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Simple Summary: Radiomics is a research field that integrates radiological and genetic information,
but the application of the techniques that have been developed to this purpose have not been
widely established in daily clinical practice. The purpose of our study is the development of a
straightforward tool that can easily be used to preoperatively predict and correlate the metabolic
signature of different CNS-lesions. Particularly in gliomas, we hope to integrate the molecular profile
of these tumors into our prediction model. Our goal is to deliver an open-software tool with the
intention of advancing the diagnostic work-up of gliomas to the latest standards.

Abstract: Proton magnetic resonance spectroscopy (1H-MRS) delivers information about the non-
invasive metabolic landscape of brain pathologies. 1H-MRS is used in clinical setting in addition to
MRI for diagnostic, prognostic and treatment response assessments, but the use of this radiological
tool is not entirely widespread. The importance of developing automated analysis tools for 1H-MRS
lies in the possibility of a straightforward application and simplified interpretation of metabolic
and genetic data that allow for incorporation into the daily practice of a broad audience. Here,
we report a prospective clinical imaging trial (DRKS00019855) which aimed to develop a novel
MR-spectroscopy-based algorithm for in-depth characterization of brain lesions and prediction
of molecular traits. Dimensional reduction of metabolic profiles demonstrated distinct patterns
throughout pathologies. We combined a deep autoencoder and multi-layer linear discriminant
models for voxel-wise prediction of the molecular profile based on MRS imaging. Molecular subtypes
were predicted by an overall accuracy of 91.2% using a classifier score. Our study indicates a first
step into combining the metabolic and molecular traits of lesions for advancing the pre-operative
diagnostic workup of brain tumors and improve personalized tumor treatment.
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1. Introduction

With the revised WHO-Classification of Tumors of the Central Nervous System of
2016 it was made clear that the molecular biology of the tumors surpasses in importance the
histological features, due to the fact that the first is crucial not only for diagnosis, but also
for prognosis in terms of response to adjuvant therapy and survival [1]. Parallel to these
developments, the appeal of thoroughly exploring brain tumors from a neuroradiological
point of view has led to important advances in the preoperative classification of different
brain tumors through radiomics, a concept for feature-based decomposition of MRI data.
Numerous algorithms and studies were performed using artificial intelligence and novel
machine-learning approaches, but a translation into clinical routine is pending. The need
for precise presurgical imaging tools to classify the tumor origin or for detailed information
regarding molecular configuration is high. The ultimate goal is a more personalized ap-
proach in the overall oncological treatment of patients with brain tumors, with physicians
being able to better plan a surgical treatment, being biopsy or surgical resection, and the
extent and complexity of it as well as preparing the patient for the adjuvant treatment
afterwards. Additionally, such data can improve therapy monitoring and allows for early
detection of recurrences. Besides classical MRI imaging analysis, MRS was found to be
an accurate tool for gaining insights into the molecular biology of brain tumors. Choi
et al. were able to detect (R)-2-HG, the oncometabolite generated by the IDH 1/2 mutation,
which could be used for diagnostic proposes or monitoring of therapy [2]. Previous studies
including those by our team have shown a successful way in which MRS can predict the
molecular profile of gliomas based on the metabolic alterations [2–5]. In pediatric cerebellar
tumors, a multicenter study has validated the importance of adding MRS to the routine
MRI diagnostic workup and showed the prognostic value of the biomarkers identified
through imaging and also developed an automated tool implemented in the automatic
analysis of peak metabolite ratios and the classification of different pathologies [6–8]. The
importance of developing automated analysis tools lies in the possibility of a straightfor-
ward application and simplified interpretation of metabolic and genetic data that allow for
incorporation into the daily practice of a broad audience. Here, we present our prospective
imaging trial and the correlation between the metabolic and molecular profiles of different
brain pathologies across varied ages, which we used for characterization and training of an
automated tool.

2. Methods
2.1. Ethical Approval

The local ethics committee of the University of Freiburg approved the data evaluation,
imaging procedures and experimental design (protocol 100020/09 and 472/15_160880).
The methods were carried out in accordance with the approved guidelines. The study
has been approved by the Ethics Committee of the Medical Centre University Freiburg
(protocol 360/16_170908) and has been registered at the German Clinical Trials Register
(DRKS) under DRKS00019855.

2.2. Patient Enrolment

Our prospective, single center, single arm, diagnostic study enrolled from August 2016
until October 2019 120 patients across all ages who were undergoing routine diagnostic
imaging for neurologic symptomatic suggestive of brain lesion and matched following cri-
teria: (1) brain lesion not located near the skull base, (2) no contraindication for undergoing
MRI, (3) no contrast-enhancement allergy. All subjects or their respective legal guardians,
in the case of one patient younger than 18 years of age, signed a written informed consent
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for participation in the study. Following the acquisition of imaging, patients underwent
either biopsy or surgical resection for their respective lesions after previous discussion of
the case by our center’s multidisciplinary tumor board.

2.3. Imaging Acquisition and Data

Preoperative anatomical and in-vivo chemical shift imaging were performed at a
whole-body system 3T MR Magnetom Prisma scanner (Siemens, Erlangen, Germany) in the
Department of Neuroradiology, Medical Centre-University Freiburg. Anatomical imaging
included a 3D SPACE Dark Fluid sequence (TR = 5000 ms, TI = 1800 ms, TE = 388 ms,
echo train length 251, voxel size 1 mm3), a 2D T2 weighted turbo spin-echo sequence
(TR = 4500 ms, TE = 100 ms, echo train length 17, voxel size 0.6 × 0.6 × 2 mm3) in the
geometry of the CSI-sequence, and a 3D T1-weighted sequences (MPRage, TR = 2300 ms,
TI = 988 ms, TE = 2.26 ms, voxel size 1 mm3) before and after application of 0.1 mM
Gadoteridol per kg body weight [ProHance®, Bracco, Konstanz, Germany]. Spectroscopic
imaging was performed using the manufacturer’s provided 2D chemical shift imaging
(CSI) sLASER sequence with a TR = 1500 ms, TE = 40 ms, FOV 160 × 160 mm2, phase
enconding steps 32 × 32, resulting in a nominal voxel size of 5 × 5 × 20 mm3.

2.4. Data Processing

Raw spectra were downloaded in the RDA file format (Siemens) and loaded into
R using the package “spant” [9]. We further analyzed the data by an internal pipeline
including baseline correction and fitting using Totally Automatic Robust Quantitation in
NMR (TARQUIN, http://tarquin.sourceforge.net, accessed on 5 March 2021). The full
pipeline is available at github.com/heilandd/SPORT/R/Pipeline.R, accessed on 5 March
2021. Data were exported into an RDS file (R-file format) containing the raw baseline
corrected spectra as well as the TARQUIN output. A detailed description is given in the
Supplementary Methods.

2.5. Segmentation

We designed an interactive “shiny” app for “R” (https://shiny.rstudio.com) for a semi-
automated segmentation. First, the MRS grid was aligned to the FLAIR-, T2- and contrast-
enhanced T1-weighted images. The segmentation assigned regions into normal appearing
matter (NAM), lesion (i.e., ischemia, inflammation), tumor, contrast, necrosis, FLAIR
hyperintense region or ventricle system. Each spectrum was supervised and excluded if
quality criteria based on fitted residuals was not achieved. Segmentation and raw files
were exported for further analysis.

2.6. Tumor Tissue Sampling

Tumor tissue was obtained by either stereotactic biopsy or surgical resection at the
Department of Neurosurgery of the Medical Center- University Freiburg. Tissue samples of the
contrast-enhancement region were immediately snap-frozen in liquid nitrogen and processed.
Histopathological diagnosis was performed at the Institute of Neuropathology, Medical Center-
University Freiburg according to their standards, including IDH immunohistochemistry and
genome analysis (1p19q co-deletion (LOH) and exome sequencing of IDH1/2).

2.7. Deep Autoencoder for Denoising

For data denoising, we used the autoencoder framework to estimate a gaussian
distribution conditioned on the input matrix containing 34 metabolites. For the input layer,
we normalized and scaled the metabolites: norm(x) = x−min(x)

max(x)−min(x) . The autoencoder
consists of two parts: an encoder and a decoder, which can be defined as transitions:

encoder : φ : X → F decoder : ψ : F → X (1)

φ, ψ = arg.min‖X− (φ, ψ)X‖2 (2)

http://tarquin.sourceforge.net
github.com/heilandd/SPORT/R/Pipeline.R
https://shiny.rstudio.com
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A sigmoid activation function with a minimal dropout (b = 0.1) was recently described
as being beneficial for precise data reconstruction and denoising [10] (Figure S1), thus we
defined our activation function as follows:

σ(x) =
1

1 + e−x (3)

The encoder stage of an autoencoder takes the input x ∈ Rd = X and maps it to
z ∈ Rp = F at the layer position ϕ:

x = Aϕ=0 ; zϕ = σ
(

Wϕ × Aϕ−1 + bϕ
)

(4)

zϕ is also referred to as latent representation, here presented as z1, z2, . . . , zϕ=n in which ϕ
describes the number of hidden layers. W is the weight matrix and b represents the dropout
or bias vector. Our network architecture contained 3 hidden layers including a batch
normalization with decreasing number of neurons (32, 16, 8), followed by a bottleneck layer
of neurons (6) and the decoder part with mirrored architecture. In the decoder, weights
and biases are reconstructed through backpropagation ( ψ : F → X ) and z is mapped to
x′ = A0′ in the shape as x′:

Aϕ−1′ = σ′(Wϕ′ × zϕ + bϕ′) (5)

In this context, W ′, σ′, b′ from the decoder are unrelated to W, σ , b from the encoder.
We used a loss function to train the network in order to minimize reconstruction errors.

L(x, x′) = ‖x− σ′
(
W ′(σ(Wx + b)) + b′

)
‖2 (6)

The following hyperparameters were used: Optimizer: ‘adam’, training/test split 2/3,
epochs: 500.

2.8. Hyperparameter Search

In order to determine the optimal number of bottleneck and dropout values, we trained
the network with an increasing number of bottleneck layers (n = 4:10) and determined
the variance of the two first eigenvectors as a benchmark to determine the maximum
effectiveness of the denoising algorithm.

2.9. Prediction Model

For prediction of the voxel origin (normal appearing matter vs. lesion) and further
prediction of the tumor subclass, we used a linear discriminant analysis (LDA) as our
denoised output (deep autoencoder) is normally distributed. We defined our metabolic
training data as a set of observations →

x
for each voxel with the known class µ. LDA

addresses the problem by postulating that the conditional probability density functions are
normally distributed when considering both mean and covariance parameters. Our input
was defined as:

x′ = σ′(Wϕ′ × zϕ + bϕ′) ∼ N
(

u, σ2
)

(7)

x′ is the reconstructed vector x using the autoencoder. In addition, we made a simpli-
fying homoscedasticity assumption that the covariances have full rank due to the deep
autoencoder outputs. Here, we applied a multiclass LDA which is defined by:

S =
→
w

T ×∑b →w
→
w

T ×∑→
w

(8)

∑
b
=

1
C

C

∑
i=1

(µi − µ)(µi − µ)T (9)
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in which →
w

is the eigenvector and C represents the classes (C = CNAM, CT, CL), and
for the tumor classification: C = Cwt, CIDH, CLOH. The final classification score (SPORT
classifier) is the mean of the estimated class predictors (LDA) resulting in a score for each
determined class:

sc(n) = mean(
C

∑
i

S(c)) (10)

2.10. Dimensional Reduction and Clustering

We decomposed eigenvalue frequencies of the first 30 principal components (PCs) and
determined the number of non-trivial components by comparison to a matrix containing
randomized intensity values. As non-trivial eigenvectors, we defined all PCs demonstrating
a larger variance compared to the random matrix. The obtained non-trivial components
were used for shared nearest neighbor (SNN) clustering followed by dimensional reduction
using the Uniform Manifold Approximation and Projection (UMAP [11]). All steps were
implemented in our software package in R. The functions and downstream pipeline can
be accessed in GitHub (San Francisco, CA, USA; https://github.com/heilandd/SPORT-
STUDY, accessed on 2 September 2020) in the “package.R” file. A short tutorial is given in
the Supplementary Material.

2.11. Spatial Data Analysis

For the analysis of the spatial distribution, we optimized our SPATA [12] toolbox
(spatial transcriptomic analysis) by using an MRS input function to create a “spata” S4
object. SPATA allows for determination of marker metabolites in space, trajectory analysis
and metabolic architecture. A full example and the input code are available at GitHub:
https://themilolab.github.io/SPATA/index.html (accessed on 2 September 2020).

2.12. Mean Spectra

We estimated all presented sum spectra by the mean and variance of the baseline
corrected raw spectra. Spectra were plotted by the ppm (x-axis) and the intensity (y-axis).
The plotted lines indicated the mean signal intensity. The spectra were heat-colored
representing the regions of most variance using the inferno color scheme: yellow indicates
strong and black indicates low variance.

2.13. Data Availability

We can provide full anonymized RDA files upon reasonable request. Data are available
as an RDS file containing segmentation, some clinical information (anonymization and
confidentially are secure according to European laws) and raw and fitted spectra.

3. Results
3.1. Patient Demographics

The enrolment of patients in our prospective imaging trial started in August of 2016
and 120 patients were enrolled until October 2019. From the 120 patients recruited, 23 were
found to have deviations from the study protocol, including erroneous MRS parameters
(n = 8), bad shimming (n = 2) and wrong voxel size (n = 13). Additionally, we excluded six
patients whose diagnosis was either clinically and/or histologically uncertain or who were
lost to follow-up after imaging. We included 91 datasets from 90 patients in our analysis
(one patient was imaged at diagnosis and first recurrence). All patients received a chemical-
shift imaging of 256 voxel (5 × 5 × 20 mm3), Figure S1a. The cohort was well balanced
regarding age, tumor/lesion localization and gender, Figure S1a and Table S1. The most
frequent pathology was glioma, representing 73% (n = 65) of all patients. Within gliomas,
those with a wildtype IDH-status were more common (n = 35, 53.8%, histopathologically de-
fined glioblastomas, WHO grade IV), followed by those with a mutated IDH-status (n = 17,
26.2%, histopathologically defined as diffuse and anaplastic astrocytoma, WHO grades
II and III respectively) and lastly there were n = 13 patients with a mutated IDH-status

https://github.com/heilandd/SPORT-STUDY
https://github.com/heilandd/SPORT-STUDY
https://themilolab.github.io/SPATA/index.html
https://themilolab.github.io/SPATA/index.html
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combined with a codeletion of 1p/19q (LOH, 20%, histopathologically defined as oligo-
dendrogliomas WHO grades II and III), Table S2. We also included a broad spectrum of
different pathologies including dysembrioplastic neuroepithelial tumors (DNET), ependy-
moma, pineal gland tumors, metastatic lesions from melanoma and nonsmall-cell lung
carcinoma (NSCLC), focal cortical dysplasia (FCD) and others, Figure S1b and Table S1.

3.2. Unsupervised Analysis of Metabolomic Heterogeneity and Diversity in MRS Data

In order to gain insights into the diversity and spatial distribution of 22,438 proton
spectra (obtained from 91 1H-MRS studies), we designed a pipeline for unsupervised
analysis using computational approaches predominantly applied to high-dimensional
data analysis. After the MRS data acquisition, we fitted the metabolites of each voxel
using Totally Automatic Robust Quantitation in NMR (TARQUIN) and segmented each
voxel into normal appearing matter (NAM), ventricle, FLAIR-hyperintense region, non-
contrast enhancing tumor and contrast enhancing tumor. Voxels that couldn’t be allocated
in a straightforward matter or contained overlapping regions, were excluded from the
initial data analysis to ensure that the training data set was as accurate as possible. We
denoised our data using a deep autoencoder with five bottleneck layers, which revealed an
improved data quality, Figure 1a and Figure S2. We used hyperparameter optimization to
estimate the dropout in the hidden layers and measured the optimal number of bottleneck
layers, Figure S2. After denoising, we performed a principal component analysis (PCA)
and selected non-trivial eigenvectors with higher eigenvalues compared to a PCA of
randomized metabolic intensities (detailed information in the Section 2), Figure 1b. The first
twelve components were used for UMAP, a common method for dimensional reduction. We
then performed a shared-nearest-neighbor clustering and identified ten different clusters,
Figure 2a,b. Then, we identified marker metabolites of each cluster, Figure 2c.

Figure 1. (a) Workflow for post-hoc data analysis. After segmentation and baseline correction, we performed a deep
autoencoder for data denoising of fitted metabolites. (b) Characterization: the analysis was split into a first part in which
data were deeply characterized including dimensional reduction and clustering, and a second part where a novel prediction
model was established to allow precise prediction of the molecular subgroups through MRS.
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Figure 2. (a) 2D representation of a UMAP dimensional reduction. Colors illustrate the SNN clusters (1–10). (b) Bar plot
indicates the distribution of segmented voxel within the cluster analysis. (c) Dot plot of significantly enriched metabolites of
each cluster. Colors indicate the global intensity of each metabolite. (d) 2D representation of a UMAP dimensional reduction.
Colors illustrate the metabolite intensity and marker metabolites of each cluster.

3.3. Cluster Analysis Reflects Regional Differences and Pathological Spectra

In our cluster analysis, clusters 1, 2, 4, 5 and 7 revealed high intensities of N-acetyl-
aspartate (NAA) and creatine (Cr), suggesting that this clusters predominantly contain
normal appearing matter. Most of these voxels were also segmented as normal appearing
matter, which confirmed our MRS data, Figure 2b–d. We computed the mean spectra of
all voxels in those clusters, which reflected a normal configuration. The intensity of NAA
was found to be the most variable parameter, Figure 2a. All other clusters revealed an
altered pattern with various metabolic abnormalities, Figure S3. In cluster 8, the metabolic
pattern was dominated by lactate and increased macromolecules, Figure 2a,c,d. This cluster
contained voxels of the contrast-enhancement regions as well as necrotic tumor regions.
The spectra showed high intensities at 1.3 ppm (lactate) and between 1–0.6 ppm (MM and
lipids), which is characteristic of malignancy, Figure 2c. The next relative distant cluster
6 contained all ventricular segmented voxels and was marked by voxels low or absent
signal intensity. Additionally, we found that voxels, which were segmented as FLAIR
hyperintensity, were also enriched in this cluster, Figure 2b.

We assume that the voxels of FLAIR-hyperintense regions of cluster 3,9 and 10 sig-
nificantly differ to the FLAIR-hyperintense voxels of cluster 6. We found that cluster 3
and 9 lack classical tumor-related metabolites, Figure S3, such as those present in cluster 8,
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suggesting that these FLAIR-hyperintensity within the voxels is most probably due to
vasogenic edema rather than infiltrating high-grade tumor regions, Figure 3a,b.

Figure 3. (a) 2D representation of a UMAP dimensional reduction. Colors illustrate the regions, red: normal-appearing
matter (NAM), yellow: FLAIR-hyperintensity, brown: tumor, and purple: ventricle. FLAIR-hyperintensity regions are partly
assigned to the ventricle regions (which contained a ow signal) and the tumor clusters, illustrated by an arrow. (b) On the
left: 2D representation of a UMAP dimensional reduction. Colors illustrate marker metabolites myo-inositol (Ins), highly
enriched in an edema region and a macro-molecule band (09), highly enriched within tumor-infiltrative regions compared
to edema-related FLAR hyperintensity. On the right: Representative spectra of the FLAIR-hyperintensity edema region (top
spectra) and FLAIR-hyperintensity tumor infiltration-related voxels (bottom spectra).

3.4. Prediction of Tumor Regions

We trained a neural network with a subsequent linear discrimination model to predict
the output variable: normal appearing matter, metastasis, glioma or inflammatory lesion,
Figure 4a. We trained our model based on the segmented voxel (approx. 2/3 training
and 1/3 validation, n = ~8000) and externally validated the findings within ~23,000 voxels
from the whole dataset. We computed a prediction score which was fitted by a probability
distribution model, centered and scaled. With a 97.3% probability of correctly classified
voxels, the automated designation of pathological voxels is relatively robust, Figure 4b–d.

Prediction of the other subgroups revealed a lower accuracy for the whole model
(83.43%). We used the spatial grid of MRS for tumor prediction and were able to reconstruct
the tumor extension of the MRI, Figure 4e. In summary, normal and pathological MRS data
can be distinguished with high accuracy.

3.5. Exploration of Metabolic Diversity in Pathological Lesions

In order to classify the heterogeneity of pathological voxels, we subsequently isolated
the voxels that had been segmented as tumor or lesion and mapped the difference of
metabolic profiles from other oncological and inflammatory brain diseases.

Several voxels could not be sharply separated between the different pathologies,
except for non-Hodgkin lymphoma (NHL) and metastasis from non-small-cell lung carci-
noma (NSCLC). Epidermoid tumors paired with ganglioglioma and pineal gland tumors.
Voxels in the upper part of the dimensional reduction contained mostly benign lesions
highly enriched NAAG, Figure 5a–c. Most interestingly, we found a highly significant
enrichment of aspartic acid (Asp) in a lesion histologically defined as gliosis. Molecular
subgroups of glioma showed a large overlap however high-grade glioma (IDH-wildtype
glioma (glioblastoma)) stands out at the bottom part of the dimensional reduction map
with increased intensities for lactate (Lac), lipids and macromolecules (MM). We found
high intensities for myo-inositol (Ins) towards the areas assigned to NSCLC and NHL and
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glycerophosphocholine (GPC) significantly enriched for IDH-mutated with and without
LOH (1p/19q-codeletion), Figure 5c.

3.6. Prediction Model for Molecular Tumor Subgroups

We applied an LDA model to train for separation between the molecular subgroups of
glioma. By solely focusing on voxel from tumor regions, the model showed a high accuracy
for prediction of wildtype or mutated glioma, with the lowest AUC in oligodendroglioma
(76.77%). We noticed that metabolites strongly enriched in the normal-appearing matter
are considerably dominant when distinguishing between glioma subgroups, leading to an
interference in our model when all voxels are considered.

Figure 4. (a) Workflow of our prediction model. (b) 3D map of group prediction using an LDA. Colors indicate the
subgroups: purple: normal-appearing matter, orange: pathological lesion (non-tumor pathology), blue: glioma and green:
metastasis. (c,d) Representative presentations of the AUC from our prediction model. (e) Prediction maps of two patients, a
metastasis (left) and an IDH-wildtype glioblastoma (right). Each voxel is colored based on its probability to contain voxels
of the predicted entity. Yellow voxels represent low prediction scores, red-purple voxels represent higher prediction scores.
The color scheme is plasma.
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Figure 5. (a) 2D representation of a UMAP dimensional reduction of pathological confirmed lesions, representative spectra
are shown. (b) Dot plot of significantly enriched metabolites for each representative brain disease type. (c) 2D representation
of a UMAP dimensional reduction. Colors illustrate metabolite intensity.

As shown in Figure 6a,b, the prediction score (tumor subgroups) is also relatively
strong in the non-tumor voxels, Figure 6f, producing a large number of false positive
predictions. To improve the overall predictive value, we built a two-layer model: Layer 1
predicted a segmentation mask of those voxels with a high probability of tumor content
and in layer 2 the mask was used to focus on the subtype prediction of tumor voxels
exclusively (layer 2), Figure 6e.

This model enables us to predict the molecular subgroup of patients by consideration
of all pathological voxels, which resulted in a distribution of relative accuracy of all sub-
groups, Figure 6g. Using this model, we showed a 91.2% overall accuracy in predicting the
molecular subtype of gliomas. Further, we provided the spatial distribution of each score,
enabling the user to validate the predicted results and identify the tumor hotspot regions.
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Figure 6. (a) 2D representation of an LDA map of gliomas. (b–d) AUC representations of the predictive value of each
glioma subtype. (e,f) Example SPORT prediction model of glioma subtypes in one patient. Each voxel is colored based on
its probability to contain voxels of the predicted entity. Yellow voxels represent low prediction scores, red-purple voxels
represent higher prediction scores. The color scheme is plasma. (g) Representative SPORT classifier by summarizing all
tumor voxels from level 1 prediction (layer 1) into a distribution of probabilities. The presented boxplot indicates the
mean prediction score of each tumor voxel (from layer 1). Here, the patient’s classifier showed the highest score for the
IDH-mutated subgroup.

4. Discussion

In our prospective imaging study, we build an atlas of MRS profiles across tumor
entities and molecular subgroups and designed a model for non-invasive prediction of
glioma subgroups.

The need for improving the non-invasive diagnostic workup of brain tumors has
been a crucial target in neuro-oncology over the last decades, especially since the rising
importance of molecular characteristics for diagnostics and particularly for prognostic
matters, with respect to expected treatment-response and survival. Modern technologies
and artificial intelligence aid automated recognition and prediction of imaging in various
medical applications, however the lack of feasibility hinders the embedding of modern
algorithms in clinical routine. Particularly in neuroradiology, many studies on predictive
models based on radiomic features have been conducted to facilitate the interpretation and
implementation of imaging in daily routine, however, until now, the use of such techniques
is not yet established [13]. We assume that metabolic information is more sensitive to
detect molecular subgroups and so, we aimed to use the well-known MR spectroscopy and
modern deep-learning algorithms for characterization of spectroscopic profiles. Recent
studies have explored the ability of molecular subgroup prediction based on MRS in medul-
loblastomas [14,15], and a presurgical classification of pediatric cerebellar tumors based on
metabolite ratios was successfully developed [7,16]. In adults, the same intent has been
sought, however the integration of metabolite and genetic profiles of brain tumors and
the translation of these techniques into the clinical practice has been challenging. In our
study, we performed an unsupervised clustering of metabolic profiles with respect to their
defined radiophenotype [17]. Clusters containing the majority of normal appearing matter
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were those with the highest intensities of NAA and creatine. NAA is a known metabolite
of neurons and has been previously described in other studies as a marker for healthy neu-
rons [18–21]. Regarding tumor diagnostics, it has been described to have elevated levels in
pilocytic astrocytoma, which can be interpreted in this case as being closer to normal brain
than to malignancy [6,16]. Creatine is a marker of intracellular metabolism and has usually
higher levels in grey matter. Creatine was also found to be present in the normal appearing
matter-related clusters along with NAA. Nevertheless, creatine is not a direct marker of
healthy brain and usually the relevance to diagnostics of brain tumors is linked to a ratio
along with choline, a more known metabolite associated with malignancy [16,18,22–25].
Recently, we investigated that creatine directly mediates resistance against hypoxic-stress
in glioblastoma which causes a transcriptional subtype switch towards proneural gene
expression [26]. The clusters with the highest levels of choline, lactate and macromolecules,
characteristically present in cerebral hypoxia, inflammation, cellular membrane breakdown
and necrosis [16,18,27–29], were the ones containing the voxels segmented to contrast-
enhancement and necrotic tumor regions. We found that voxels, that were segmented
as FLAIR-intensity, could be differentiated from vasogenic edema and tumor-infiltrating
regions according to their metabolic profiles, with the first showing increased intensities
of myo-inositol, which is a metabolite known as an “osmolyte” [30] and the last showing
increased intensities of malignancy-related metabolites, such as macromolecules. These
results are comparable to other studies conducted for preoperatively classification of brain
tumors, in pediatric and adult population [6,7,15,16,28,31]. In our study, we analyzed and
proved the accuracy with which MRS can discern between a brain lesion and normal brain
tissue, which is in line with previous reports in the literature [3,7,24,28,29,31,32]. Moreover,
our data supports that MRS is a valid tool that can separate between edema regions with
a suppressed intensity (ventricle-like signature) or tumor-infiltrative regions. This is of
high relevance in low-grade glioma tumors where contrast-enhancement is low and a clear
separation between resectable tumor and non-resectable edematous brain tissue can be
difficult based solely on MRI, which is particularly relevant from a surgical point of view.

5. Conclusions

In contrast to other published models which mainly used radiomic features, we have
developed a classification algorithm combining a deep autoencoder and linear discriminant
models that can predict the origin of a brain lesion (either metastatic or glial) based on
metabolic profiles. In addition, within gliomas, our tool is able to determine the tumors
type based on the metabolic profile with an acceptable accuracy rate allowing the prediction
of prognosis-relevant parameters such as IDH-mutation and 1p19q-codeletion in a non-
invasive manner. This is a first step into the integration of various aspects of the oncological
treatment planning with the idea of combining the metabolic and molecular traits of lesions
and improve personalized tumor treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13102417/s1, Supplementary Methods, Figure S1: Workflow and overview of the study
design, Figure S2: MRS denoising by a deep autoencoder, Figure S3: Illustration of average spectra of
all clusters, Table S1: Clinical and demographic characteristics of the patient population included in
this study, Table S2: IDH status and histology from glioma patients included in this study.
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