). The indices of the classification models
were further reduced in the test set (accuracy 37%; AUC = 0.60 with 95% CI: 0.56–65) and
the validation set (accuracy 29%; AUC = 0.51 with 95% CI: 0.47–0.55), which indicated the
insufficient power of the classification models. The corresponding levels of sensitivity and
specificity are also presented in Table 2. The accuracy of classification in each group and the
stability of classification results are presented Table S4. Hence, one should conclude that
large interindividual variance within compared groups (as visible in Figure 1C) ultimately
translated into a relatively low performance of the classification models built to predict a
sample identity based on signatures composed of specific serum metabolites.

Table 2. Indices of the classification model (mean values and 95% confidence intervals; CI).

Set
Overall Accuracy

% (95% CI)
Overall AUC

(95% CI)
Specificity % (95% CI) Sensitivity % (95% CI)

Ctr LN LC Ctr LN LC

Training 48
(46–50)

0.59
(0.58–0.60)

68
(65–71)

65
(61–68)

61
(58–65)

41
(36–46)

49
(45–54)

53
(51–56)

Test 37
(31–43)

0.60
(0.56–0.65)

57
(48–67)

50
(37–63)

54
(48–60)

29
(19–39)

40
(33–47)

42
(26–59)

Validation 29
(26–31)

0.51
(0.47–0.55)

51
(41–60)

47
(43–53)

38
(35–41)

31
(25–38)

25
(20–30)

29
(23–36)

4. Discussion

Several studies already reported serum/plasma metabolome signatures that differenti-
ated patients with lung cancer from healthy individuals or patients with nonmalignant lung
abnormalities, including a few studies that analyzed relatively large groups and addressed
wide panels of metabolites [17–19]. However, this current work is the first that involves a
large group of individuals participating in early lung cancer screening studies and includes
screen-detected cancer cases. Moreover, participants of two different lung cancer screening
studies were compared, which revealed the potential influence of diet/lifestyle factors on
the metabolome-based cancer signature (putative differences in genetic/ethnic background
were less important between Polish and Italian cohorts).

Our primary observation was a generally reduced level of lipids in sera of cancer
patients when total levels of cholesteryl esters, glycerides, and choline-containing phospho-
lipids were addressed (similarly, the level of acylcarnitines, a minor component of serum
metabolome, was also reduced in cancer samples). The main fraction of lipids detected
by our experimental system (approx. 60% of detected lipids) are cholesteryl esters that
usually represent about 80% of total serum cholesterol (free unesterified cholesterol was
not a target in our multiplex assay). The total amount of cholesteryl esters was readily
reduced in cancer samples. It is noteworthy that the relationship between the profile of
serum lipids, cholesterol in particular, and lung cancer risk has been known for decades.
Several population studies documented that the risk of lung cancer is correlated with
serum cholesterol levels (both total cholesterol and HDL cholesterol). This phenomenon
was initially reported in the seven countries study [30], which showed that the risk of
dying from lung cancer is higher for individuals with lower than average levels of serum
cholesterol. This inverse correlation was confirmed in several other studies based on
populations with different ethnic/genetic backgrounds [31], which suggested the general
relevance of this factor. Moreover, the Lipid Research Clinics Coronary Primary Prevention
Trial reported that serum cholesterol level decreased about 2 years before cancer diagnosis,
which suggested the etiological role of cholesterol metabolism disturbances in lung cancer
development [32]. Further, a few studies reported a positive correlation between the risk
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of lung cancer and serum/plasma level of triglycerides (TGs) [31], while other studies
showed a U-shaped correlation [33] or even reduced level of TGs in the serum of lung
cancer patients [34]. Hence, the association between lung cancer and glycerides’ level is
more complex and could reflect interpopulation differences. We observed a reduced level
of cholesteryl esters in the serum of lung cancer patients from both cohorts (yet the differ-
ence between healthy controls and cancer patients was higher in the Italian group), which
was coherent with previous studies that generally showed an inverse correlation between
serum cholesterol level and risk of lung cancer. The unforeseen situation was observed for
the TGs level, which was reduced in cancer samples from the Polish group yet increased in
cancer samples from the Italian group. This indicated that though disturbed metabolism
of cholesterol that results in its reduced serum level was universally associated with lung
cancer, the connection between the metabolism of glycerides and lung malignancy was
putatively modulated by factors specific for different populations.

We noted that several putative cancer-related features were specific for either Polish
and Italian cohorts, which indicated the influence of diet and other lifestyle factors on
the serum metabolome (the influence of genetic and ethnic background was less likely).
However, a few metabolites similarly discriminated against cancer and control samples
in both cohorts, namely LPC(18:0), PC(32:3), DG(39:0), and CE(20:5). Among them, the
lysophosphatidylcholine with stearic acid chain, i.e. LPC(18:0), has been already associated
with cancer risk. A prospective study that addressed a correlation between serum metabo-
lites and risk of breast, prostate, and colorectal cancers revealed that a higher serum level
of LPC(18:0) was associated with a reduced risk of these cancers [35]. Moreover, LPC(18:0)
was among the metabolites that were downregulated in lung cancer patients compared
with healthy controls in studies based on small groups of clinical cancer cases [36,37]. Our
pilot metabolomics study based on participants of the Gdańsk Lung Cancer Screening
Study (2008–2010) also revealed a reduced level of LPC(18:0) in sera of cancer patients
compared to healthy participants of the screening [21]. Reduced level of LPCs in the blood
of cancer patients could reflect their transfer to tumor tissue and higher consumption by
cancer cells, where they deliver respective fatty acids. Notably, an increased level of stearic
acid was observed in lung tumors compared to normal lung tissues [38]. In general, the
metabolism of phosphatidylcholines is significantly disturbed in cancer cells, hence the
changed serum levels of their precursors (e.g., choline) and/or derivatives (e.g., lysophos-
phatidylcholines) are considered promising cancer markers [39]. Therefore, reduced serum
level of LPC(18:0) appeared a universal feature of individuals with lung malignancy, with
potential applicability for early lung cancer detection.

Generally, the same metabolites showed significantly different levels between cancer
patients and participants of the screening study either without any lung abnormalities or
with benign lung nodules. Moreover, only a few differences were noted between the latter
two groups, independent of the screening cohort. Therefore, one could conclude that puta-
tive metabolic features associated with the presence of benign lung nodules do not result
in specific changes that could be observed in the blood of smokers from the lung cancer
high-risk group. On the other hand, metabolic features associated with the malignancy
resulted in changes in the blood metabolome, which were not observed in the blood of
high-risk smokers with benign lung nodules. Hence, a hypothetical metabolome-based
biomarker could be used both for “preselection” of individuals at risk before LDCT exami-
nation and the “differentiation” of individuals with benign and malignant lung nodules.
However, our study revealed large heterogeneity of serum metabolomes that resulted in
low accuracy of classification models based on specific metabolites. This heterogeneity
could result from various lifestyle-related factors, a phenomenon that was addressed in
recent large metabolomics studies [40,41]. This aspect was not addressed specifically in the
current study, yet putative lifestyle-related differences between populations (represented
by Polish and Italian cohorts in our study) reduced the accuracy of serum metabolome-
based signatures. Nevertheless, detailed information about nutritional habits and other
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lifestyle-related factors would be a valuable supplement to questionnaires for screening
participants to facilitate the use of metabolome-based biomarkers in future studies.

5. Conclusions

We observed a reduced total level of lipids, in particular cholesteryl esters, in sera of
cancer patients from two independent screening studies. Moreover, differences between
cancer patients and participants with no lung alterations or benign lung nodules were
similar and only a few differences were noted between the latter two groups, indicating
that putative metabolome-based signature could be used for both detection of cancer
and diagnosis of indeterminate pulmonary nodules. However, despite several specific
compounds showing significant differences between cancer patients and healthy controls
within each study, only a few cancer-related features were common when both cohorts were
compared. This included a reduced concentration of LPC(18:0), lysophosphatidylcholine,
whose increased level was associated with a reduced risk of other solid cancers. A large
variation in levels of specific metabolites was observed, both within and between cohorts,
which markedly impaired the accuracy of classification models. Hence, the awaited
“universal” metabolic biomarker of early lung cancer remains a challenge due to the large
heterogeneity of serum metabolomes, putatively associated with lifestyle-related factors.
Nevertheless, the signature of serum metabolites might be considered as a “local” solution
if potential confounding factors were properly addressed.
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detect differences between groups of participants of the lung cancer screening program, Table S2:
Serum metabolites used in binary analyses (present vs absent) aimed to detect differences among
groups, Table S3: Comparison of differences in levels of serum metabolites differentiating groups of
participants of the lung cancer screening between the two independent studies, Table S4: Indices of
the 3-state classifier based on the signature of specific serum metabolites.
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Devaraj, A.; et al. ESR/ERS statement paper on lung cancer screening. Eur. Radiol. 2020, 30, 3277–3294. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers13112714/s1
https://www.mdpi.com/article/10.3390/cancers13112714/s1
http://doi.org/10.3322/caac.21660
http://doi.org/10.1007/s00330-020-06727-7


Cancers 2021, 13, 2714 12 of 13

3. Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.;
Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409.
[CrossRef]

4. De Koning, H.J.; Van Der Aalst, C.M.; De Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.-W.J.;
Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced lung-cancer mortality with volume CT screening in a randomized
trial. N. Engl. J. Med. 2020, 382, 503–513. [CrossRef] [PubMed]

5. Wille, M.M.W.; Dirksen, A.; Ashraf, H.; Saghir, Z.; Bach, K.S.; Brodersen, J.; Clementsen, P.F.; Hansen, H.S.; Larsen, K.R.;
Mortensen, J.; et al. Results of the randomized danish lung cancer screening trial with focus on high-risk profiling. Am. J. Respir.
Crit. Care Med. 2016, 193, 542–551. [CrossRef] [PubMed]

6. Rzyman, W.; Jelitto-Gorska, M.; Dziedzic, R.; Biadacz, I.; Ksiazek, J.; Chwirot, P.; Marjanski, T. Diagnostic work-up and surgery
in participants of the Gdansk lung cancer screening programme: The incidence of surgery for non-malignant conditions.
Interact. Cardiovasc. Thorac. Surg. 2013, 17, 969–973. [CrossRef] [PubMed]

7. Priola, A.M.; Priola, S.M.; Giaj-Levra, M.; Basso, E.; Veltri, A.; Fava, C.; Cardinale, L. Clinical implications and added costs of
incidental findings in an early detection study of lung cancer by using low-dose spiral computed tomography. Clin. Lung Cancer
2013, 14, 139–148. [CrossRef] [PubMed]

8. Atwater, T.; Massion, P.P. Biomarkers of risk to develop lung cancer in the new screening era. Ann. Transl. Med. 2016, 4, 158.
[CrossRef] [PubMed]

9. Hassanein, M.; Callison, J.C.; Callaway-Lane, C.; Aldrich, M.C.; Grogan, E.L.; Massion, P.P. The state of molecular biomarkers for
the early detection of lung cancer. Cancer Prev. Res. 2012, 5, 992–1006. [CrossRef] [PubMed]

10. Sozzi, G.; Boeri, M. Potential biomarkers for lung cancer screening. Transl. Lung Cancer Res. 2014, 3, 139–148.
11. Chu, G.C.W.; Lazare, K.; Sullivan, F. Serum and blood based biomarkers for lung cancer screening: A systematic review.

BMC Cancer 2018, 18, 1–6. [CrossRef]
12. Ostrin, E.J.; Sidransky, D.; Spira, A.; Hanash, S.M. Biomarkers for lung cancer screening and detection. Cancer Epidemiol.

Biomark. Prev. 2020, 29, 2411–2415. [CrossRef]
13. Spratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009, 15,

431–440. [CrossRef]
14. Rocha, C.M.; Carrola, J.; Barros, A.S.; Gil, A.M.; Goodfellow, B.; Carreira, I.M.; Bernardo, J.; Gomes, A.; de Sousa, V.M.L.; Carvalho,

L.; et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J. Proteome Res. 2011, 10,
4314–4324. [CrossRef]

15. Guo, Y.; Wang, X.; Qiu, L.; Qin, X.; Liu, H.; Wang, Y.; Li, F.; Wang, X.; Chen, G.; Song, G.; et al. Probing gender-specific lipid
metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry.
Clin. Chim. Acta 2012, 414, 135–141. [CrossRef]

16. Chen, Y.; Ma, Z.; Min, L.; Li, H.; Wang, B.; Zhong, J.; Dai, L. Biomarker identification and pathway analysis by serum metabolomics
of lung cancer. BioMed Res. Int. 2015, 2015, 183624. [CrossRef] [PubMed]

17. Puchades-Carrasco, L.; Jantus-Lewintre, E.; Pérez-Rambla, C.; García-García, F.; Lucas, R.; Calabuig, S.; Blasco, A.; Dopazo, J.;
Camps, C.; Pineda-Lucena, A. Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers
associated with the onset and progression of non-small cell lung cancer. Oncotarget 2016, 7, 12904–12916. [CrossRef]

18. Louis, E.; Adriaensens, P.; Guedens, W.; Bigirumurame, T.; Baeten, K.; Vanhove, K.; Vandeurzen, K.; Darquennes, K.; Vansteenkiste,
J.; Dooms, C.; et al. Detection of lung cancer through metabolic changes measured in blood plasma. J. Thorac. Oncol. 2016, 11,
516–523. [CrossRef] [PubMed]

19. Mazzone, P.J.; Wang, X.-F.; Beukemann, M.; Zhang, Q.; Seeley, M.; Mohney, R.; Holt, T.; Pappan, K.L. Metabolite profiles of the
serum of patients with non-small cell carcinoma. J. Thorac. Oncol. 2016, 11, 72–78. [CrossRef] [PubMed]
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