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Simple Summary: This narrative review first describes from several points of view the complex
interrelationship between cancer and neurodegeneration, with special attention to the mechanisms
that might underlie an inverse relationship between them. In particular, the mechanisms that might
induce an imbalance between cell apoptotic and proliferative stimuli are discussed. Second, the
review summarizes findings on orexins and their involvement in narcolepsy, neurodegenerative
diseases, and cancer, starting from epidemiological data then addressing laboratory findings, animal
models, and human clinical observational and interventional investigations. Important research
efforts are warranted on these topics, as they might lead to novel therapeutic approaches to both
neurodegenerative diseases and cancer.

Abstract: Conditions such as Alzheimer’s (AD) and Parkinson’s diseases (PD) are less prevalent
in cancer survivors and, overall, cancer is less prevalent in subjects with these neurodegenerative
disorders. This seems to suggest that a propensity towards one type of disease may decrease the
risk of the other. In addition to epidemiologic data, there is also evidence of a complex biological
interconnection, with genes, proteins, and pathways often showing opposite dysregulation in cancer
and neurodegenerative diseases. In this narrative review, we focus on the possible role played by
orexin signaling, which is altered in patients with narcolepsy type 1 and in those with AD and
PD, and which has been linked to β-amyloid brain levels and inflammation in mouse models and
to cancer in cell lines. Taken together, these lines of evidence depict a possible case of inverse
comorbidity between cancer and neurodegenerative disorders, with a role played by orexins. These
considerations suggest a therapeutic potential of orexin modulation in diverse pathologies such as
narcolepsy, neurodegenerative disorders, and cancer.
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1. Cancer and Neurodegenerative Diseases

The World Health Organization (WHO) highlights cancer as one of the most common
causes of death, which accounted for almost 10 million deaths worldwide in 2020 [1].
Overall, estimates indicate that one in five persons will get cancer in their lifetime before
75 years of age and one in ten will die from the disease.

The incidence and prevalence of neurodegenerative diseases are also high. Alzheimer’s
disease (AD) is a neurodegenerative disorder characterized by brain β-amyloid plaques
and neurofibrillary tangles formed by phosphorylated tau (P-Tau) protein deposits. AD
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is the most frequent neurodegenerative disease and affects 24 million people worldwide.
The second most frequent neurodegenerative disease is Parkinson’s disease (PD), char-
acterized by Lewy bodies and neurites formed by alpha-synuclein deposits. PD has a
prevalence of 1% in people older than age 60, and of 3% in people aged 80 years or older [2].
There is also increasing interest, in the literature, on multiple sclerosis (MS). Despite being
an inflammatory demyelinating disease, MS can also be viewed as a neurodegenerative
disease because of the cascade of events triggered by neuroinflammation and leading
to neurodegeneration [3–5]. The key elements that induce neurodegeneration include
activation of microglia, chronic oxidative damage, and altered mitochondrial function in
axons, leading to chronic cellular stress and imbalance of ion homeostasis, resulting in
axonal and neuronal death [6]. The total prevalence of MS in Europe is 83 per 100,000,
which is lower than the prevalence of AD and PD, but still associated with substantial
social and economic costs [7]. Amyotrophic lateral sclerosis (ALS), which is characterized
by the progressive loss of motor neurons in the brain and spinal cord, is also rare, with a
prevalence of 2–3 per 100,000 [8].

1.1. The Connection between Cancer and Neurodegenerative Diseases

The incidence of many common cancers and neurodegenerative diseases including
AD and PD increases with age [9,10]. MS also typically occurs in adults, although its
prevalence peaks for subjects between 35 and 64 years of age and does not further increase
thereafter [7]. Similarly, the risk for ALS peaks at 50–75 years of age [8]. It is essential
to focus attention on the development of alternative treatments that address age-related
diseases, also in consideration of the increase in age in the population.

Despite the common age-related trends in the incidence of cancer and neurodegen-
erative disorders, a meta-analysis of observational studies including 577,013 participants
concluded that there was a significantly lower co-occurrence of cancer in patients with
neurodegenerative disorders. In particular, patients with AD had a markedly reduced
co-occurrence of cancer in general, but no data were available for specific cancers [11].
The Framingham heart study, a longitudinal community based cohort study, in which
221 cases were evaluated for a 10-year follow-up, also indicated a lower risk of AD for
cancer survivors: the risk of AD was lower in survivors of smoking-related cancers; this
model for cancer is similar to that seen in PD and suggests an inverse association between
cancer and neurodegeneration; the effect was stronger for lung cancer and preserved for
participants who survived at least to 80 years of age [12]. Furthermore, in evaluating the
interconnection between AD and lung cancer, it is important to consider that cigarette
smoking appears to play a neuroprotective influence for both AD and PD [13], while it
represents a known risk factor for cancer of the lung.

A recent systematic review and meta-analysis confirmed a weak but significant de-
crease in AD risk comparing older adults with vs. without a previous cancer diagnosis,
but it could not rule out a role of survival bias [14]. Epidemiological studies indicate that
AD patients have a lower risk of developing lung cancer and a higher risk of developing
glioblastoma: transcriptomic meta-analyses reveal a significant number of genes with
reverse expression patterns in AD and lung cancer, compared to AD and glioblastoma [15].
Meta-analytical data indicate that patients with PD and MS have a reduced co-occurrence
of lung and prostate cancers, and patients with PD also have reduced co-occurrence of
colorectal cancer. These associations are not consistent across all cancer types, with an
increased cooccurrence of melanoma in patients with PD and of brain cancers in patients
with MS [11]. On the other hand, a recent population-based case-control study reported
negative point estimates of the odds of developing PD in survivors of most cancers, with
the notable exception of skin and female breast cancer but with wide confidence intervals
overlapping with zero [16]. A recent meta-analysis has shown that patients with MS have
a lower risk of contracting tumors than the general population [17], with an inverse comor-
bidity between MS and cancer. The authors also stressed that the identification of inverse
comorbidity and its underlying mechanisms could provide important new insights into
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the understanding of MS [18]. No significant association has been found between ALS and
overall cancer occurrence [11].

These epidemiologic associations are complex and challenged by confounders and
exceptions [19]. Cancer treatment may also modify the relationship; some studies sug-
gest that patients who received chemotherapy may have lower white matter organization
and connectivity when compared with healthy controls [20]. Other studies suggest that
chemotherapy correlates with a lower risk of AD [21]. Inverse comorbidity does not in-
volve all types of neurodegenerative disorders and all types of cancers. Thus, the concept
of inverse comorbidity, as it is discussed in this review, should always be considered in
its imperfect nature rather than as a fixed rule. Nevertheless, the epidemiological data
suggest a pattern of lower-than-expected combined probability of cancer and neurodegen-
erative diseases, which has been defined as “inverse comorbidity” [22]. The study of the
mechanisms behind this pattern of inverse comorbidity could influence therapeutic inter-
ventions and provide strategies that prevent or delay both cancer and neurodegenerative
diseases [19,23–25].

There are multiple factors that play a central role both in cancers and neurodegen-
eration through the same metabolic pathways that are inversely regulated and altered,
as outlined in a comprehensive review published in recent years [19]. One key feature
highlighted by that review was the occurrence of two patterns of association between can-
cer and neurodegeneration, which were summarized as “proliferation” and “apoptosis”,
respectively. This implied that neurodegenerative diseases and cancers may be viewed as
two sets of diseases with “too little” and “too much” apoptosis, respectively. The review
also highlighted multiple factors that may underlie this difference: oxidative stress, DNA
damage, inflammation, genomic instability and epigenetic alterations, mitochondrial and
telomere dysfunction, metabolic dysregulation, depletion of stem cells, aberrant activation
of the cell cycle, and cellular interconnections [19]. Many of these factors overlap with those
that have been proposed as the pillars of aging: macromolecular damage, proteostasis,
inflammation, epigenetics, metabolism, stem cells and regeneration, and adaptation to
stress [26].

Another potential example of a mechanism relevant to both cancer and neurodegener-
ation is the non-classical, non-enzymatic binding of acetylcholinesterase (AChE) acting at
an allosteric site on the nicotinic alpha-7 receptor. AChE is expressed not only in the brain
but also in epithelial, endothelial, immune, and cancer cells. This form of inter-cellular com-
munication may represent a system for triggering the entry of calcium into a wide range of
cells to promote their growth. Furthermore, the AChE peptide might play a fundamental
role in cell migration; therefore, through this pathway (common to neurodegeneration and
carcinogenesis), there might be an interconnection between the nervous, endocrine, and
immune control systems [27].

Although neurodegeneration is typical of old age, neurodevelopmental disorders
might share at least some mechanisms with neurodegenerative diseases, with cognitive
delay representing the counterpart of dementia. It has been estimated that 40–100% of brain
tumor survivors have neurocognitive problems [28], not necessarily connected with the
direct brain damage associated with the tumor and/or its treatment, and a recent review
has highlighted the bidirectional correlation between cancer and neurodevelopmental
disorders in pediatric age [29]. Although pediatric studies conducted on this topic are still
very few, a role in the neurodevelopment deficit (especially in a fundamental period for
cerebral maturation and neuronal plasticity) is played by anticancer therapies, due to their
neurotoxicity [30]. Over the years, various chemotherapeutic agents used in clinical prac-
tice for the treatment of brain tumors have shown severe effects on cognitive functions, and
recent studies on nanotechnology have shown that nanomaterials that could be exploited
for the treatment of brain cancer are able to induce neurotoxic effects and neurodegenera-
tion [31]. However, another important role is definitely played by inflammatory processes
related to the tumor and to the considerable increase of reactive oxygen species (ROS);
thus, cytokine-mediated inflammatory mechanisms might act as a trigger that initiates a
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cascade of events responsible for neurotoxicity [32]. In support of this, a study on children
with acute lymphatic leukemia showed damage to brain structures both before and after
chemotherapy, with an increase in Tau protein (suggestive of axonal damage) and in glial
fibrillary acidic protein (GFAP) in patients with alterations of the apolipoprotein E gene (as-
sociated with attention deficit) and an increase in leukoencephalopathy, with impairment
of the white matter [32,33].

1.2. The Biological Bases of the Inverse Comorbidity between Cancer and Neurodegeneration

Inverse comorbidity between cancer and neurodegeneration may be influenced by
environmental, pharmacological, and dietary factors. Genetic factors can additionally
contribute to the inverse comorbidity between complex diseases [22,34–36]. At the base of
the bidirectional interactions between cancer and neurodegenerative diseases there may be
complex mechanisms that include genes, proteins, and mitochondrial function, the study
of which could provide important therapeutic novelties for both diseases (Figure 1).
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Figure 1. Schematic representation of the bidirectional interactions between cancer and neurodegenerative diseases and
their modulatory processes. Neurodegenerative diseases and cancer are framed as two sets of disorders with “too much” or
“too little” apoptosis, respectively. Reactive oxygen species (ROS), alterations in proteostasis, and microRNA (miRNAs) are
among the key factors that may underlie the differences between the two sets of disorders. Some of the specific molecular
mechanisms thought to be involved in this pattern of inverse comorbidity are highlighted in the middle column (see the
text of the paper for abbreviations). ↓ = downregulated, ↑ = upregulated.

Mutations in PRKN (PARK2, Parkin), PARK7 (DJ-1), and PINK1 genes, which are
among the genes contributing to familial cases of PD, lead to the mutation of both tumor
suppressor genes, PTEN and TP53 [25]. On the other hand, PRKN and PARK5 have an-
tiproliferative properties and are often inactivated in tumors [37]; PINK1 can also have
antiproliferative functions [38]. Another mechanism potentially contributing to the in-
verse comorbidity is related to the brain expression of PARP1. The PARP1 protein is
underexpressed in the brains of subjects with PD [39], while it is overexpressed in glioblas-
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toma multiforme [39]. Interestingly, the PARP1 protein is also overexpressed in prostate
cancer [40].

The genetic variants shared between AD and cancer are less known. Recently, a
genome-wide association study (GWAS) has highlighted genes potentially involved in
AD and in five different cancers (colon, breast, prostate, ovary, lung), with some shared
variants modulating disease risk in a concordant way and others exerting effects in opposite
directions [41]. On the other hand, the transcription factor P53 (a tumor suppressor) has
multiple functions common to cancer and neurodegenerative disorders such as HD, PD,
and AD [25,42], and it is crucial for cell growth control and apoptosis. Its expression is up-
regulated in AD, PD, and HD but downregulated in the vast majority of tumors [19,23,25].

Aggregation of superoxide dismutase (SOD1) causes cell death in ALS; however,
SOD1 also has a role in breast cancer and the ability to increase estrogen reactive gene
expression [19]. The reduced activity of SOD1 and glutathione reductase (GR) induces an
increase in the production of reactive oxygen species (ROS), which leads to a conformational
change of P53. The modification of P53, in turn, induces the production of ROS, thus
activating oncogenic functions, such as tumor cell invasion and metastases. P53 also
induces the upregulation of apoptotic proteins, such as X associated with BCL2 (BAX) and
caspase 3 (observed in PD) [43]. This cascade of events, depicted also in Figure 2, seems to
be an example of unclear or absent inverse comorbidity between neurodegeneration and
cancer, perhaps based on the physiological and ubiquitous ROS signaling.
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Figure 2. Schematic representation of the possible role of superoxide dismutase (SOD1) in
amyothrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and cancer metastasis. See the
text of the paper for abbreviations. ↓ = decrease, ↑ = increase, ⊕ = stimulation.

Interestingly, drugs used in the treatment of symptoms of neurodegenerative dis-
eases, such as thioridazine, have been shown to have anticancer effects, while anticancer
drugs, such as cyclin-dependent kinase inhibitors and mithramycin, are neuroprotective;
these data reinforce the existence of a link between cancer and central nervous system
(CNS) diseases and indicate that future studies will need to focus on specific molecular
pathways [23].

1.3. The Role of Mitochondria

The BCL2 protein, involved in the mitochondrial outer membrane permeabilization,
is overexpressed in CNS disorders, such as AD, PD, and frontotemporal dementia (FTD),
whereas it undergoes downregulation in tumors [23]. On the other hand, cyclin D and
cyclin E are overexpressed in both cancer and neurodegenerative diseases, while PP2A
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is downregulated in both diseases. Cyclin F is downregulated in cancer, and a mutation
has been found in neurodegenerative diseases [43]. PIN1, a multifunctional gene that is
hypothesized to function as a molecular timer, is overexpressed in a number of tumors
and in PD but is underexpressed in AD [19,43]. Inhibition of PIN1 suppresses the growth
of various tumor cells and is therefore considered as a promising therapeutic target in
the oncological field [43]. PIN1, through its interactions with P53 and BCL2, can have
a pro- or anti-apoptotic role depending on the cellular context. Its role in mitochondria-
driven apoptosis could therefore provide a link between cancer and AD [43]. Other
potentially common factors in cancer and neurodegenerative diseases include the PARK7
(DJ-1) and APP oncogenes (the first is involved in mitochondrial regulation, the second
is a precursor of the β-amyloid protein), the PFDN5 (MM-1) and PRKN (Parkin) tumor
suppressors (the first inhibits transcription and protein aggregation, involved in the onset
of PD, cerebellar atrophy and HD, the latter plays a role in mitophagy and ubiquitination),
and the PDAP1 (PAP1) and PINK1 modulators (the former is involved in splicing and the
latter in mitophagy) [44].

Growing evidence suggests that age-related changes in bioenergetics at the mitochon-
drial level and the resulting metabolic compensation may be an important driver of both
cancer and neurodegeneration and a potential target for prevention and therapy; dysfunc-
tion of mitochondria leads to disruption of DNA repair and the malfunction of metabolic
pathways (such as the PI3K pathway), increasing the risk of cancer [45]. Alterations in
mitochondrial DNA (mtDNA) decrease the efficiency of the respiratory chain with aging,
and the prevalence of mtDNA deletions seems particularly high in neurodegenerative
disorders such as PD and AD [46,47]. It has also been shown that mutations in mitochon-
drial DNA and alterations in mitochondrial energy metabolism can be correlated with the
onset or progression of glioblastoma, following alteration of the pathways involved in
apoptosis [48].

Recent data highlight an important role of the intestinal microbiome, intestinal per-
meability, and alterations in the functioning of mitochondria in the pathophysiology of
MS: orexins, melatonin, and butyrate increase oxidative phosphorylation in mitochondria
through the disinhibition of the pyruvate dehydrogenase complex, leading to an increase
in acetyl-coenzyme A, a co-substrate necessary for the activation of the melatoninergic
pathway of the mitochondria. Loss of mitochondrial melatonin coupled with an increase
in N-acetylserotonin has implications for impaired mitochondrial function and appears to
play a role in the pathophysiology of MS [49].

1.4. Other Factors

Telomere alterations have been recognized as a risk factor for both age-related car-
cinogenesis and neurodegeneration. In AD, telomere shortening has been implicated in
oxidative stress and inflammation, with cognitive impairment, amyloid pathology, and
hyperphosphorylation of the Tau protein. A decrease in telomere length was found in
peripheral blood leukocytes in patients with AD, compared with age-matched controls, and
was proposed as a potential biomarker for AD [50,51]. As introduced above, this should be
considered in the framework of the imperfect inverse comorbidity between AD and cancer.
Several studies have shown that telomeres shorten in the early stages of carcinogenesis
and that tumor cells need to activate telomerases (which synthesize telomeres) to become
immortal [52,53].

The Wnt family of secreted glycolipoprotein signaling pathway molecules takes part
in the regulation of cell proliferation, polarity, and fate during the embryonic phase and in
tissue homeostasis. Changes in the Wnt pathway are involved in congenital defects, cancer,
and other diseases [54]. The Wnt/β-catenin signaling pathway appears to play a critical
role in neural stem cell proliferation [55]. However, the dysregulation of this pathway
has also been associated with cancer and neurodegenerative disorders, such as AD and
PD, through an inverse correlation. In particular, the activation of Wnt signaling could
be protective in neurodegenerative diseases but could promote the onset and progression
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of cancer [56,57]. Several molecular components of the signaling pathway have been
proposed as innovative targets for cancer therapy, and very recently, some have also been
evaluated as potential therapeutic targets for PD [57].

Protein homeostasis (or proteostasis) indicates the maintenance of the correct concen-
tration of proteins of regular conformation and subcellular compartmentalization. The
loss of protein homeostasis is another very important process in neurodegeneration. In
particular, the family of heat shock proteins, chaperones, and the ubiquitin–proteasome
system (UPS), which decrease with aging, result in aggregation of synuclein in Lewy bodies,
of β-amyloid, and of Tau [58,59]. Additionally, neoplastic cells show a loss of protein home-
ostasis but often in the opposite direction: in cancer cells there is an overexpression of UPS
and heat shock proteins [60,61]. Global hypomethylation and hypohydroxymethylation,
alterations of histone proteins, and high expression of some non-coding RNAs were found
in AD [62,63]. The same mechanisms are also implicated in carcinogenesis, and epigenetic
therapy has already been suggested as a potential method to correct the expression levels
of dysregulated genes in neurodegenerative disorders and tumors [19].

The miR-34 and miR-122 miRNAs have been used in the treatment of certain types
of cancer and hepatitis, with promising results [64]. On the other hand, some miRNAs
(miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155) may be involved
in the physiopathology of AD, and some act on the Wnt/β-catenin pathway [65], which
is involved in both neurodegenerative diseases and tumors. A recent paper suggested a
potential anti-β-amyloid protective effect of miRNA-15b and a biological link between
miRNA-125b and neurotoxic pathways, hypothesizing that these miRNAs may play a role
as biomarkers of AD physiopathology with therapeutic potential [66]. The amyloid precur-
sor protein (APP) is connected to both AD and malignant growth. APP is concentrated in
neuronal synapses and is the major component of amyloid plaques associated with AD.
APP increases the proliferation and migration of epithelial cells (although the mechanism
has not been fully defined) and is overexpressed in various tumors (oral cavity, esophagus,
pancreatic, neuroendocrine, thyroid, and colorectal cancers) [67]. These results suggest
the potential role of APP in cancer pathogenesis and reinforce our concept of imperfect
inverse comorbidity between AD and cancer. Aberrant expression of miRNAs could also
be involved in both neurodegeneration and tumor pathologies through the downregulation
of PTEN, involved in PD. Many genes involved in both types of pathologies, including
PARK2, CDK2, and E2F1, are potential targets of multiple miRNAs; however, further
studies are needed to better understand their roles [67]. Taken together, these data suggest
that miRNAs may be the basis for common therapeutic approaches to both cancer and
neurodegenerative diseases [67,68].

2. Cancer, Narcolepsy, and Other Neurodegenerative Diseases
2.1. Narcolepsy and Cancer

Narcolepsy type 1 (NT1) is a rare neurological disease that reflects a selective loss or
dysfunction of the orexin (also known as hypocretin) neurons of the lateral hypothalamus.
NT1 is typically characterized by excessive daytime sleepiness and cataplexy, accompanied
by sleep-wake symptoms, such as hallucinations, sleep paralysis, and sleep disturbances.
Its etiopathogenesis is still under study, and a likely autoimmune genesis has recently been
convincingly proposed [69]. Furthermore, a meta-analysis has highlighted an increase in
serum/plasma levels of some cytokines (IL-6 and TNF-α) in patients with narcolepsy, fur-
ther supporting the involvement of inflammatory mechanisms in its pathophysiology [70].
However, it should be considered that while inflammation may be involved during the
disease onset period as part of an autoimmune challenge, its significance in later disease
stages is under debate.

In recent years, an increased cancer risk has been reported, albeit not invariably [71],
in both adults [72] and children and adolescents [73] with narcolepsy. In particular, in a
study conducted on 2833 patients with narcolepsy with an observation period of 10 years,
a connection with cancer risk was reported, especially for head-neck and gastrointestinal
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cancers and, to a lesser extent, for hematological and genitourinary cancers. The authors
hypothesized genetic and immunological factors underlying the interconnection between
narcolepsy and cancer [74]. These data are of interest because they suggest a link between
narcolepsy and cancers in organs and tissues in which there is evidence of functional
responses to orexins (brain, gastrointestinal, and genitourinary tract) [75–77]. Orexin might,
therefore, play a role in some types of tumors as well as in NT1. However, studies on
this topic are few, also due to the rarity of narcolepsy, even though they were conducted
on a large registry series. On the other hand, registry data may not allow the discrimi-
nation between NT1 with orexin deficiency and narcolepsy type 2 (NT2) without orexin
deficiency [73]. One study based on retrospective medical claims data found an increased
comorbidity with neoplasms in both subjects with NT1 and subjects with NT2, compared
with controls [72]. Thus, the epidemiological link between orexin deficiency in NT1 and
cancers is still unclear and warrants further research, which may pave the way to a better
understanding of these pathological processes and to new therapeutic perspectives.

2.2. Narcolepsy and Neurodegenerative Diseases

NT1 may coexist with AD or PD [78] or with MS [79]. The prevalence of AD in patients
with NT1 was similar to that in control subjects based on postmortem brain pathology in
12 patients [80]. While these data indicate that NT1 does not confer absolute protection
from neurodegenerative diseases, they are too limited to conclude for or against an associa-
tion. In other studies, attention was focused on cerebrospinal fluid (CSF) neurodegeneration
markers, revealing a decrease in CSF β-amyloid1-42 (the amyloid beta peptide with greatest
propensity to aggregation) [81] in patients with narcolepsy (both NT1 and NT2) close to
disease onset, which progressively recovered with time. On the other hand, patients with
long disease duration of narcolepsy had higher P-Tau CSF levels than patients with short
disease duration or control subjects [82]. Lower CSF levels of β-amyloid1-42 [83,84] and
P-Tau [84] in patients with NT1 than in control subjects were reported by other studies,
although not invariably [85]. Reduced brain β-amyloid burden was also detected with
positron emission tomography in elderly patients with NT1, suggesting a reduced risk
of progression to AD; furthermore, the authors hypothesized a protective role of orexin
antagonists against neurodegeneration [86]. This suggestion is supported by preclinical ev-
idence that in mice, the amount of β-amyloid in the brain interstitial fluid increased during
orexin infusion and decreased with infusion of an orexin receptor antagonist, which also
decreased β-amyloid plaque formation in amyloid precursor protein transgenic mice [87].

3. Orexin, Cancer, and Neurodegenerative Diseases

Although many critical pieces of evidence are still missing, the results summarized in
the previous paragraphs raise the hypothesis that orexins mediate, to some extent, the links
between cancer and narcolepsy and other neurodegenerative diseases. In particular, orexin
deficiency is a key pathophysiological feature of patients with NT1 and might explain a
greater occurrence of some types of tumors and reduced markers of neurodegenerative
diseases in these patients.

To better understand this aspect, it is necessary to focus attention on the potential
mechanisms of inverse comorbidity that were discussed previously, which include genes,
proteins, and mitochondrial function.

3.1. The Orexin System

Orexin A and B (OXA and OXB) [88], also named hypocretin 1 and 2 [89], are peptides
expressed by hypothalamic neurons that are most active during active wakefulness and
have sparse activity during rapid-eye-movement (REM) sleep [90].

The orexins bind two G-protein-coupled receptors named OR1, which is selective for
OXA, and OR2, which is non-selective for OXA and OXB [88]. OR1 and OR2 are widely
expressed in the CNS [76], in line with the widespread projections of the orexin neurons [91].
The available evidence indicates that the orexin signaling is multifaceted and complex,
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with similar mechanisms elicited by OR1 and OR2 (Figure 3) [92,93]. Interpretation of this
evidence is complicated by the fact that data were mostly obtained in recombinant cell
lines that overexpress orexin receptors, with limited direct relevance to orexin physiology
and pathophysiology. Nevertheless, the relevance of these expression systems is very
considerable by implication because they reflect the intrinsic signaling capabilities of orexin
receptors [94]. These capabilities underlie the in vivo modulation by the CNS orexin system
of multiple physiological functions, including wake-sleep behavior, energy homeostasis,
and autonomic cardiovascular control [95–98].
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OR1 and OR2 are also expressed outside the CNS, including in the gastrointestinal
tract, adipose tissue, male reproductive tissue [76], as well as in the heart [99] and bone
marrow [77], where they may be relevant to the pathophysiology of heart failure [99] and
atherosclerosis [77]. As peripheral orexin synthesis is debated [75], these receptors may
bind orexins that spill over to the systemic circulation after their release in the CNS by
hypothalamic neurons [77]. In this respect, it should be noted that while OXA is relatively
protected from inactivating peptidases by its chemical structure, OXB is not [88] and
is rapidly metabolized in blood [100] and even in CSF [101]. Any peripheral effect of
circulating orexins may thus be mediated largely if not solely by OXA. However, even the
blood–brain barrier permeability to OXA is still debated. OXA was reported to rapidly
enter the mouse brain by simple diffusion [100], but another study reported negligible
(< 1%) brain penetration of OXA in mice and rats [102].
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3.2. Orexin and Mitochondrial Function

There seems to be no studies in the literature on the functioning of mitochondria
in narcolepsy. However, a recent in vivo study reported that OXA might reduce mito-
chondrial biogenesis, increase mitophagy, and damage mitochondrial structure in AD.
These authors also envisaged inhibition of OXA as a potential approach to the treatment
of AD [103]. Similar data were reported by a study on mouse models, which showed
that OXA aggravated mitochondrial deterioration, the accumulation of β-amyloid, and
cognitive deficits [104]. This might imply that OXA deficit, as in NT1, would preserve
the integrity and functionality of the mitochondria, reducing the risk of progression to
AD. These data might also explain why NT1 and MS seem to be only rarely associated,
contrary to what one would expect, since both conditions may represent autoimmune
diseases [69,70,79,105]. Lack of OXA in NT1 could exert a protective effect against mito-
chondrial damage, preserving them from the neurodegeneration mechanisms that occur in
MS [6].

Emerging studies highlight that a mitochondrial dysfunction can enhance inflamma-
tory and immune processes, also depending on environmental factors [106].

3.3. Microbiota

There is promising but initial evidence that the local immune response and systemic
inflammation might play a role both in tumor progression and in the survival of cancer
patients [107], in neurodegeneration associated with diseases such as AD, PD, ALS, and
FTD [108], as well as in NT1, a pathology with a likely autoimmune pathogenesis [69,70].
In this respect, it is also worth mentioning alterations in the structure of the intestinal
microbial community that may be linked to inflammation in narcolepsy, although the data
on this topic are still limited. Further broader and longitudinal studies are necessary to
replicate and clarify the relationship between the gut microbiota, immunity dysregulation,
and narcolepsy [109].

It seems that the intestinal microbiota plays a key role in the interaction between
the brain and the gastrointestinal tract [110], due to the ability of probiotic agents to
alter cytokine levels and influence brain function. The intestinal microbiota has recently
been linked to the pathogenesis of neurodegenerative diseases such as PD [111] and
AD [112,113], in support of a close interconnection between inflammatory, immunological,
neurodegenerative, and carcinogenic processes. Recent studies suggest that the modulation
of the intestinal microbiome is able to influence the immune response and numerous forms
of cancer therapy by reducing their toxicity [114].

3.4. Genetic Factors

In a study on 426 patients with NT1, a significant association was found with increased
copy number variation in the PARK2 region [115]. However, the study was conducted only
on the Japanese population, and there are no data on other ethnicities. It was previously
mentioned that PARK2 has antiproliferative properties and is often dysregulated due to
somatic mutations in tumors [37]. A variable expression of this gene in different narcoleptic
patients could therefore contribute to explanations of the increased prevalence of neoplasms
in narcolepsy [74]. These findings suggest that further studies are needed on the possible
genetic variations common to cancers and narcolepsy.

Mitochondria are one of the targets of miRNAs [116]; thus, alterations in miRNAs
might modify mitochondrial function. Alterations in the expression of some miRNAs
may be involved in the pathophysiology of narcolepsy [117]. A study revealed significant
differences in the plasma levels of four miRNAs in patients with NT1 compared with
healthy controls: levels of miR-30c, let-7f, and miR-26a were higher, whereas the level of
miR-130a was lower in NT1. However, these differences were not specific for NT1 but also
occurred in patients with NT2 or idiopathic hypersomnia. The levels of miR-26a, miR-30c,
and let-7f are relatively high in the brain. miR-30c is also highly expressed in the heart,
thyroid gland, blood cells, skeletal muscle, kidney, and lung. miR-26a is also expressed in
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the heart, thyroid, skeletal muscle, colon, and reproductive system. let-7f is also expressed
in the heart, thyroid, blood cells, skeletal muscle, and reproductive system. miR-130a is
expressed in the heart, lung, kidney, jejunum, colon, thyroid gland, and the reproductive
system. The authors raised the hypothesis that these miRNA play a pathophysiological
role and speculated that let-7f might influence T cell proliferation [118]. An alteration of
miRNAs in patients with narcolepsy might be correlated with metabolic dysfunctions and
carcinogenesis, especially in the gastrointestinal and genitourinary tracts, where increased
tumor occurrence has been reported in these patients [74]. Very recent and interesting data
indicate that miRNA specifically located in brain orexin neurons are also involved in the
regulation of their viability [119].

3.5. Orexin in Cancer

In recent years, a series of studies have been conducted on the role of orexins not
only in the field of sleep disorders but also in oncology, discovering that modulation of the
orexin signaling may also unexpectedly play a therapeutic role in the treatment of some
types of cancer [120,121]. One study demonstrated that OXA stimulates neovasculariza-
tion [122]. Angiogenesis is the formation of new capillaries from preexisting blood vessels,
a critical step in physiologic and pathologic events such as embryonic development, wound
healing, chronic inflammation, and tumor growth [123]. Recent studies on the relationship
between the brain and the gastrointestinal tract have suggested that OXA may play an
immunomodulatory role, reducing the production of pro-inflammatory cytokines (tumor
necrosis factor α, interleukin-6, and chemotactic protein of monocytes-1). Therefore, it
has been proposed that the modulation of the orexinergic system may be useful in the
treatment of hyperalgesia and fatigue due to chemotherapy, as well as in inflammatory
bowel diseases [124].

Early work revealed a pro-apoptotic effect of OR1 signaling in colon cancer and
neuroblastoma cell lines [125]. These results were later confirmed on cell lines from
human colon cancer and liver metastases, both in vitro and in vivo, after xenograft in
nude mice [126]. Most interestingly, OXA also promotes robust apoptosis in cells that
are resistant to 5-fluorouracil, the most widely used chemotherapy in colon cancer, and
reverses the development of established tumors when administered seven days after cell
inoculation [125]. OXA might promote tumor apoptosis in vivo by directly activating
caspase-3. These findings seem to suggest OR1 agonists for future research on colon
cancer therapy [125]. More recent data on human colon cancer cell lines indicate that OXA
induces autophagy [127] and that dual-agonist occupancy of OR1 and cholecystokinin A
receptor heterodimers decreases migration [128]. Orexin-dependent apoptosis might be
mediated by two immunoreceptor tyrosine-based inhibitory motifs in both OR1 and OR2,
involvement of the phosphotyrosine phosphatase SHP2, and induction of mitochondrial
apoptosis [120].

The evidence in favor of a therapeutic role of orexins on cancers other than colon
cancer is more limited and partly contrasting [129]. OXA was found to suppress the growth
of rat glioma cells [130]. Conversely, OXA was found to inhibit gastric cancer cell apop-
tosis via OR1 [131] and to enhance proliferation by upregulating the protein expression
of OR1 [132], which is opposite to what was reported for colon cancer cells. Data are also
contrasting for pancreatic ductal cancer and prostate carcinoma. One study reported that
OR1 signaling promotes cell proliferation in pancreatic ductal cancer cells [133], whereas
another study indicated that both agonism (OXA) and antagonism (almorexant) of OR1 ex-
ert an antitumoral proapoptotic effect on pancreatic ductal cancer in vitro and in vivo [134].
On the other hand, OR1 was found to be overexpressed and to mediate apoptosis in ad-
vanced prostate cancer with a neuroendocrine differentiation [135]. Accordingly, OXA
administration to a human androgen-dependent prostate carcinoma cell line was later
found to upregulate OR1 expression, resulting in a decrease of cell survival [136]. The same
year, however, lack of expression of orexin receptors genes was reported in human normal
and prostate cancer cell lines [137].
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3.6. Orexin in Neurodegenerative Diseases

Neurodegenerative disorders may be associated with decreases in orexin neuron
number and orexin system activity [97]. The orexin neuron number was found decreased
by 40–72% [138,139] in the brains of patients with AD, whereas CSF OXA levels were found
reduced only by 14% [138], not significantly changed [140] or even increased [141] in these
patients. This discrepancy suggests either that orexin neuron loss is inconstant or that the
residual orexin neurons are overactive.

PD and dementia with Lewy bodies (DLB) are neurodegenerative disorders character-
ized by Lewy bodies and neurites formed by alpha-synuclein deposits, whereas multiple
system atrophy (MSA) is characterized by neuroglial alpha-synuclein cytoplasmic inclu-
sions [142]. The number of orexin neurons was found dramatically reduced by 62–75% in
the brain of subjects with PD, DLB, and MSA [143–145]). However, similar to what has
been reported for subjects with AD, reductions in orexin neuron number in subjects with
PD, DLB, or MSA were found generally insufficient to entail significant decreases in CSF
levels of orexin [146–148].

OXA levels in the CSF are not significantly decreased in subjects with MS [149], unless
MS entails hypothalamic lesions [150]. Nervous system inflammation is central to MS, albeit
possibly secondary to neurodegeneration [5], and is also involved in the pathophysiology
of the tau- and synucleinopathy neurodegenerative disorders [151,152]. Interestingly,
there is evidence that OXA may decrease inflammation at neural and systemic levels. In
mouse models, OXA acts on the CNS to modulate inflammation and increase survival in
septic shock [153] and to alleviate inflammation after intracerebral hemorrhage [154] and
in experimental immune encephalomyelitis [155]. OXA may also act on intestinal OR1
to prevent lipopolysaccharide-induced neuroinflammation at the level of the intestinal
barrier [156] and to decrease inflammation in ulcerative colitis [129]. Moreover, OXA
acts on OR1 bone marrow pre-neutrophils to tune down myelopoiesis, restraining the
nighttime increase in circulating inflammatory monocytes and neutrophils and limiting
atherosclerosis burden [77]. Thus, OXA has an immunoregulatory and neuroprotective
action, inhibiting apoptosis and reducing inflammation. Moreover, OXA seems to have an
action on microglia, with promising implications not only for tumors and inflammatory
diseases but also for neurodegenerative diseases, although data on these are still scarce [157].
The orexin receptor antagonist suvorexant might be useful for the prevention and treatment
of AD because of its neuroprotective effect, with reduction of β-amyloid plaques and
improvement of synaptic plasticity [158]. At least in part, this effect may result from
enhanced sleep-related brain glymphatic clearance of metabolic by-products, such as
amyloid-β [159,160]. On the other hand, studies on mouse models show that orexins can
ameliorate parkinsonian motor deficits by increasing the spontaneous activation of pallidal
neurons [161].

4. Conclusions

The studies on the potential modulation of the orexin system in cancer and in neurode-
generative diseases are still pioneering and further human data are needed, although they
have already shown promising results. In consideration of the concept of inverse comor-
bidity and in order to understand more effective therapeutic options in the future for both
neurodegenerative diseases and cancer, it is important to focus on the common metabolic
pathways involved in these processes. Figure 4 summarizes the possible mechanistic role
of orexin in neurodegeneration and cancer.

The findings reported in this paper point to a theoretical framework in which the cell
fate is determined by the (un)balance between factors favoring apoptotic or proliferative
processes in reciprocal opposite directions. This ideal, although not perfect, framework
has been called inverse comorbidity and indicates a lower-than-expected probability that a
disease will occur in people who have another disease. A convincing amount of data have
been published in recent years supporting the existence of a general inverse comorbidity
between neurodegenerative diseases—such as AD, PD, MS, and others—and several types
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of cancer, with some exceptions. On the other hand, there are few published studies about
narcolepsy in this context. Studies aimed at evaluating the role of proteins, miRNAs, and
mitochondria in this area could shed more light on the etiopathogenesis of this disease,
provide more answers on the biological basis of the interconnection with related patholo-
gies, suggest new possible therapeutic perspectives, and provide new data on risk factors
for the disorder.
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Inverse comorbidity has its biological bases in a probably very complex mechanism
in which more general and ubiquitous processes, such as ROS, miRNAs, mitochondrial
function, etc., as well as more specific factors, such as orexins, play a combined role with
different weights in order to favor neurodegeneration or cancer, alternatively and in mutual
(quasi)exclusion.

The findings summarized in this narrative review on orexin start from epidemiological
data, then include support by laboratory findings, animal models, and human clinical
observational and interventional investigations. Taken together, these different lines of
evidence have a relevant possible translational value, which might lead to the arrangement
of novel therapeutic approaches to both neurodegenerative disease and cancer by modulat-
ing orexin pathways. This perspective warrants an important research effort on this topic
in the near future.
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