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Simple Summary: Low–intermediate prostate cancer has a number of viable treatment options, such
as radical prostatectomy and radiotherapy, with similar survival outcomes but different treatment-
related side effects. The aim of this study is to facilitate patient-specific treatment selection by
developing a decision support system (DSS) that incorporates predictive models for cancer-free sur-
vival and treatment-related side effects. We challenged this DSS by validating it against randomized
clinical trials and assessing the benefit through a cost–utility analysis. We aim to expand upon the
applications of this DSS by using it as the basis for an in silico clinical trial for an underrepresented pa-
tient group. This modeling study shows that DSS-based treatment decisions will result in a clinically
relevant increase in the patients’ quality of life and can be used for in silico trials.

Abstract: The aim of this study is to build a decision support system (DSS) to select radical
prostatectomy (RP) or external beam radiotherapy (EBRT) for low- to intermediate-risk prostate
cancer patients. We used an individual state-transition model based on predictive models for
estimating tumor control and toxicity probabilities. We performed analyses on a synthetically
generated dataset of 1000 patients with realistic clinical parameters, externally validated by
comparison to randomized clinical trials, and set up an in silico clinical trial for elderly patients.
We assessed the cost-effectiveness (CE) of the DSS for treatment selection by comparing it to
randomized treatment allotment. Using the DSS, 47.8% of synthetic patients were selected for
RP and 52.2% for EBRT. During validation, differences with the simulations of late toxicity and
biochemical failure never exceeded 2%. The in silico trial showed that for elderly patients, toxicity
has more influence on the decision than TCP, and the predicted QoL depends on the initial
erectile function. The DSS is estimated to result in cost savings (EUR 323 (95% CI: EUR 213–433))
and more quality-adjusted life years (QALYs; 0.11 years, 95% CI: 0.00–0.22) than randomized
treatment selection.

Keywords: prostate cancer; decision support system; in silico trial; cost-effectiveness; radical prosta-
tectomy; external beam radiotherapy
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1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer for men, ac-
counting for 13.5% of new cancers diagnosed in 2018 in the Netherlands, of which 40%
are low- to intermediate-risk localized PCa [1,2]. PCa is a topic of heightened research
interest, with new biomarkers and treatment modalities being tested at a high rate [3].
The leading choices for managing clinically localized PCa are external beam radiotherapy
(EBRT), radical prostatectomy (RP), brachytherapy, and active surveillance [4]. For low-
and intermediate-risk PCa, active surveillance is often proposed (in ~70% and ~30% of
cases, respectively), and of the active treatment options, RP and EBRT are recommended
most often (~50% and ~45%), according to the Netherlands Cancer Registry. However,
no consensus has been reached as to which is superior in terms of effectiveness and/or
toxicity, both due to the varying spectrum of toxicities as well as the difference in incidence.
The treatment decision is often based on doctor preference and, to a much lesser extent,
on patient preferences and patient-specific characteristics or expected outcomes such as
(biochemical recurrence-free) survival or toxicity [5]. Typically, cost-effectiveness is not
taken into account in the treatment decision. Since no calculations are performed based on
patient-specific outcomes, one could argue that this treatment selection method is random
when considered from an outcome perspective.

Previous work has compared EBRT to RP in terms of long-term survival as well as
different toxicities. Chen et al. performed a meta-analysis of the efficacy of EBRT versus
RP [6]. They reported no statistical difference in cancer-specific survival for low- and
intermediate-risk patients. Potosky et al. [7] and Donovan et al. [8] showed that urinary
incontinence and reduced sexual function were more common for RP, but bowel toxic-
ity was more likely after EBRT. Currently, there are no studies available that help assess
the individual benefits of EBRT versus RP based on patient characteristics [9–11], even
though it has been suggested that parameters such as age, BMI, tumor grade, and pretreat-
ment prostate-specific antigen (PSA) levels do influence both recurrence-free survival and
toxicity [12].

The importance of personalized medicine has become progressively evident, and
treatment selection for PCa is no exception [13]. An important step towards personalized
PCa treatment would be a clinical decision support system (DSS), introduced in 2013 [14],
that aids in the decision between RP and EBRT. Additionally, when considering the limited
resources available for cancer care, it is becoming increasingly important to consider the
cost–benefit ratio when comparing treatments to guide the decision-making process [15].
The integration of a clinical DSS could aid in this, as it has already for proton therapy [16].

In addition, the possibility of very cost-effective in silico trials (individualized com-
puter simulations used in the development of drugs, devices, or interventions) promise to
improve clinical research through better design, more transparent and detailed information
about possible results, and greater explanatory power in interpreting side effects, as well
facilitating the exploration of interactions with the individuals’ biology and the long-term
or rare effects.

Our hypothesis is that the DSS can accurately replicate the results from published
studies and can be used for in silico trials. We also hypothesize that the use of a DSS for
treatment selection results in better tumor control, less toxicity, increased patient quality of
life (QoL), and improved cost–benefit ratio when compared with current clinical practice
based on tumor boards or medical specialist opinion.

The aim of this study is to build such a DSS using predictive models for estimating
tumor control and toxicity probabilities for both RP and EBRT for low- to intermediate-risk
localized PCa patients and validate this by comparing it to published clinical trials. We also
set up an in silico trial using this model-based approach to assess the outcome for elderly
patients. Additionally, we compared the cost-effectiveness (CE) of applying this DSS to
random treatment decisions as a proxy for current clinical practice (Figure 1). The DSS will
be made available at www.ai4cancer.ai (accessed on 25 March 2021).

www.ai4cancer.ai


Cancers 2021, 13, 2687 3 of 13
Cancers 2021, 13, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Setup of the clinical decision support system and a summary of the Markov model. Ovals represent different 
health states; arrows represent transitions between health states. Dashed arrow lines are for intelligibility purposes. Pa-
tients start in the disease-free state, with either all toxicities, ED and UI, or UI only, and as time passes, they can recover 
from toxicity or progress into the biochemical progression state. Death unrelated to cancer can occur from any health state; 
cancer-related death only from the metastatic disease state. IMRT: intensity-modulated radiotherapy, RP: radical prosta-
tectomy, CE: cost-effectiveness, QALY: quality-adjusted life year, TCP: tumor control probability, ED: erectile dysfunction, 
UI: urinary incontinence, RB: rectal bleeding, PCa: prostate cancer. 

2. Materials and Methods 
2.1. Decision Support System 
2.1.1. Markov Model 

The target population consisted of overall tumor stage T1-T2 PCa patients who were 
eligible for active treatment (i.e., EBRT and RP). The DSS was developed by constructing 
an individual state-transition model to estimate the effects and associated costs of treat-
ment with RP vs. EBRT for each patient. Based on patient-specific parameters (e.g., age) 
and treatment type (EBRT or RP), probabilities of developing long-term toxicities, includ-
ing rectal bleeding, urinary incontinence, and impotence or a combination, are calculated. 
After treatment, patients have a risk of progressing to the recurrence state, which is de-
pendent on patient-specific parameters (e.g., Gleason score), after which they can develop 
metastatic disease and subsequently progress to PCa-related death. Furthermore, from 
any health state, it is possible to die of causes unrelated to cancer (Figure 1). The DSS then 
provides a comparison of tumor control probability (TCP), probability of chronic erectile 
dysfunction (ED), chronic urinary incontinence (UI), and late rectal bleeding (RB), as well 
as a comparison of expected costs and quality-adjusted life years (QALYs). Detailed ex-
planations of the transition probabilities are shown in Supplementary Document I. 

Several assumptions are made in this model, the four most relevant being: (i) All RP 
patients start with ED and UI (at the first cycle); (ii) when a patient has developed bio-
chemical failure, the utility value is described by a single number rather than separate 

Figure 1. Setup of the clinical decision support system and a summary of the Markov model. Ovals represent different
health states; arrows represent transitions between health states. Dashed arrow lines are for intelligibility purposes. Patients
start in the disease-free state, with either all toxicities, ED and UI, or UI only, and as time passes, they can recover from
toxicity or progress into the biochemical progression state. Death unrelated to cancer can occur from any health state; cancer-
related death only from the metastatic disease state. IMRT: intensity-modulated radiotherapy, RP: radical prostatectomy,
CE: cost-effectiveness, QALY: quality-adjusted life year, TCP: tumor control probability, ED: erectile dysfunction, UI: urinary
incontinence, RB: rectal bleeding, PCa: prostate cancer.

2. Materials and Methods
2.1. Decision Support System
2.1.1. Markov Model

The target population consisted of overall tumor stage T1-T2 PCa patients who were
eligible for active treatment (i.e., EBRT and RP). The DSS was developed by constructing an
individual state-transition model to estimate the effects and associated costs of treatment
with RP vs. EBRT for each patient. Based on patient-specific parameters (e.g., age) and
treatment type (EBRT or RP), probabilities of developing long-term toxicities, including
rectal bleeding, urinary incontinence, and impotence or a combination, are calculated. After
treatment, patients have a risk of progressing to the recurrence state, which is dependent on
patient-specific parameters (e.g., Gleason score), after which they can develop metastatic
disease and subsequently progress to PCa-related death. Furthermore, from any health
state, it is possible to die of causes unrelated to cancer (Figure 1). The DSS then provides a
comparison of tumor control probability (TCP), probability of chronic erectile dysfunction
(ED), chronic urinary incontinence (UI), and late rectal bleeding (RB), as well as a compari-
son of expected costs and quality-adjusted life years (QALYs). Detailed explanations of the
transition probabilities are shown in Supplementary Document I.

Several assumptions are made in this model, the four most relevant being: (i) All
RP patients start with ED and UI (at the first cycle); (ii) when a patient has developed
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biochemical failure, the utility value is described by a single number rather than separate
disutility for ED, UI, and RB; (iii) we assume that after progression, the patient cannot
return to the cancer-free health state; (iv) the transition probability from recurrence to
metastatic disease is the same for all patients for both treatments. Moreover, a cycle time of
one month and a time horizon of 20 years were used; these were chosen since the survival
of low–intermediate prostate cancer is high, while increasing the time horizon beyond
20 years would unnecessarily increase model uncertainty.

In order to quantify the relative importance of various health outcomes using a
common measurement unit, utility is used as a metric to assign weights to health states on a
scale ranging from 0 (for dead) to 1.0 (for perfect health). Health-state-specific utilities, also
incorporating treatment-related toxicities (and all possible combinations), were retrieved
from Stewart et al. [17]. QALYs are obtained by multiplying these utility values by the time
spent in the corresponding health state.

In order to account for the baseline utility of men living in the Netherlands, we used
a published model that had calculated the age-dependent health-related quality of life
(HRQoL) for different countries and applied it as a multiplicative factor to health-state-
specific utilities [18].

The costs were calculated from the perspective of the healthcare system, so other
societal costs, such as productivity losses and patient and family costs, were excluded. For
detailed descriptions of the utility and cost data, see Supplementary Document II.

2.1.2. Predictive Models

The transition probabilities were estimated per individual in order to make this DSS
patient-specific and ready for precision medicine applications. The individual probabilities
of progression after treatment and the risk of developing toxicities were calculated using
a selection of regression models or nomograms from the published literature (Table 1),
adherent to the TRIPOD statement [19]. For nomograms, the coefficients or intercepts were
derived (if not reported) by reading the nomogram and using interpolation and fitting.

Table 1. An overview of the literature models used for the state transition probabilities. Rectal bleeding does not typically
occur after RP, so the transition was set to zero for this treatment type.

Model TRIPOD Treatment (n) Parameters Outcome Performance

Warner et al. 2015 * [20] 1a + 4 EBRT
(822 + 967)

ADT [months]
PSA [ng/mL]
Gleason score

BED [Gy]

5-year BFFS R2 = 0.868

Bjartell et al. 2016 [21] 3 RP
(3452 + 1762)

T-stage [T1/T2]
PSA [ng/mL]

Primary Gleason grade
Secondary Gleason grade
Positive biopsy cores [n]

Negative biopsy cores [n]

5-year RFS ** C-index = 0.68

Schaake et al. 2018 [22] 1b EBRT
(243) Mean Trigone dose [Gy] Late UI after 3 years AUC = 0.66

Matsushita et al. 2015 * [23] 2a RP
(2849)

Age [years]
BMI [kg/m2]

ASA score [I/II/III/IV]
Urethral length [mm]

Recovery from UI after 1 year AUC = 0.71

Alemozaffar et al. 2011 [24] 3 Both
(524 + 241)

Age [years]
Nerve-sparing [y/n]

PSA [ng/mL]
ADT [y/n]

Erection recovery after 2 years AUC = 0.77 for RP,
AUC = 0.87 for EBRT

Liu et al. 2010 [25] 2a EBRT
(161)

DVH
V75 Late RB after 3 years AUC = 0.62

TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis; EBRT: external beam radiotherapy;
RP: radical prostatectomy; n: number; ADT: androgen deprivation therapy; PSA: prostate-specific antigen; BED: biologically effective dose;
BFFS: biochemical failure-free survival; R2: coefficient of determination; Gy: gray; BMI: body mass index; C-index: concordance statistic;
RFS: regression free survival; UI: urinary incontinence; ASA: American Society of Anesthesiologists; V75: volume receiving at least 75 Gy;
RB: rectal bleeding. * Due to incomplete information, some model coefficients had to be derived from the nomogram. ** Recurrence was
defined as biochemical failure, initiation of secondary therapy, distant metastases, or prostate-cancer-related death.
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2.2. Validation
2.2.1. Synthetic Dataset

Since no complete patient cohort for which all required input parameters were known
was identified, we generated a synthetic patient dataset. A patient is described by a set of
parameters, which we randomly assigned by drawing values from a distribution. We chose
the distributions based on the patient cohorts on which the models had been developed
(Supplementary Document III). We assumed that the clinical parameters were independent
of one another and generated a synthetic patient dataset including 1000 patients so that
the mean and associated error of the generated clinical parameters matched that of the
original datasets.

2.2.2. Validation of NTCP and TCP Models

In order to validate the combination of our NTCP and TCP models, we compared the
simulation results to the published results. The reliability of the model and the measure in
which the synthetic dataset reflects real patient datasets were assessed by generating the
synthetic patients so that they matched the reported clinical parameters from actual trials,
such as age, Gleason score, PSA values, and T-stage. Nonreported clinical parameters
were kept the same as the original synthetic dataset. Dosimetric parameters were scaled
according to the 2 Gy equivalent dose. The relevant outcomes, such as biochemical free
survival or toxicity, were then compared between the simulation and the clinical trial. For
the EBRT α/β ratio (a measure of the fractionation sensitivity of the tissue) of PCa, we
used a value of 1.5 Gy [26].

In order to assess the credibility of the predicted biochemical free survival, the model
was compared to the results of a randomized clinical trial, reported by Hamdy (2016),
that compared EBRT to RP [27]; to assess the effect of hypofractionation, we compared
biochemical free survival to the CHHiP trial [28]. In order to validate the model’s predic-
tions of toxicity, we compared the model results to Donovan et al. (2016), who published
patient-reported outcomes after EBRT or RT [8].

2.2.3. In Silico Trial

A DSS such as this, in combination with the synthetic patient dataset, could function
as an in silico clinical trial, a precursor to actual clinical trials, in order to improve study
design or explanatory power. We demonstrated this by generating a patient dataset with
patients aged 75–80 to test the outcomes of different treatments for elderly patients, an
often-underrepresented group in clinical trials, but a group that might still be eligible for
both treatments. We adjusted pretreatment erectile function to an average of 15% to reduce
the impact of ED on the outcome.

2.3. Cost-Effectiveness Analysis

In order to determine the potential benefit of a DSS for PCa, we performed CE analyses
that compared two different treatment allotment strategies. In the first, each patient in
the synthetic dataset was allotted the treatment for which the DSS calculated the highest
number of QALYs. For the second, each patient was allotted a randomized treatment as a
proxy for current clinical practice.

To determine which treatment allotment strategy was cost-effective, the incremental
net monetary benefit (iNMB) was calculated. This is described by the following equation:

iNMB = (QALYDSS − QALYrandom)·WTP − CostsDSS − Costsrandom (1)

where CostsDSS and Costsrandom are the mean costs per patient if treatment decisions are
based on a DSS or randomized treatment allotment strategy, respectively, and QALYDSS
and QALYrandom are the mean number of QALYs per patient. WTP is the willingness to pay
per QALY. If the iNMB is positive, the DSS is considered cost-effective. In the Netherlands,
a WTP threshold of EUR 80,000 is agreed upon for high burden diseases [29]. We applied
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discount rates of 1.5% for the QALYs, and 4% for the costs, which is standard practice
within the Netherlands [30].

3. Results
3.1. Synthetic Data Characteristics

When applying the DSS on a synthetically generated patient dataset of 1000 patients
with clinical parameters similar to those on which the predictive models were built, 47.8%
of the patients had a higher number of QALYs for RP and 52.2% for EBRT. The patients
for whom EBRT was chosen had a higher mean age (64 versus 59 years), higher mean
prostate-specific antigen (PSA) values (8.3 versus 6.8 ng/mL), and a higher percentage of
T2 stage (49% versus 24%), as shown in Table 2 and Supplementary Document IV.

Table 2. Patient characteristics of the synthetic patient dataset.

Parameter Name EBRT Mean (SD) RP Mean (SD) p

Age (years) 63.8 (10.7) 58.8 (9.1) <<0.001
PSA (ng/mL) 8.3 (3.5) 6.8 (3.5) <<0.001
T-stage 2 (%) 48.7 24.4 <<0.001

P. Gleason grade 4 (%) 27.1 3.3 <<0.001
S. Gleason grade 4 (%) 14.7 20.9 0.01

ADT given (%) 0 80.0 0.72
PSA: prostate-specific antigen; T-stage: tumor stage; P.: primary; S.: secondary; ADT: androgen depriva-
tion therapy.

3.2. Validation

We compared the outcome reported in three separate papers against the same outcome
simulated by our DSS on a synthetic patient dataset; the results are reported in Table 3.
More details on the parameter values used are shown in Supplementary Document V,
and results are shown in Figure 2. The progression-free survival reported by Hamdy
(2016) was very similar to our simulation results, as was the Kaplan–Meier curves obtained
from the GUROC (Genitourinary Radiation Oncologists of Canada) [31] Prostate Cancer
Risk Stratification (ProCaRS) database [32], and the National Prostate Cancer Register of
Sweden (NPCR) [21,33]. Dearnaley (2016) published the results of the CHHiP trial and
compared the results of different fractionation plans [28]. When comparing these results
to what was simulated by our DSS, the simulation was close to the published results, but
the difference increased with stronger hypofractionation. Donovan (2016) was used for
toxicity comparisons and showed that the DSS simulated late toxicity best but was less
accurate for acute toxicity. The relative differences between the simulations and the studies
for the different treatment modalities were similar, and the conclusions coincided. The
most notable discrepancy is for acute ED for EBRT, which was underestimated by the
simulations because we assumed no acute ED after EBRT treatment.
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Figure 2. Progression-free survival and probability of toxicity of the model compared to published data. Progression-free
survival data were obtained from the GUROC (Genitourinary Radiation Oncologists of Canada) Prostate Cancer Risk
Stratification (ProCaRS) database and the National Prostate Cancer Register of Sweden (NPCR). Data on toxicity was
obtained from Donovan et al. (2016).

Table 3. Validation on published clinical trial results.

Study Treatment Outcome Clinical Trial (%) Simulation (%) Difference (%)

Hamdy 2016 [27] EBRT [545] 5 year BDFS 88.5 89.0 0.5
RP [553] 5 year BDFS 88.1 87.0 1.1

CHHiP [28]
EBRT 74 Gy [1065] 5 year BDFS 88.3 88.4 0.1
EBRT 60 Gy [1074] 5 year BDFS 90.6 89.9 0.7
EBRT 57 Gy [1077] 5 year BDFS 85.9 87.9 2.0

Donovan 2016 [8]

EBRT [545]

6 month UI 5 3.3 1.7
6 year UI 3.5 3.3 0.2

6 month ED 77.8 57.3 20.5
6 year ED 73.0 72.9 0.1

6 month RB 3.8 1.9 1.9
6 year RB 5.9 5.8 0.1

RP [553]

6 month UI 46 45.5 0.5
6 year UI 17 20.1 3.1

6 month ED 88 91.3 3.3
6 year ED 83.5 82.4 1.1

N: number of patients; EBRT: external beam radiotherapy; RP: radical prostatectomy; BDFS: biological disease-free survival; UI: urinary
incontinence; ED: erectile dysfunction; RB: rectal bleeding; Gy: gray; GS: Gleason score.
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3.3. In Silico Trial

We performed an in silico trial on the synthetic dataset by increasing the age of all
patients to between 75 and 80 but leaving all other clinical parameters as they were. We
found that TCP for RP was marginally higher than for EBRT (HR: 1.007), and the risk of
chronic UI was much higher for RP (HR: 10) as well as ED (HR: 1.59); consequently, EBRT
did result in more QALYs and lower costs than RP. The DSS selected EBRT for 96% of
the patients. We repeated this analysis while assuming that 85% of the patients had ED
before the start of treatment. This resulted in a smaller difference in ED, thus decreasing
the difference in QALYs between RP and EBRT (Table 4) and resulting in the DSS selecting
EBRT for 72% of the patients.

Table 4. In silico trial results.

Outcome
Type

RP
Mean (SD)

EBRT
Mean (SD)

DSS
Mean (SD)

RP PTED
Mean (SD)

EBRT PTED
Mean (SD)

DSS PTED
Mean (SD)

5 year TCP [%] 84 (7) 84 (4) 84 (4) 84 (7) 84 (4) 85 (5)
2 year ED [%] 93 (6) 61 (19) 61 (20) 100 (0) 98 (2) 98 (2)
1 year UI [%] 70 (16) 7 (4) 8 (10) 70 (16) 7 (4) 22 (26)
3 year RB [%] 0 (0) 5 (4) 5 (4) 0 (0) 5 (4) 3 (4)

QALY 4.28 (0.87) 4.46 (0.86) 4.46 (0.86) 4.25 (0.85) 4.30 (0.83) 4.32 (0.84)
Costs (1000 €) 15.2 (1.1) 12.6 (1.0) 12.7 (1.1) 15.2 (1.1) 12.7 (1.0) 13.3 (1.5)

RP: radical prostatectomy; EBRT: external beam radiotherapy; DSS: decision support system; PTED: 85% pretreatment erectile dysfunction;
SD: 1 standard deviation; TCP: tumor control probability; ED: erectile dysfunction; UI: urinary incontinence; RB: rectal bleeding; QALYs:
quality-adjusted life years.

3.4. Cost-Effectiveness Analysis

When comparing the DSS treatment selection to a randomized treatment allotment
strategy, the DSS resulted in an average cost saving (discounted) of EUR 317 per patient
and an increase in the number of discounted QALYs of 0.11 years. With an incidence rate
of 12,500 patients a year in the Netherlands, with 40% being low- to intermediate-risk PCa
patients and 50% receiving active treatment, this DSS could affect ~2400 patients a year.
Since the costs decreased while the QALYs increased, the DSS was the dominant strategy
in this “base case” scenario, with an iNMB (Equation (1)) of EUR 8798 per patient. The TCP
is higher for the DSS than for randomized treatment allotment, and the probability of all
toxicities decreases with the use of this DSS (Table 5).

Table 5. Probability of different outcomes.

Outcome
Type

RP Mean
(SD)

EBRT Mean
(SD) p Random Mean

(SD)
DSS Mean

(SD) p

5 year TCP [%] 83 (8) 84 (4) 0.003 83 (7) 85 (5) <<0.001
2 year Erectile Dysfunction [%] 83 (13) 59 (2) <<0.001 71 (14) 67 (20) <<0.001
1 year Urinary Incontinence [%] 27 (18) 7 (4) <<0.001 16 (9) 13 (15) <<0.001

3 year Rectal Bleeding [%] 0 (0) 5 (4) <<0.001 2 (2) 1 (3) 0.61

RP: radical prostatectomy; EBRT: external beam radiotherapy; DSS: decision support system; SD: standard deviation; TCP: tumor
control probability.

A probabilistic sensitivity analysis, performed with 5000 Monte-Carlo simulations,
resulted in a cohort with a mean increase in discounted QALYs of 0.11 (95% CI: 0.00–0.22) and
a mean decrease in costs of EUR 323 (95% CI: EUR 213–433) (Figure 3) for DSS compared
with randomized treatment allocation. For 98.6% of the simulations, using a DSS was cost-
effective when compared to a randomized strategy (dominant for 98.2% of the simulations).
For a detailed cost-effectiveness analysis of the model, see Supplementary Document VI.
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4. Discussion

In this study, we developed a clinical DSS for the treatment of PCa patients with either
EBRT or RP and tested this on a synthetic patient dataset. We validated the DSS against
published clinical studies and set up an in silico trial for patients between 75 and 80, eligible
for both RP and EBRT. We also assessed the CE of a treatment allotment strategy based
on the DSS compared to a randomized treatment allotment strategy. Our first hypothesis
was that we could accurately replicate results from published studies, which we aimed
to confirm by generating synthetic datasets with clinical parameters similar to published
trials. The DSS largely replicated the published results accurately. The relative differences
between the treatment modalities and fractionation plans were replicated by the model,
and the conclusions of the DSS and the studies agreed. We also performed an in silico trial,
exclusively including elderly patients first without, then with, prior ED, using the DSS and
found that for the first group, EBRT was preferred, and, for the second, RP performed better
in terms of QALYs. Additionally, we hypothesized that a treatment selection strategy based
on the DSS would improve tumor control, reduce toxicity, and improve CE as opposed
to randomized treatment selection. Our CE analyses suggest that not only do the costs of
treatment decrease with the application of a DSS, but the number of QALYs also increases,
making the integration of a DSS dominantly cost-effective compared to current clinical
practice. The expected cost savings within the Netherlands when using a DSS could be
as high as EUR 3.8 million over five years, assuming 2400 patients are affected every year.
Additionally, the number of patients with recurrence after treatment could be reduced
slightly by 2%.

These results imply that when deciding between RP and EBRT for a given patient,
making the right choice can improve overall QoL and that this decision should not be
random. The DSS offers the possibility of combining a large number of clinical parameters
to predict NTCP and TCP and quantify these risks into a single metric for different treatment
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options. This has the potential to improve the decision-making process, along with other
factors such as incorporating patient preferences. The development of a DSS fits well into
the current trend that strives for personalized medicine, and the results presented in this
study confirm the added benefit of such a tool [34]. The application of the DSS for in silico
trials has great potential benefits; it not only improves the design of clinical trials through
precursory simulations but also has the benefit of being able to apply different treatments
to the same “patient”, which allows for a more objective comparison. Another advantage
of the DSS is that it is detailed and can be further extended with other disease management
options such as brachytherapy or active surveillance. The framework of the DSS is also
flexible, making it easy to replace individual models or update them as new clinical trial
results are published. It can also be used as the basis for an individualized patient decision
aid (iPDA).

This study has several limitations. The first one is that this is a model-based study, us-
ing models that were trained and validated on different cohorts. The models were selected
based on how recently they were published, the number of patients included, and whether
or not they used clinical parameters and a TRIPOD level. We also attempted to make
sure we only selected models trained on patients with similar treatment modalities and
similar clinical parameters; however, not all clinical parameters were reported. In addition,
the correlation between clinical parameters was not reported, and when generating the
synthetic dataset, no correlations were assumed. It should also be noted that the clinical
parameters found in the clinical trials used as a basis for the synthetic dataset may not be
representative of the whole patient population. Different outcomes of the models were
validated in different studies, so the DSS as a whole has not been validated on a single
patient population. However, the acquisition of a dataset where not only all the clinical
parameters but also long-term follow-up data for TCP and toxicity for both treatment arms
are reported might not be feasible. Moreover, the NTCP models used doctor-reported
outcomes as endpoints, while the validation was done on patient-reported outcomes. How-
ever, the promising benchmark results indicate that the models have significant value in
simulating reality. These results were generated using an α/β ratio of 1.5; should this value
be proven inaccurate, these results will have to be reassessed.

In the CE analysis, we used randomized treatment allotment as a proxy for clinical
practice; however, we were not able to compare the performance of the CE model to actual
clinical practice. This is because there is no hard baseline and actual clinical practice can
vary strongly between countries and even hospitals. However, in Supplementary Docu-
ment VI, we do compare the performance of the CE model to simple clinical parameters,
which, in clinical practice, could help determine treatment choice. In its current state, the
DSS does not take into account patient preferences but uses average utility values obtained
from a population. However, the risks of different types of toxicities are what often drive
treatment decision-making, and patient preferences should be taken into account. Future
versions of the DSS should allow patients’ input to affect the utility values of different
toxicities and be integrated into iPDAs to allow for shared decision-making [35,36]. This is
especially true for the 15% of patients for whom the expected difference in QALYs is very
low (<0.05 years).

A limitation of the reported CE analysis is that both the DSS and the CE model
were based on the same state-transition model (committing a potential petitio principii
fallacy). The differences between the two were that the DSS was based on the undiscounted
deterministic run, while the CE model used discount rates for both QALYs and costs and
was based on probabilistic simulations. The costs used in this study were based on the
health costs in the Netherlands. One of the assumptions in the model was that if the patient
had biochemical failure after primary treatment, no secondary treatment would take place,
though, often, this is not the case. The health-state recurrence now has the same costs as a
regular follow-up, but with secondary treatment, these costs would be higher. However,
when applying the model with higher costs for recurrence, matching them with the costs
for metastatic disease, the cost-effectiveness was not impacted, so this assumption has
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no direct impact on our conclusions. For the application of the tool in other countries,
the costs will be most complex to adapt. However, utility values are simpler to adjust
to different countries, so it might be possible only to transfer the section of the tool that
calculates QALYs, which already provides valuable information that can support decision
making. However, it should be aspired to include the monetary calculations, as these play
an increasingly large role in healthcare decision making.

Short-term future work includes merging this DSS with previously developed DSSs,
including one where the effectiveness of an implantable rectum spacer is accessed on the
patient level [37,38] as well as a DSS that compares photon to proton therapy. We also plan
to expand the NTCP models by including single nucleotide polymorphisms and tumor
somatic mutations to incorporate genetic information into the decision-making process [39].

5. Conclusions

This study lays the groundwork for a detailed, personalized treatment DSS that aids
in the choice between EBRT and RP for low- to intermediate-risk PCa patients. This DSS
could be used for in silico clinical trials when applied to a synthetic dataset, which would
be a valuable precursor to clinical trials. The results suggest that the full development
and clinical application of this DSS would improve the quality of patient care as well as
cost-effectiveness and would be an important step towards personalized and participative
treatment decisions.
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mdpi.com/article/10.3390/cancers13112687/s1. Supplementary Document I: Detailed explanations
of the transition probabilities, Supplementary Document II: detailed descriptions of the utility
and cost data, Supplementary Document III: Distribution for the generation of synthetic dataset,
Supplementary Document IV: distribution of clinical parameters in synthetic dataset, Supplementary
Document V: benchmark study including clinical parameters reported, Supplementary Document VI:
a detailed cost-effectiveness analysis.
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