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Simple Summary: This Part II is an overview of the main applications of Radiomics in oncologic
imaging with a focus on diagnosis, prognosis prediction and assessment of response to therapy in
thoracic, genito-urinary, breast, neurologic, hematologic and musculoskeletal oncology. In this part
IT we describe the radiomic applications, limitations and future perspectives for each pre-eminent
tumor. In the future, Radiomics could have a pivotal role in management of cancer patients as
an imaging tool to support clinicians in decision making process. However, further investigations
need to obtain some stable results and to standardize radiomic analysis (i.e., image acquisitions,
segmentation and model building) in clinical routine.

Abstract: Radiomics has the potential to play a pivotal role in oncological translational imaging,
particularly in cancer detection, prognosis prediction and response to therapy evaluation. To date,
several studies established Radiomics as a useful tool in oncologic imaging, able to support clinicians
in practicing evidence-based medicine, uniquely tailored to each patient and tumor. Mineable
data, extracted from medical images could be combined with clinical and survival parameters to
develop models useful for the clinicians in cancer patients’ assessment. As such, adding Radiomics to
traditional subjective imaging may provide a quantitative and extensive cancer evaluation reflecting
histologic architecture. In this Part I, we present an overview of radiomic applications in thoracic,
genito-urinary, breast, neurological, hematologic and musculoskeletal oncologic applications.

Keywords: Radiomics; Oncologic Imaging; Radiomics technical principles

1. Introduction

Radiomics is an emerging tool used in oncologic imaging with the future perspectives
to become central in the workup of cancer patients. This imaging technique was extensively
investigated in tumor diagnosis, prognosis evaluation and response to therapy. Radiomics
also provides an estimation of delta tumor heterogeneity and aggressiveness, before and
after cancer therapy. It can be used as a bridge between histology and medical images,
useful for clinicians to manage patients with a patient tailored workflow [1-3]. Additionally,
quantitative analysis of medical images might provide additional evidence to the traditional
tissue biopsy which is often affected by sample bias [4]. The lack of standardization
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limits the routine use of Radiomics as a clinical tool, although the increasing number of
encouraging results supports the use of Radiomics in cancer patient management [5,6].

Technical principles and applications of Radiomics to gastrointestinal tumors were
included in the Part 1 of this review, with the aim to provide an organic explanation of
techinical aspects and limitations as the first issue, then start to discuss Radiomics in the
gastrointestinal cancers, representing one of the main application field in terms of types of
malignancy.

The objective of part 2 of this paper is to review the main oncologic radiomic studies
centered on diagnosis, prognosis and response to therapy in thoracic, genito-urinary, breast,
neurological, hematologic and musculoskeletal malignancies.

2. Lung Cancer

Recently, Radiomics has been extensively applied on lung cancer and multiple studies
evaluated its role in diagnosis, prognosis and response to treatment. Table 1 summarizes
the main studies discussed about the application of Radiomics on lung cancer diagnosis,
prognosis and response to treatment.

Table 1. Table summarizing the main studies of Radiomics applied to lung cancer.

. N Types of Model Imaging Features Nature of
Study N Patients Objective Evaluation Performance Modality  Selected Study
. Intranodular and 0.80 . .
Rl ooy PEZO GIUe. Pennodlr L ol 2 peospeciv
’ radiomic analysis 0.60-0.61 P
SCLC vs.
I . . End. 1 AUC: 0.74 .
meng E. etal., Acad. Total 278 NSCLC Pr}ma}ry leswn. End. 2 AUC: 0.82 CT 20 Monocentr}c
Radiol. 2019 [8] SCLCvs. AD  radiomic analysis End. 3 AUC: 0.66 Restrospective
SCLC vs. SCC ' o
Cong M. et al., Training 455 Assneszrz?lent R:dri?rifj?slin AUC: 091 CT 7 Monocentric
Lung Cancer 2020 [9]  Validation 194 : ) AUC: 0.86 Restrospective
metastases primary lesion
Zhang]. etal., .. Radiomic . 1875 .
Eur. J. Nucl. Med Mol. 5;%?;2%;77% EGEFR status signature QE(C: 82? PI}Z:TF/EE 10 Rl\é[;?gscegct:il\fe
Imaging 2020 [10] Fusion models o P
Zerunian M. et al., Total 21 OS Volumetric End. 1 AUC: 0.72 CT 6 Monocentric
Sci. Rep 2021 [11] PES Textural analysis ~ End. 2 AUC: 0.74 Prospective
Khorrami M. et al., Training 45 Pathological Intrae?i?ilgif;nd AUC: 0.90 CT 13 Monocentric
Lung Cancer 2019 [12] Validation 45 response b AUC: 0.86 Restrospective

radiomic analysis

AD, Adenocarinoma; SCLC, small cell lung cancer; NSCLC, non-small lung cancer, SCC, squamous cell carcinomas; EGFR, epidermal
growth factor receptor; OS, overall survival; PFS, progression free survival; SVM, support vector machine; ROC, receiver operating
characteristic; CNN, convolutional neural networks; AUC, area under the curve; CT, computed tomography.

Regarding lung cancer diagnosis, Radiomics was used to distinguishing non-small
cell lung cancer (NSCLC) from pulmonary granulomas and small cell carcinoma (SCLC)
from adenocarcinoma. Radiomics achieved strong results in the initial diagnosis, with
good differentiation of lung neoplasms, with histology as a reference standard [7,13,14]. In
particular, Radiomics has been tested in distinguishing lung adenocarcinoma from granulo-
mas by Beig N. et al. [7] in 290 patients who were retrospectively analyzed in a multicenter
study. Nodule shape, wavelet and Haralick texture features were extracted from intra- and
peri-nodular regions of interest (ROIs). Radiomic models were developed and trained by
using machine learning classifiers and these were compared against Convolutional Neu-
ral Network (CNN) approach and visual nodule assessment by two radiologists. Results
showed higher performance of the combined intra-nodular and peri-nodular with radiomic
features (AUC 0.80) compared with CNN (AUC 0.76) and radiologist assessments (AUC
0.61 and 0.60). Similar results were shown by Linning E. et al. [8], who applied Radiomics
in the binary discrimination between SCLC and adenocarcinoma on unenhanced CT (AUC
0.822), and in distinguishing adenocarcinoma from squamous cell carcinoma (AUC 0.655).
Furthermore, Radiomics showed good accuracy in the preoperative discrimination of
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malignancy behavior of ground-glass nodules resulting in a better independent predictor
over CT morphology or mean CT value [15].

In prognosis prediction and pre therapeutic assessment, Radiomics has been tested to
stratify patients between low- and high-risk, in relation to overall survival and having a
mutational panel preoperatively. Results showed Radiomics to have a reasonable accuracy,
especially when combined with clinical data [9,10,16,17]. Cong M. et al. [9] investigated
metastatic lymph-node prediction before surgery in stage IA NSCLC. They demonstrated
that radiomic model alone, extracted from 649 primary lung lesions identified on baseline
contrast enhanced CT scan, reached a diagnostic accuracy of 0.78 (AUC 0.898) and 0.80
(AUC 0.851) for test and validation cohorts, respectively. When using a combined model
(radiomic and clinical ones) they achieved higher diagnostic accuracy of 0.80 (AUC 0.911)
and 0.83 (AUC 0.86) for test and validation cohorts, respectively. Radiomics also showed
interesting results in positron emission tomography (PET). Zhang J. et al. [10] demonstrated
that Radiomics alone and combination models significantly performed better than clinical
models alone in discriminating epidermal growth factor receptor (EGFR) mutation status
in NSCLC. The possibility to derive genetic data with a non-invasive way would overcome
the limitation of lung biopsy and allow for a more precise treatment with tyrosine kinase
inhibitors (TKIs). Nardone V. et al. also showed the potential of Radiomics in identifying
NSCLC patients who may benefit from anti-PD-1 antibody treatment (i.e., Nivolumab).
Moreover, by performing highly reproducible texture parameters’ cut-off, Radiomics
was able to discriminate low from high risk patients with the aim to select patients for
Nivolumab therapy [17].

Regarding treatment assessment and response to therapy, Radiomics reached reason-
able performances in correlation with clinical outcomes [11,12]. Zerunian M. et al. [11]
investigated the application of Radiomics on outcomes prediction in patients treated with
immunotherapy, in particular first line Pembrolizumab. Texture features extracted from CT
images were significantly associated with lower overall survival (OS) and progression-free
survival (PFS) (p < 0.0035, AUC of 0.72 and 0.74, respectively). Khorrami M. et al. [12]
showed that derived intra-tumoral and peri-tumoral CT texture shape features reached
an AUC of 0.90 and 0.86 in the training and test set in prediction of major response after
neoadjuvant radio-chemotherapy in stage IIIA NSCLC.

3. Uterine Cancer

Recently, Radiomics has been investigated in order to improve diagnostic accuracy,
assessment staging, prognosis prediction and response to therapy both in uterine cervix
and uterine corpus cancer.

In the initial staging and prognosis prediction, Radiomics was tested as a potential tool
to assess metastatic nodes in the pre-operative setting with promising, which is important
information for the clinicians as they attempt to tailor therapeutic approaches to each
patient and to predict patient prognosis [18,19]. De Bernardi et al. [18] tested Radiomics
as a predicting nodal metastases tool by analyzing 115 primary endometrial cancer on
preoperative F-FDG-PET/CT. They showed that only one heterogeneity feature (GLSZM
ZP) was able to increase sensitivity (75-89%) to predict nodal metastases in comparison
with visual assessment (33-50%), nevertheless the specificity was higher by using visual
detection (95-99% vs. 80-81%). In addition to radiomic features extracted from the primary
tumor, other authors have focused in evaluating measurements from lymph nodes [19].
Kan Y. et al. [19] investigated if radiomic signature multiple-sequence MRI could be
used as a noninvasive biomarker for preoperative lymph nodes (LN), reflecting tumor
aggressiveness and influencing patient staging, prognosis and therapeutic approach in
cervical cancer. They retrospectively built a radiomic signature on 143 baseline MRIs
(T1w contrast-enhanced (CE) and T2w), divided into test and validation cohorts. After 3D
manual segmentation of lymph-nodes, radiomic parameters were extracted and diagnostic
accuracy was evaluated using histology reports as reference standard. Results underlined
that morphological MRI nodal evaluation is not satisfactory for predicting nodal metastases
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(0.65 and 0.49, in test and validation cohorts, respectively), while radiomic signature
allowed for improved accuracy to discriminate LN with an accuracy of 0.75 and 0.72 in test
and validation cohorts, respectively.

Another relevant radiomic application is its use as an imaging biomarker able to
predict response to chemotherapy by analyzing tumoral and peritumoral tissues and by
combining outcome data. Overall, Radiomics reached higher accuracy and performance in
comparison with clinical models alone [20-22]. Sun C. et al. [20] investigated if radiomic
features, based on pre-treatment MRIs, could predict clinical response to neoadjuvant
chemotherapy in patients with locally advanced cervical cancer. A multicentric retrospec-
tive study was performed on 275 patients and different radiomic models were tested by
using several combinations of radiomic features, extracted from intra-tumoral and peri-
tumoral tissues from MRIs on T1w and T2w sequences; the performance of the radiomic
model was analyzed and compared to a clinical model (FIGO stage, age and gross type).
The radiomic model, including all the sequences, showed a 30% higher performance in
treatment response prediction after NAC in comparison with the clinical model alone (AUC
0.998 and 0.999 vs. 0.666 and 0.608 for training and testing cohorts, respectively). Promising
results in DFS prediction were also demonstrated by Lucia E. et al. [21], who validated,
in a multicenter study, a radiomic model using features extracted by *F-FDG PET/CT
and ADC map on MRI. The combined model reached an accuracy with a range between
96% and 98%, higher than clinical models available with an accuracy of 56-60%. Radiomic
models have also been assessed as a biomarker to predict response to radiotherapy by
Takada A. et al. [22]; they showed that including peri-tumoral tissue in the volume of
interest resulted in higher accuracy in the prediction of recurrence.

Regarding uterine corpus tumors, Radiomics was mainly explored, with promising
results in the accuracy, risk stratification and pre-treatment prognosis of endometrial cancer
and differential diagnosis in uterine sarcoma. Particularly, Radiomics was investigated
as an imaging tool in the planning of therapeutic approaches that are patient-centered
according to nodal involvement status and endometrial cancer or sarcoma aggressive-
ness [23-25]. In the evaluation of pelvic LN as a predictor of patient prognosis, Yan B.C.
et al. [23] used a random forest classifier to build an MRI radiomic model based on segmen-
tation of primary endometrial cancer. The diagnostic performance and clinical net benefits
were compared between MRI alone and MRI Radiomics-aided, with higher diagnostic
performance reached by using the radiomic model. The AUC, CDC (clinical decisive curve),
NRI (net reclassification index) and IDI (discrimination index) were indeed higher for the
Radiomics-aided model, than for MRI alone. For surgery planning, Yan B.C. et al. [24]
also assessed high-risk endometrial cancer, using Radiomics on MRI (T2WI, DWI, ADC
and CE-T1WI sequences) and developed a nomogram. The model obtained by combining
radiomic and clinical parameters showed good performance and proved the usefulness
of Radiomics for surgical management of endometrial cancer. MRI and radiomic features
were also analyzed by Xie H. et al. [25], for differentiating uterine sarcoma from atypical
leiomyoma. The radiomic model was based on Apparent Diffusion Coefficient (ADC) maps
and was compared with diagnostic efficacy of experienced radiologists; AUCs showed
comparable diagnostic efficacy in differentiating uterine sarcoma from atypical leiomyoma.

4. Ovarian Cancer

Accurate diagnosis of ovarian masses is a field of interest for Radiomics, as it is a
potential non-invasive biomarker to characterize adnexal lesions. Table 2 summarizes the
main studies and radiomic results applied to ovarian masses. Radiomic analysis yielded
interesting results in ovarian masses differential diagnosis, both in identifying histological
type and in distinguishing among benign, borderline and malignant masses, compared
to conventional imaging [26,27]. Figure 1 provide a graphic representation of radiomic
workflow from image segmentation to statistical analysis. An interesting retrospective
study was performed by Zhang H. et al. [26], who manually drew ROIs on T1w, T2w and
ADC maps of 286 patients before adnexal surgery. They extracted and selected radiomic
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features with the least absolute shrinkage and selection operator method (LASSO) and
tested the radiomic model’s ability to differentiate benign from malignant adnexal tumors
and to identify type I and type Il ovarian epithelial cancer (OEC). Results showed higher
accuracy of Radiomics, compared with traditional radiologist evaluation, in distinguishing
malignant adnexal tumors from benign masses (90% vs. 83.5% for leave-one-out cross-
validation cohort and independent validation cohort); an accuracy of 83% (AUC 0.85)
was reached in the discrimination of type I and type II OEC. The most relevant radiomic
features identified were low-high-high, short-run high gray-level emphasis extracted from
coronal T2w for benign and malignant tumor discrimination, and low-low-high variance
from coronal T2w images to differentiate type I from type II OEC. Another feasibility
study was performed by Song X.L. et al. [27] testing Radiomics efficiency, derived from
CE-MRI pharmacokinetic (PK) protocol, in discriminating among benign, borderline and
malignant adnexal neoplasms by using 2- and 3-class classification predictive tasks. The
analysis retrospectively assessed 104 CE-MRI divided into training and validation cohorts.
Two-class classification task results showed an AUC of 0.899, 0.865 and 0.893 for the
following discrimination tasks, respectively: benign vs. borderline, benign vs. malignant
and borderline vs. malignant. ROCs for 3-class classification (one single ovarian tumors vs.
other) showed good diagnostic performances with AUC of 0.893, 0.944 and 0.891 for the
benign, borderline and malignant tumors, respectively.

Table 2. Table summarizing the main studies regarding Radiomics applied to ovarian cancer.

. . Types of Model Imaging Features Nature of
Study N Patients Endpoint Evaluation Performance Modality Selected Study
LOO End. 1 AUC: 0.97
Zhang H. et al., Validation 195 Benign vs. Malignant cross-validation End 1 AUC: 0.85 MRI End. 1: 84 Monocentric
Eur. Rad. 2019 [26] Testing 85 OEC type I vs. type I Indipendent testin End 2 AUC: 0.96 End. 2: 56 Restrospective
P & End2AUC: 0.82
Benign vs. Borderline X .
Song X.L.etal., Training 72 Benign vs. Malignant 2-class gﬁj ; 285 822 MRI Eﬁg ; ‘25; Monocentric
Eur. Rad. 2021 [27] Validation 32 B?\Z(iﬁg;gi \t/s. classification End 3 AUC: 0.89 End. 3 18 Prospective
Meier A. et al., Assosiation Survival Inter-site texture Monocentric
Abdom. Radiol. 2019 Total 88 and texture heterogeneity p<0.05 CT 3 Restrospective
[28] heterogeneity
LuH.etal., - . .
Nat. Commun 2019 Total 364 Survival Radiomic HR > 3.83 cT 4 Multicentric
[29] prognostic vector Restrospective
Himoto Y. et al., In}'l:ri—site texF;lre p<0.05 M -
JCO Precis. Total 75 Time to off-treatment eterogeneity HR: 0.88 CT 7 onocentric
Inter-site texture i Restrospective
Oncol. 2019 [30] X HR: 1.19
heterogeneity
Danala. et al. _ L .
o Early prediction Delta Radiomics AUC: 0.77 Monocentric
Acad. 1?2?]101 2017 Total 91 treatment response Fusion models AUC: 0.81-0.82 cr 1 Restrospective

LOO, leave-one-out; AUC, area under the curve; HR, hazard ratio; MRI, magnetic resonance imaging; CT, computed tomography.

In regards to prognosis, several studies performed showed significant correlation
between radiomic and outcome data, but not significant results identifying the BRCA
mutation panel was found [28,29]. Meier A. et al. [28] investigated the hypothesis that
Radiomics could evaluate loco-regional and distant site tumor heterogeneity of high-
grade serous ovarian cancer and link it to BRCA mutation status and outcome prediction.
The retrospective study was performed on 88 preoperative CT scans and a slice-by-slice
segmentation was performed both on primary ovarian masses and distant metastatic
implants. Haralick texture features, after computing a gray-level co-occurrence matrix,
were extracted and inter-site texture heterogeneity was tested including inter-site entropy,
cluster variance and cluster prominence. Results showed that higher values of textural
features significantly correlated with lower OS and PFS. Additionally, BRCA-negative
patients showed to have a significant association among all high values of selected metrics
and lower complete surgical resection. No significant results were reached for all the
three metrics to distinguish between BRCA mutation/-non mutation patients. Another



Cancers 2021, 13, 2681

6 of 18

study, performed on a larger population by Lu H. et al. [29] analyzed a radiomic profile
containing 657 features for 364 EOC cases. They built a radiomic prognostic vector based
on 4 descriptors derived from the primary tumor able to identify patients with median OS
less than 2 years.

ﬁmage segmentatioh / Feature extraction\ KStatistical analysis\

S

Radscore
| ———

+

)

Clinical data
—e

+

S

Histological data

—_—
=

<

Endpoint

\ Prediction j

Figure 1. Ovarian cancer radiomic workflow. Image segmentation: ovarian cancer manually segmented on axial CT slice;

feature extraction: tumor shape, texture and integration data; statistical analysis: combination of radiomic features with

clinical and histological data to obtain predictive model.

In response to therapy, Radiomics showed some promising results especially when
combined with radiological disease burden and clinical data. In addition, the calculation
of delta radiomic features between baseline and post-chemotherapy CT scans reached
positive results in the prediction of tumor response [30,31]. Himoto Y. et al. [30] analyzed
75 patients with recurrent EOC, treated with immunotherapy, on contrast-enhanced CT.
Radiomic analysis, including inter and intra-tumor heterogeneity features, were performed
and combined with radiological disease burden and clinical data. Univariate analysis
showed that reduce disease sites and both lower inter- and intra-tumor heterogeneity
were significantly associated with durable clinical benefit. Higher cluster-site dissimilarity
represented an independent indicator of shorter time to off-treatment with a Hazard Ratio
of 1.19. Multivariate analysis confirmed that higher energy of the larger lesion, as indicator
of lower intratumor heterogeneity and fewer disease sites, was a predictor of durable
clinical benefit. Similarly, Danala G. et al. [31] investigated the role of quantitative analysis
in early prediction of cancer response to chemotherapy by using imaging biomarkers
extracted from pre- and post-therapy 91 CT scans. In particular, they calculated delta
features and reached positive results (AUC 0.771), with the strongest performance (AUC
0.81 and 0.829) achieved using the fusion models, combining the optimal features derived
from pre-treatment CT scan and delta features.

5. Prostate Cancer

Another area where Radiomics may be a promising tool is in non-invasive prostate
cancer (PCa) assessment, by providing a correct detection, PI-RADS V2.1 correlation, risk-
stratification and radiotherapy planning [32,33]. Figure 2 provides a graphic representation
of radiomic analysis in prostate cancer, from image segmentation to signature validation.

Regarding PCa detection, Radiomics was investigated as a pre-operative imaging tool
able to detect highly suspected malignant prostate nodules in order to identify optimal
biopsy sites. In that regard, quantitative approaches yielded superior results in comparison
with traditional imaging assessment [34-36]. Lay N. et al. [34] tested Radiomics as a
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Image segmentation

tool to recommend biopsy sites, by combining spatial, intensity and texture features with
random forest classification on 224 patients by analyzing T2w, ADC and Diffusion Weighted
Imaging (DWI) at b2000 sequences. The authors reported better performance of this method
(AUC 0.93) compared with previous studies testing support vector machine (SVM) on
the same data (AUC 0.86). Cuocolo R. et al. [35] studied shape features in distinguishing
clinically significant (41 patients) and non-clinically significant (34 patients) prostate lesions
aiming at reducing the false positive rate seen with MRI. In particular, ten shape features
were extracted from multiparametric MRI (mpMRI) and the univariate analysis reported
that almost every shape feature was statistically significant between clinically significant
and non-clinically significant groups, whereas the multivariate analysis showed that only
radiomic surface area to volume ratio, extracted from ADC maps, was an independent
predictor of PCa. Similarly, Wibmer A. et al. [36] showed promising results of Radiomics in
PCa detection and Gleason Score (GS) assessment on mpMRI, in particular Gleason Score
(GS) was significantly associated with higher values of Entropy (GS 6 vs. 7: p = 0.0225; 6
vs. >7: p = 0.0069) and lower values of energy (GS 6 vs. 7: p = 0.0116, 6 vs. >7: p = 0.0039)
derived from ADC maps. Furthermore, Qi Y. et al. [37] created a radiomic model by using
a random forest classifier, based on 2104 features extracted from MRI sequences. The
combined model (radiological and clinical data) returned AUC values of 0.956 and 0.933 on
the test (n = 133) and validation (1 = 66) population, respectively, making it an additional
potential tool for the clinicians in treatment decision-making.

/ N

)

Mann-Whitney
p<0.05

Validation

Non significant features

First order

>0.
1 3 2 0 5 p 005 o PFS Radiomics Validation
0J1|5]|1(4 E
8|1 0|30 Z-score normalization «
2|3]5]1]4 b, »
1|3]2]0]|5
Texture Stable features
] 1CC>0.75
N
R
/
LASSO

logistic regression

J
k Wavelet filter / /

Features extraction

-

Signature training

Signature validation

Figure 2. Radiomic analysis of prostate cancer. Image segmentation: prostate cancer segmented in a semi-automatic manner

on axial T2, feature extraction: first order statistical features, texture features and wavelet filter, signature training: statistical

analysis performed on mineable data extracted, signature validation: radiomic prognostic model validated on external

cohort.

To date, risk-assessment of PCa recurrence is based on clinical parameters (i.e., GS, PSA
level, cancer grading and tumor stage) and no objective and accurate tools to stratify cancer
patient into low- and intermediate-risk is currently available. In that context, Radiomics
is a promising tool to support clinical management of these patients and achieved good
results in stratifying patients according to risk of recurrence [38-40]. Recently, Gugliandolo
S.G. et al. [38] obtained a radiomic signature, from 65 mpMRI (T2w images) of localized
PCa, to distinguish low- from intermediate-risk patients. Texture features were the main
predictive parameters of Gleason Score, PI-RADS and risk-classification, while intensity
domain was strictly linked to T-stage, extracapsular extension score and risk-classification
(AUC ranging from 0.74 to 0.94). Similarly, Osman S.0.S. et al. [39] used Radiomics to
assess Gleason Score and risk-assessment in 342 PCa patients. CT-based Radiomics yielded
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excellent results in distinguishing low- from intermediate-risk (AUC 1.00) and low- from
high-risk (AUC 0.96). Furthermore, Algohary A. et al. [40] proposed MRI-based radiomic
signature (T2w and DWI) to assess the presence of significant disease in patients in active
surveillance who had a discordance between the histopathological and PI-RADS findings.
They obtained promising in identifying significant disease with p < 0.001.

Radiomics was also tested to evaluate prognosis in the high-risk patients who under-
went radical prostatectomy. Bourbonne V. et al. [41] purposed to assess the prognostic value
of radiomic signature MRI-based in planning for adjuvant radiotherapy. Radiomics showed
strong results in predicting biochemical recurrence and was an independent prognostic
factor of biochemical relapse free survival after radical prostatectomy.

6. Urinary System

Radiomics was extensively investigated in the workup of bladder cancer (BC) and
kidney cancer, especially in the assessment of tumor grading and local invasion, and only
few studies tested Radiomics in the prediction of response to therapy. Several studies
support the use of Radiomics in the assessment of cancer grading and local invasion both
in bladder and kidney cancer [42-44]. Zhang G. et al. [42] developed a CT-radiomic model
to assess bladder cancer grading, in order to distinguish low- from high-grade cancer. They
analysed 145 lesions (108 of training and 37 of validation datasets) which were manually
segmented on CT-urography. They obtained an AUC of 0.95 and 0.86 in training and
validation dataset, respectively. Similarly, Goyal A. et al. [43] tested texture analysis on MRI
to assess renal cell carcinoma (RCC) grading and demonstrated that several parameters,
such as entropy, mean positive pixels and mean reached promising AUCs (0.823, 0.870 and
0.889, respectively) in differentiating RCC with low- and high-grade.

In the assessment of local invasion of bladder cancer, Radiomics showed promising
results in the evaluation of muscular invasion [45,46]. Xu S. et al. [45] built a radiomic
model combining radiological and clinical data based on MRI (DWI) and transurethral
resection, that yielded better results in muscular invasion assessment (sensitivity 0.964,
accuracy 0.897) in comparison with transurethral resection alone (sensitivity 0.655) or MRI
evaluation alone (sensitivity 0.764). Similarly, Zheng J. et al. [46] developed an MRI-based
radiomic-clinical nomogram with the same objective and demonstrated an AUC of 0.922 in
differentiating muscle from non-muscle invasion.

In relation to response to therapy, Radiomics was investigated both in bladder can-
cer and RCC yielding positive results in identifying good responders after neoadjuvant
chemotherapy [47-49]. Cha K.H. and colleagues [47] tested CT-based deep learning CNN
and Radiomics to identify bladder cancer patients with muscle-invasion who had a com-
plete response to neoadjuvant chemotherapy. The authors demonstrated that quantitative
methods could identify complete responders with an AUC of 0.80. Previously, only a few
studies evaluated the use of CT based features to predict response to therapy in metastatic
RCC. Particularly, Smith A.D. at al. [48] proposed to quantify the initial CT changes in can-
cer vascularity to predict the response to antiangiogenic therapy in metastatic RCC patients,
and they obtained significant results in distinguishing responder from non-responder pa-
tients. Additionally, Goh V. et al. [49] tested the ability of CTTA after two cycles of therapy
in metastatic RCC and it was shown to be a predictive imaging biomarker of response and
cancer heterogeneity and possibly an independent parameter of progression.

7. Breast Cancer

Recently, Radiomics has been studied as a non-invasive imaging biomarker, combined
to conventional radiology and breast biopsy, to overcome the major intrinsic limitations in
breast cancer (BC) assessment in early diagnosis, tumor biology and response to therapy.

In differential diagnosis, Radiomics was used to distinguish benign from malignant
lesions on MRI by analyzing tumoral and peritumoral tissues [50,51]. Zang Q. et al. [50]
built a radiomic MRI-based model, by performing manual and volumetric segmentation,
to differentiate benign from malignant breast nodules. This model was developed and
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validated on 95 benign and 112 malignant nodules (training and validation group with
159 and 48 nodules, respectively). All patients underwent MRI (T1w, T2w, DWI and DCE)
and the model was tested on both morphological and functional sequences, alone and
in combination, by using an SVM classifier. The combining model, including features
extracted from T2w, diffusion kurtosis imaging (DKI), ADC map and DCE, reached an
AUC of 0.921 and accuracy of 0.833. Similarly, Zhou ]. et al. [51] tested radiomic and
deep learning methods on DCE-MRI sequences, by performing 3D automatic, quantitative
segmentation of tumoral and peritumoral tissues. The authors showed promising results
using a deep-learning approach by achieving accuracy of 91%.

Concerning the identification of key prognostic factors, such as nodal involvement and
HER-2 status, Radiomics was tested as a non-invasive imaging biomarker, combined with
clinical data, reaching good performance [52-54]. Gao Y. et al. [52] tested a radiomic US-
based nomogram in 343 patients affected by T1/T2 invasive BC by adding patient age and
tumor size. The model showed good performance to detect nodal metastases in both the
training and validation cohorts (0.846 and 0.733 AUC, respectively) by analyzing primary
breast cancers. Liu C. et al. [53] developed an MRI-based radiomic model, combining
quantitative features and clinical data, and reached a n AUC of 0.869 and a negative
predictive value (NPV) of 0.886. Regarding the assessment of HER-2 status Zhou J. et al. [54]
tested Radiomics on 306 BC mammography and a sensitivity, specificity, accuracy and
AUC (87%, 59%, 80% and 0.85, respectively).

For BC response to therapy, radiomic analysis yielded pivotal results in recognizing
responder patients, an essential component for optimal therapeutic management [55-57].
Braman N. et al. [55] tested Radiomics on MRI to assess response to HER2-target therapy;,
by extracting 209 textural features from primary and peritumor tissues. They showed a
promising performance both in predicting HER2 positive patients (AUC 0.89) and target-
therapy response (AUC 0.80). Liu Z. et al. [56] built and validated a radiomic model to
predict pathological complete response to neoadjuvant therapy in HER2+, HER- and triple-
negative patients. This model achieved good results, in both the training and validation
datasets, in each different patient groups. Similarly, Antunovic L. et al. [57] showed the
ability of Radiomics to predict complete response to neoadjuvant chemotherapy in locally
advanced BC, by using features extracted from baseline FDG PET/CT, with quite good
performance (AUC 0.70-0.73).

8. Neurological System

For decades, management of central nervous system tumors focused on conven-
tional MRI and CT. However, Radiomics has been playing an increasingly important role
as a non-invasive imaging biomarker and is increasingly investigated [58] especially in
glioblastomas, the most aggressive and poor prognosis main brain cancer focusing grading,
mutational status and response to therapy. The main radiomic studies in neuro-oncology
were summarized on Table 3.

Radiomics was tested at diagnosis to define gliomas grading, particularly focusing
on distinguishing low (Grade I and II) from high grade gliomas (Grade III and IV) [59,60].
Tian Q. et al. [59] analyzed texture analysis on MRI to distinguish low-grade gliomas (LGG)
from high-grade gliomas (HGG) in 153 patients (42 LGG and 111 HGG) with SVM-based
classification model. Excellent results were obtained both in comparison between of LGG
and HGG (AUC of 0.987, accuracy 96.8%, sensitivity 96.4% and specificity 97.3%) and
in distinguishing grade III from IV (AUC 0.992, accuracy 98.1%, sensitivity 98.7% and
specificity 97.4%). Similarly, Cho H. H. et al. [60] compared LGG and HGG gliomas by
performing a manual segmentation in a semi-automatic method and achieved an AUC
of 0.903. The Authors demonstrated that gliomas grading could be estimated by using
high-dimensional features with good accuracy.
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Table 3. Table summarizing the main studies regarding Radiomics applied to gliomas.

. . Types of Model Imaging
Study N Patients Endpoint Evaluation Performance Modality Features Selected Nature of Study
Tian Q. et al End 1 AUC: 0.98
J. Magn Res;m In'{a i Total 153 LGG vs. HGG Volumetric End 1 Acc: 96.8% MRI End. 1: 30 Monocentric
FVag '201 8 [5§] g1 Grade Il vs. III radiomic analysis ~ End 2 AUC: 0.99 End. 2: 28 Restrospective
End 2 Acc: 98.1%
Lo AUC: 091 . .
Chofiiesh  teams  lownes MUt Gucos m ; e
AUC: 0.92 p
Chang P. et al., IDH1 status Volumetric dee End 1 Acc: 94% Multicentric
Am. J. Neuroradiol. 2018 Total 259 1p/19q codelation learnin CNNp End 2 Acc: 92% MRI 64 Restrospective
[61] MGMT status & End 3 Acc: 83% P
Multi-regional AUC: 0.95
LiZC.etal, Training 133 . Acc: 87% Multicentric
Eur. Radiol. 2018 [62] Validation 60 MGMT status radiomic features AUC: 0.88 MRI 6 Restrospective
Fusion models
Acc: 80%
Kim].Y. etal.,, Pseudoprogression Multiparametric . Monocentric
Neuro Oncol. 2019 [63] Total 61 vs. Progression radiomic models AUC:0.90 MRI 12 Restrospective
Bani-Sadr. et al AUC: 0.82
Neurooncol A dv. '2’019 Training 55 Pseudoprogression Multi-regional Acc: 83% MRI 1 Monocentric
[ 64] ’ Validation 21 vs. Progression radiomic features AUC: 0.85 Restrospective
Acc: 79.2%

LGG, low-grade gliomas; HGG, high-grade gliomas, IDH1, isocitrate dehydrogenase 1, MGMT, O(6)-Methylguanine-DNA methyltransferase SVM, support vector machine; ROC, receiver operating characteristic;
CNN, convolutional neural networks; AUC, area under the curve; Acc; accuracy; MRI, magnetic resonance imaging.
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In relation to prognosis assessment, Radiomics was found to correlate strictly with
specific molecular patterns of gliomas [61,62]. Molecular evaluations are routinely assessed
by tumor biopsy, which could be affected by sample bias, low repeatability and iatro-
genic complications. In particular, Chang P. et al. [61] tested a deep-learning approach,
enforced with CNN, on 259 MRI of gliomas and CNN was shown to have high accuracy
in identifying isocitrate dehydrogenase mutations (94%), 1p/19q co-deletion (92%) and
O(6)-Methylguanine-DNA methyltransferase (MGMT) promoter methylation (83%) status.
Li Z.C. et al. [62] established the role of Radiomics in pretreatment prediction of MGMT
promoter methylation status, with the aim to overcome the limitations of biopsy, obtaining
a predictive model with promising accuracy (AUC 0.88, accuracy 80%, sensibility 70%
and specificity 86%). Furthermore, by assessing clinical data and radiomic features in
a combined model, the accuracy was not improved compared with the radiomic model
alone.

Glioblastoma response to therapy is primary, especially in the early post-treatment
setting; in that scenario Radiomics could be helpful in the detection of pseudoprogression
and it was shown to yield promising results [63,64]. Kim ].Y. et al. [63] tested a quantitative
approach to differentiate early cancer progression from pseudoprogression, by performing
multiparametric MRI radiomic-model based on twelve radiomic features, extracted from
61 multiparametric MRI within twelve weeks after treatment. This model showed high
performance in distinguishing pseudoprogression from early tumor progression with AUC
of 0.90 (sensitivity 91.4% and specificity 76.9%). Similarly, Bani-Sadr F. et al. built two
radiomic model, with and without clinical data including MGMT status, the latter model
reaching the highest diagnostic accuracy (83%) [64].

9. Hematologic Disorders

Lymphoproliferative disorders (LPD) include a heterogeneous group of diseases
characterized by a pathological proliferation of lymphocytes, circulating in the blood
(leukemias), involving the bone marrow, infiltrating lymphoid or solid organ
(lymphomas) [65]. Recent studies looked at the use of Radiomics in the diagnosis, prognosis
and response to therapy in patients affected by LPD.

Regarding diagnosis, Radiomics was investigated in differentiating lymphoma from
other primary malignancies achieving good accuracy making it a potential non-invasive
assessment tool [66,67]. Kong Z. et al. [66] tested Radiomics in distinguishing primary
central nervous system lymphoma from glioblastoma multiforme (GBM). Seventy-seven
patients (24 lymphoma and 53 GBM) were retrospectively enrolled and radiomic features
were extracted from 3F-FDG PET/CT; thirteen features resulted in statistical significance in
differentiating the two groups with an AUC ranging between 0.971 and 0.998. Furthermore,
Ma Z. et al. [67] revealed the high performance of CT-based Radiomics to differentiate
Borrmann type IV gastric cancer (GC) from primary gastric lymphoma in a cohort of seventy
patients (30 GC and 40 lymphoma). The authors obtained 183 statistically significant
parameters (p < 0.05) for distinguishing the two different histotypes and the two main
features (root_mean_square; sum_variance) were used to build a Rad-score.

Radiomics was also investigated as a tool of outcome prognostication, useful for
the physicians in addition to traditional scores (i.e., International Prognostic Index, IPI),
demonstrating good performance to predict patient outcome especially when Radiomics
was applied to ¥F-FDG PET [68-70]. Recently, Aide N. et al. [68] proposed a radiomic
approach to predict 2-year event free survival in newly diagnosed diffuse large B cell
lymphomas treated with immunotherapy. The authors analyzed baseline 8F-FDG PET of
132 patients, both in training and validation datasets, and among all features extracted only
Long-Zone High-Grey Level Emphasis resulted a good predictor (AUC 0.69; Log-Rank
p < 0.0001). Similarly, Mayerhoefer M.E. et al. proposed a radiomic prognostic models
in patients affected by mantle cell-lymphoma based on 'F-FDG PET/CT, also by adding
clinical data, to predict 2-year progression-free survival [69]. A total of 107 treatment-naive
patients were enrolled and Entropy and SUV ean were significantly predictive of 2-year
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progression free survival on multivariable analysis (OR 1.131, p = 0.027 and OR 1.272,
p = 0.013, respectively). Lower Entropy and SUV yean seemed to be associated with longer
PFS. However, they obtained the best PFS prognostication by integrating radiomic data,
clinical and lab-tests, expressed according to Mantle cell lymphoma modified-IPI [70], in a
single model (p = 0.005).

Regarding response to therapy, Radiomics has not been able to predict response to
therapy yet [71]. Parvez A. et al. applied a radiomic segmentation on '8F -FDG PET/CT
in 82 patients affected by aggressive non-Hodgkin lymphomas [71]. They obtained no
significant results among high dimensional data in prediction of response to therapy
(p > 0.05), while grey-level nonuniformity and kurtosis (p = 0.013 and p = 0.035, respectively)
correlate with DFS and OS.

10. Bone

Traditional imaging plays a pivotal role in bone tumor detection, and is routinely used
in patient management [72]. To date, only a few studies tested the role of Radiomics in the
detection, differential diagnosis and response to therapy of bone neoplasms.

Among tumor detection and differential diagnosis, Radiomics was tested and reached
good accuracy in differentiating benign from malignant tumors [73,74]. Yin P. et al. [73],
who developed and validated a machine-learning CT-based method to differentiate sacral
chondroma from giant cell tumor on 95 patients, divided in training and validation set, by
performing manually volumetric segmentation. They selected three different methods for
features selection (Relief, LASSO and Random Forest) and classification (generalized linear
models (GLM), SVM and Random Forest), the best results were obtained by combining
LASSO and GLM (AUC 0.984 on enhanced CT). In addition, enhanced CT outperformed
unenhanced CT (p < 0.05). Xu R. et al. [74] applied texture analysis on F-FDG PET/CT
to distinguish malignant from benign bone and soft-tissue tumors. The authors found
that combining textural features, extracted from CT and PET, was superior to traditional
SUVmean (p = 0.0008, sensitivity 86.44%, specificity 77.27% and accuracy 82.52%).

Radiomics was also tested to assess the chemotherapy response and patient prog-
nosis, by assessing delta-Radiomics and developing a radiomic nomogram, and it was
showed to be a promising tool in evaluating prognosis and response to therapy [75,76].
Lin P. et al. [75] proposed a CT-based delta-Radiomics nomogram to evaluate pathological
response in patients affected by high-grade osteosarcoma. Five-hundred and forty features
were extracted from pre- and post-treatment CT of 191 patients, through LASSO logistic
regression 8 features resulted to be significantly different between good-responder and
non-responder (p < 0.001), with an AUC > 0.823 both in training and validation dataset.
Similarly, Wu Y. et al. [76] developed a radiomic nomogram, by including clinical and
radiomic features, with the aim to predict the survival of patients affected by osteosarcoma.
They stated that Radiomics could be and adding tool for the physicians in these patients’
management.

Metastases from different primary malignancies still represent the majority of bone
cancers and Radiomics was evaluated to identify primary PCa as well as risk-assessment of
bone metastases at time of diagnosis [77,78]. In fact, Lang N. et al. [77] compared Radiomics
with traditional ROI-method in investigating primary tumor and spine metastases on DCE-
MRI. The radiomic approach was superior to the ROI-method (accuracy 0.81 and 0.71,
respectively) and could guide clinicians in the workup of metastatic patients. Zhang
W. et al. [78] looked at radiomic nomogram, combining clinical and radiomic data from
mpMR]I, to predict the incidence of bone metastases in newly diagnosed PCa. Radiomic
nomogram performed well with an AUC > 0.92 both in the training and validation datasets.

11. Soft Tissue Tumors

Radiomics has been recently investigated as a non-invasive imaging biomarker in
soft tissue sarcomas (STS), the main soft tissue malignancy, with the objective of assessing
cancer grading (low-grade G1 and high-grade G2/G3), response to therapy and prognosis.
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Regarding cancer grading, Radiomics was investigated as an imaging biomarker to
differentiate low- from high-grade cancers and to predict tumor grading preoperatively.
This approach resulted encouraging results [79,80]. Peeken ].C. et al. [79] developed an MRI-
radiomic model to stratify STS into low- (G1) and high-grade (G2/G3) in a preoperative
clinical setting. The authors performed a manual volumetric segmentation of the primary
tumor both in the training (122 patients) and validation (103 patients) datasets. They
obtained three promising radiomic models, based on fat saturation T2w and T1w after
contrast medium injection sequences, able to differentiate low- from high-grade STS (AUC
0.69). Similarly, Zhang Y. et al. [80] tested Radiomics” ability to predict tumor grading
in 35 patients with histological diagnosis of STS. The superior result was obtained with
support vector machine classification, which showed an AUC of 0.92 and accuracy of 0.88.
A quantitative approach was also proposed to differentiate lipoma from liposarcoma by Vos
M. et al. [81], who developed a radiomic model able to distinguish benign from malignant
lesions (AUC 0.83, sensitivity 0.68 and specificity 0.84), one of the main challenges in soft
tissue tumors imaging.

In relation to response to therapy and prognosis prediction, Radiomics was investi-
gated by Crombé A. [82,83] et al., who tested this approach in predicting STS response
to NAC, in risk assessment of metastatic relapse and in prediction of prognosis, yielding
the best results when combining radiomic with clinical data. One study by Crombé A.
et al. [82] tested Radiomics on 65 MRI (T1w, pre- and post-contrast medium and T2w). The
best model was obtained with random forest classification on training dataset (50 patients)
to predict early tumor response with an AUC of 0.86, accuracy 88.1%, sensitivity 94.1% and
specificity 66.3%. Furthermore, another study by Crombé A. et al. [83] evaluated Radiomics
as a prognostic tool in order to overcome the misclassification of myxoid round-cell, a
relevant prognostic factor in liposarcoma, with traditional biopsy. They aimed to predict
the presence of myxoid round-cell by quantifying lesion heterogeneity with a radiomic
manual segmentation, performed on 35 patients MRI (T2w). The best performance was
achieved by combining radiomic features with visual assessment with an AUC of 0.925 and
concordance index of 0.937. Radiomics seems to be a promising tool in STS management, in
particular in case of uncertain diagnosis as well as in the assessment of prognosis, however
further investigations remain necessary.

12. Limitations

To date, lack of standardization, prospective studies and histologic validation repre-
sent several aspects which limit the use of Radiomics in clinical routine. Lack of standard-
ization, both in terms of image acquisition and segmentation, is one of the main Radiomics
challenges. Interscanner variability (e.g., different vendors and acquisition parameters) and
segmentation methods (e.g., manual, semi-automatic and completely automatic) denote
the major issues that could affect the standardization and reproducibility of analysis. In
addition, radiomic results have to be validated by significant prospective multicentric
studies, including large number of patients, able to mimic the application of Radiomics
in routine clinical setting, then verifying the effective contribution to manage oncologic
patients. Furthermore, histologic validation seems to be lacking and should be considered
as a parameter of results reliability, by considering that one of the main challenges of
Radiomics is to support and, in selected case, to replace histological analysis.

13. Future Perspectives

Radiomics might be seen as a future prospective tool in oncologic imaging, able to
overcome subjective imaging evaluation by providing a quantitative parameter reflecting
microenvironmental tumor architecture. Furthermore, radiomic parameters could help
clinicians in early diagnosis, prognosis prediction before starting any therapy and to
evaluate response to therapy. Radiomics could be seen as a helpful tool to tailor therapy per
patient, with the aim to reinforce the role of imaging in the emerging field of personalized
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medicine. Then, Radiomics could support cancer patient workup by adding an objective
and stable evaluation of medical images.

14. Conclusions

In conclusion, Radiomics should be seen as an imaging tool for oncologists in the
new era of targeted patient-centered therapy by covering the gap between histological
results and real microenvironmental heterogeneity. In addition, Radiomics could overcome
the limit of subjective imaging based evaluation and provide an quantitative objective
estimation of cancer heterogeneity and patient survival. However, the best results still were
obtained by combining clinical data with radiomic parameters, supporting the idea that
this recent imaging technique should be seen as a complementary tool for clinicians to have
a full overview of cancer patients. Nevertheless, Radiomics is not the definitive solution
to solve all management problems of oncologic patients, but it could help physicians in
designing a workflow tailored specifically to each patient according to quantitative parame-
ters and outcomes data. Furthermore, Radiomics needs to be validated and standardized in
order to cover the main gaps currently present in the literature regarding image acquisition,
image segmentation, feature extraction, feature selection and modeling, which represent
major steps able to affect feature stability and analysis reliability. Future multicentric
studies are necessary for testing and validating each radiomic phase, by sampling the
widest possible range of variables, to mimic real clinical situation.

In the future, Radiomics should be seen as a consistent and objective tool for clinical
trial settings and tailored therapy by performing an accurate assessment of patient prog-
nosis at the moment of diagnosis and during course of treatment. Radiomics could in the
future, become a routine application in the field of radiology however future studies are
needed to solve questions regarding imaging acquisitions, segmentations, processing and
post-processing data analysis.
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Abbreviations

MRI magnetic resonance imaging
CT computed tomography

PET positron emission tomography

DWI  diffusion weighted imaging
ADC apparent diffusion imaging
DCE dynamic contrast enhanced
DKI diffusion kurtosis imaging
AUC  area under the curve

ROC  receiver operating characteristic
SVM support vector machine

CNN  convolutional neural networks
CTTA  CT texture analysis

PPV positive predictive value

NPV  negative predictive value
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oS overall survival

DFS disease-free survival

PFS  progression-free survival
CRT chemoradiation therapy
SUV standard uptake values
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