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Simple Summary: The management of locally advanced (stages II–III) non-small cell lung cancer
patients is very challenging because of poor survival rates and patient/tumor heterogeneity. In this
review, we identify the critical points that can be addressed by artificial intelligence (AI) algorithms
to improve care of these patients and to present a roadmap for AI applications that will support
better treatments.

Abstract: Locally advanced non-small cell lung cancer patients represent around one third of newly
diagnosed lung cancer patients. There remains a large unmet need to find treatment strategies that
can improve the survival of these patients while minimizing therapeutical side effects. Increasing the
availability of patients’ data (imaging, electronic health records, patients’ reported outcomes, and
genomics) will enable the application of AI algorithms to improve therapy selections. In this review,
we discuss how artificial intelligence (AI) can be integral to improving clinical decision support
systems. To realize this, a roadmap for AI must be defined. We define six milestones involving a
broad spectrum of stakeholders, from physicians to patients, that we feel are necessary for an optimal
transition of AI into the clinic.

Keywords: lung cancers; artificial intelligence; radiomics; deep learning; clinical decision aids

1. Introduction

Stage II–III (locally advanced) non-small cell lung cancer (LA-NSCLC) represents
around one third of newly diagnosed lung cancer patients [1]. Management of these
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patients is challenging due to poor survival rates and inter-patient heterogeneity. These pa-
tients have widely variable presentations, ranging from resectable tumors with microscopic
lymph node metastases to bulky, unresectable disease. The pre-existing cardiopulmonary
comorbidities observed in most of these patients can also complicate treatment decision-
making [2]. New treatments are urgently needed to improve the overall survival (OS) by
reducing both local tumor recurrence and the development of distant metastases while
balancing the risk of life-threatening treatment-induced side effects, such as infections and
cardiopulmonary toxicity. Ideally, treatments should be tailored to the unique biological
properties of the patient’s tumor, referred to as “personalized medicine” [3]. Finally, the
treatment strategy should not be conceived as a single timepoint decision but modified
over time, always questioning if the treatment delivered today still provides benefits while
minimizing added toxicities.

Treatment complexity has increased in the last decade as new strategies such as
immunotherapy, molecularly targeted therapy, or advanced radiotherapy (RT) techniques
(e.g., proton therapy) have been introduced into clinical practice or are under evaluation [4].

In unresectable LA-NSCLC patients, concurrent chemo-RT remains the gold standard
treatment. However, the results are far from optimal: the progression-free survival (PFS)
is about 15 months and the five year OS is about 25–35% [5]. This aggressive form of
treatment is associated with acute toxicities, such as grade 3–4 esophagitis, radiation
pneumonitis, and life-threatening infections. Therefore, younger patients with minimal or
no comorbidities at presentation benefit the most from this strategy. Unfortunately, only a
small percentage of LA-NSCLC patients (only 41% in a Dutch population study [6]) are
eligible for concurrent RT [7]. Consolidation approaches with the addition of systemic
therapy (e.g., docetaxel), radiation dose escalation, and targeted agents have not improved
the OS [8,9]. However, the addition of one year of durvalumab to chemotherapy improves
the four year OS significantly by about 15% while maintaining quality of life [10]. Other
radiotherapeutic strategies, such as alternative fractionation schedules or proton therapy
are also under evaluation. Nevertheless, introducing adjuvant or consolidation treatment
options only brings benefits to patients at high risk of developing disease relapse but
could lead to unnecessary toxicities for patients at lower risk as well as a decrease in cost
effectiveness.

Despite the significant improvement in OS with the addition of durvalumab, there is
still room for improvement in ultimate cure rates. Some of these patients do ultimately fail
treatment—might they benefit from some other therapy? Discovering biomarkers to allow
for an accurate stratification of these patients is still an unmet need.

Just as the advent of computed tomography scans produced a “data explosion” [11],
we could say that recent advances in cancer diagnostics and therapy have produced a
wealth of imaging and molecular data that require filtering to determine optimal medical
treatment for any given patient. Rather than overly simplifying to focus on a limited
number of data elements (such as tumor stage or patient performance status) to optimize
treatment decision-making, patients should be evaluated as “sources of big data.” These
data derive from multiple sources, such as electronic health records, patient-reported
outcomes, laboratory tests, and medical images.

Medical images are routinely used in radiation oncology for diagnosis, treatment
planning, treatment delivery, and disease follow up. Image-guided RT (IGRT) is a method
of radiation therapy that incorporates imaging techniques prior to (or potentially during)
each treatment session to ensure accurate treatment setup and delivery. Image-guided
adaptive radiotherapy (IGART) is related to the concept of IGRT. In IGART, scans acquired
before the delivery of a treatment on the linear accelerator (linac) are used to verify the
alignment of the patient prior to delivery in response to anatomical variations observed
during the therapy process. Furthermore, IGART allows for real-time revision of the
treatment plan if the dose to an at-risk organ exceeds a predetermined threshold. Examples
of the above include inter- and intra-treatment variations of patient/organ shapes and
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positions caused by patient organ physiological motion and deformation (e.g., gastric
filling, colon peristalsis, etc.).

While IGRT and IGART are powerful tools to guarantee treatment delivery under
conditions, mimicking the ones existing at the timepoint of treatment planning, IGRT
and IGART promise to deliver on yet another unfulfilled need. These tools allow us
to rethink the role of medical images as more than instruments for visual inspection
or for accomplishing daily clinical tasks: these images are sources of highly mineable
data that can reveal unique patient biomarkers. Images represent a dynamic array of
unique data, not only about the tumor itself but also about the surrounding tissues and
the relationship among the tumor and organs, longitudinally, across time. Being able to
extract image-derived biomarkers that can quantify the evolution of tumors and anatomy
in patients during treatment, referred to as “radiomics and deep radiomics” [12], can
support quantification of the effectiveness of the treatment and allows us to revise our
treatment strategy, if necessary. Biomarkers need to be extracted from both the target
volumes and from normal tissues inside the radiation field: the organs at risk (OAR).
Correlations among image-derived biomarkers, other clinical prognostic factors, biological
properties of the tumor, and evidence arising from previously published studies should
be amalgamated to support future causality studies (randomized clinical trials). In the
unmet clinical need presented earlier, understanding the biology of both responders and
non-responders to first-line therapy is of primary importance for our understanding and
trust in such biomarkers.

Artificial intelligence (AI) can be a powerful tool for interpreting and guiding medical
diagnoses, treatment, and follow-up. For LA-NSCLC patients, we envision using a combi-
nation of AI solutions for optimization of the IGRT workflow. It is important to emphasize
that we do not see AI as a “virtual clinician” but rather as a supportive tool to free clinicians
from time-consuming tasks in the RT workflow and to augment their decision-making
capabilities.

In this paper, we present how AI can (A) be used to support a more advanced adaptive
RT concept while remaining human- and patient-centered; (B) improve clinical practice
and the current RT workflow by introducing automation for time-consuming tasks; and (C)
bridge multiple sources of data, with a specific focus on biomarkers derived from imaging,
clinical factors, and tumor biology. We also discuss the challenges that AI faces when
dealing with medical images acquired from routine care, with a dedicated focus on the
impact of the lower quality of in-treatment room imaging on the robustness of biomarker
identification. As a case in point, we incorporate the above applications to the management
of unresectable LA-NSCLC.

The outline of this paper is depicted in Figure 1. In the first section, we focus on the
role of imaging, adaptive RT, and biomarkers as an unmet clinical need in the management
of LA-NSCLC (critical point 1). In the second section, we present AI technologies that
improve image quality and how this supports the extraction of more robust biomarkers
(critical point 2). In the third section, we present the most recent AI-driven technologies
to extract biomarkers from medical images as well as to link these biomarkers to tumor
biology (critical point 3). In the fourth section, we describe how to incorporate these
methodologies into clinical practice to improve and optimize the current IGRT workflow
(critical point 4). In the last section, we focus on requirements for smoother implementation
of the above technologies as decision support systems in the clinic (critical point 5). For all
of the above points, we require the interaction among multiple stakeholders: physicians,
patients, researchers, radiation therapists, and medical physicists.



Cancers 2021, 13, 2382 4 of 17
Cancers 2021, 13, x 4 of 18 
 

 

 
Figure 1. An overview of the critical points and key enabling technologies for the application of AI 
technologies to improve the current IGART workflow in the management of LA-NSCLC patients. 
Each of the critical points includes different stakeholders who need to be involved for a productive 
and collaborative environment. The structure of this review follows the progression of this figure. 

2. Unmet Clinical Needs in the Management of LA-NSCLC Patients: Role of Imaging, 
Adaptive RT, and Biomarkers 

There are a number of unmet clinical needs that fall into five categories: Section 2.1 
presents the general automation of clinical processes; Section 2.2 presents improved prog-
nostication regarding expected patient outcomes in the absence of recurrent disease; Sec-
tion 2.3 presents the characterization/prediction of a malignant disease course; Section 2.4 
presents the characterization/prediction of treatment toxicity; and Section 2.5 presents an 
integration of all of these predictive/prognostic metrics into a comprehensive “personal-
ized” prediction. 

2.1. General Automation of Clinical Processes 
While other oncologic specialties such as surgery and medical oncology rely on im-

ages as part of their feedback process in preparing for treatment (surgery) or evaluating 
treatment response (post-surgery and chemotherapy), their actual treatments are physi-
cally planned outside the imaging space (operating room and chemotherapy suite). Radi-
ation oncologists live in the imaging space during treatment planning and make many 
treatment decisions in that digital domain. This creates a unique “digital medical environ-
ment” in which AI/machine learning (ML) can have nearly full access to the same infor-
mation as the clinician (minus the physical examination). As a result, AI has the potential 
to be highly integrated into standard radiation oncology processes. There are multiple 
areas where AI may be immediately useful in the “general” category: 
• Contouring. As part of radiation treatment planning, contouring is a physician-di-

rected image classification, whereby tumor targets (gross tumor volume (GTV) and 
clinical target volume (CTV)) are manually segmented as discrete and distinct from 
OAR or normal anatomy. Unfortunately, this is also a time-consuming process. AI 
has been shown to be capable of image classification in the clinical space [12–15], and 
rapid segmentation via AI represents a potential force-multiplier to enable individual 
radiation oncologists to evaluate and treat more patients per capita. This image-pro-
cessing task has long been recognized as an important unmet clinical need, which 
has been a research target for numerous groups. Our work focused on the introduc-
tion in clinical practice of auto-contouring for RT OAR, comparing both atlas-based 
and deep learning algorithms [16], as well as on the automation of RT target volume 

Figure 1. An overview of the critical points and key enabling technologies for the application of AI
technologies to improve the current IGART workflow in the management of LA-NSCLC patients.
Each of the critical points includes different stakeholders who need to be involved for a productive
and collaborative environment. The structure of this review follows the progression of this figure.

2. Unmet Clinical Needs in the Management of LA-NSCLC Patients: Role of Imaging,
Adaptive RT, and Biomarkers

There are a number of unmet clinical needs that fall into five categories: Section 2.1
presents the general automation of clinical processes; Section 2.2 presents improved
prognostication regarding expected patient outcomes in the absence of recurrent dis-
ease; Section 2.3 presents the characterization/prediction of a malignant disease course;
Section 2.4 presents the characterization/prediction of treatment toxicity; and Section 2.5
presents an integration of all of these predictive/prognostic metrics into a comprehensive
“personalized” prediction.

2.1. General Automation of Clinical Processes

While other oncologic specialties such as surgery and medical oncology rely on
images as part of their feedback process in preparing for treatment (surgery) or evaluating
treatment response (post-surgery and chemotherapy), their actual treatments are physically
planned outside the imaging space (operating room and chemotherapy suite). Radiation
oncologists live in the imaging space during treatment planning and make many treatment
decisions in that digital domain. This creates a unique “digital medical environment” in
which AI/machine learning (ML) can have nearly full access to the same information as
the clinician (minus the physical examination). As a result, AI has the potential to be highly
integrated into standard radiation oncology processes. There are multiple areas where AI
may be immediately useful in the “general” category:

• Contouring. As part of radiation treatment planning, contouring is a physician-
directed image classification, whereby tumor targets (gross tumor volume (GTV) and
clinical target volume (CTV)) are manually segmented as discrete and distinct from
OAR or normal anatomy. Unfortunately, this is also a time-consuming process. AI
has been shown to be capable of image classification in the clinical space [12–15], and
rapid segmentation via AI represents a potential force-multiplier to enable individual
radiation oncologists to evaluate and treat more patients per capita. This image-
processing task has long been recognized as an important unmet clinical need, which
has been a research target for numerous groups. Our work focused on the introduction
in clinical practice of auto-contouring for RT OAR, comparing both atlas-based and
deep learning algorithms [16], as well as on the automation of RT target volume
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delineations [17]. Recent results showed that deep learning algorithms can outperform
expert technicians on lesion segmentation tasks [18].

• Automated review/classification of clinical records. Interestingly, as the digital do-
main for electronic medical records becomes the standard, the number and diverse
types of clinical records accessible to AI for each patient is growing. However, the
data in these resources are often unstructured (not discrete). As a result, there may
be a role for natural language processing (NLP) in the review of clinical records, for
example, to automatically extract comorbid illness, to identify pathologic diagnosis
and/or biomarkers of relevance (epidermal growth factor receptor (EGFR), K-RAS,
anaplastic lymphoma kinase (ALK), and programmed death ligand (PDL1)) from
pathologic data, or to identify previous radiotherapy treatments that may identify
risks for retreatment. We anticipate that the automated classification of free text
medication records into a structured format will become increasingly important to
monitor interactions between treatments and outcomes. For example, we have in-
vestigated the role of NLP in homogenizing radiological reports and in extracting
standardized knowledge, such as the automated classification of tumor T stage from
free text [19]. This work was extended to classify lesions as well as other characteristics
from lung radiological reports. Despite promising results, the difficulties encountered
during these studies underline the need for standardized nomenclature in medical
records by the use of dedicated ontologies and semantic web techniques. This has
been acknowledged by the European Society for Therapeutic Radiation Oncology
(ESTRO) [20,21], the American Association of Physics in Medicine (AAPM) [22], and
the American Society for Radiation Oncology (ASTRO) and resulted in the formation
of working groups to establish these guidelines. We have also developed a deep
learning system to automatically identify and extract tumor site and histology from
free-text pathology reports. Our system predicts ICD-O-3 codes and preferred phrases
with accuracies comparable to human experts [23]. In LA-NSCLC patients, it identifies
lung subregions and tumor subtypes.

• Standardized data collection/ontological classification. There is also an interesting
interaction between the automation described above and the subsequent usability of
the data obtained. Automation not only leads to efficiency gains but also, generally,
leads to more standardized/ontological data collection, which in turn may lead to
better prognostication and prediction. As an example, a recent paper using AI-based
automated heart segmentation led to a better prediction of dose-related cardiac toxicity
in a pivotal trial on advanced lung cancer patients (RTOG 0617) compared to human
heart segmentations, likely due to interobserver variation [24].

2.2. Improved Prognostication Regarding Expected Patient Outcomes in the Absence of
Recurrent Disease

An assessment of patient life expectancy can strongly influence the choice of curative
(or noncurative) treatments for each patient. Classically, if a patient has a limited life
expectancy from a comorbid illness (advanced dementia, Parkinson’s disease, cardiopul-
monary disease, and competing malignancies), it would be logical to consider this when
evaluating whether to attempt a highly toxic treatment for a patient with a newly diag-
nosed LA-NSCLC. Frailty assessments and life-expectancy evaluations have long been
largely “clinical” with limited reproducibility [25]. AI efforts to link all available medical
record information in conjunction with objective imaging findings or radiomics parameters
(i.e., muscle wasting or cachexia) may be a fruitful area of research. Already, cachexia as
a biomarker of frailty has been shown to be well correlated with outcomes in a number
of diseases and may be used to establish a “baseline survival estimate” for an LA-NSCLC
patient being considered for curative chemoradiation therapy [26,27].

2.3. Characterization/Prediction of Malignant Disease Course: Disease Response to Treatments

Regardless of the underlying patient condition, some lung cancers are more biologi-
cally aggressive than others. Predicting the intrinsic “aggressiveness of disease” from a
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biologic standpoint would be of great interest to most clinicians as it would again allow
clinicians to discuss the risks/benefits of treatment in a more personalized way. AI methods
to integrate tumor growth rates, risks of distant metastases, disease resistance to specific
treatments (e.g., chemotherapy or RT resistance), or ways to better predict the natural
history of disease may be crucial. Deconvolving these natural history markers from the in-
fluence of treatment will require huge amounts of data and AI/ML methods to manage the
complexity of those combined data sets. Preliminary work has been conducted, for exam-
ple, to explore correlations between imaging features and tumor phenotype. Examples of
this research in lung cancers found associations among multiple types of radiomic features
extracted from the primary tumors and patients’ prognoses [28,29]. Deeper investigations
of the links among imaging features and lung cancer phenotypes following the lines of
a study in 2017 [29] are more rare. A promising extension to radiomics that can fill this
gap is the consideration of the tumor environment, which appears in medical images as a
dynamic environment that presents multiple phenotypes. This technique has been referred
to as “habitat imaging” [30] and could be supported by extending radiomics from overall
descriptors to voxel-based features [31].

2.4. Characterization/Prediction of Toxicity/Host Response to Treatment

Based on a clinical background, we know that there are some lung cancer patients
who are at high risk of toxicity from radiation (interstitial lung disease, ataxia telangiectasia,
scleroderma with CREST syndrome, etc.), chemotherapy (Fanconi anemia, Gilbert’s syn-
drome, etc.), or immunotherapy (pre-existing autoimmune disease). Understanding and
predicting an individual patient’s tolerance of any given therapy is critical to understanding
risk/benefit. A simple example is that of interstitial lung disease; the presence of this back-
ground condition increases the risk from stereotactic body radiotherapy twenty-fold [32].
There are likely other background diseases that have yet to be correlated with treatment
toxicity, but AI could help in this regard. Future areas of research could use AI to evaluate
how certain pre-existing medical conditions (or clusters of conditions) impact therapy
tolerance. To our knowledge, this area remains unexplored, despite early promising results
based on radiomic studies for the prediction of radiation-induced pneumonitis [33,34].

It might also be of interest to consider spatial RT-dose information (dosi-omics) as
additional inputs to models to improve prediction accuracy.

More generally, time-series information such as sequential images across treatment
might provide additional insights than a mere analysis based on single-timepoint imag-
ing [35]. For example, specific AI architectures such as recurrent neural networks (RNNs)
can be used to encompass time-dependent information during the learning process.

2.5. Integration of all Predictive/Prognostic Metrics into Summary/Composite/Ensemble
“Personalized” Prediction

Ultimately, all prognostic/predictive metrics will need to be weighed against each
another by prioritized optimization. In some cases, curative treatment may not be rec-
ommended because of excessive risks, whereas in others, high-intensity treatment might
be deemed tolerable due to the lack of risk factors in a given patient. Cancer treatment
represents a balance between cure rate and toxicity of therapy with four possibilities:
(A) “nontoxic therapy, controlled cancer”; (B) “toxic therapy, controlled cancer”; (C) “non-
toxic therapy, uncontrolled cancer”; or (D) “toxic therapy, uncontrolled cancer”. All patients
would be happy with A and most would be happy with B, or in some cases C, but no
patient would likely accept a high risk of D. This type of optimization and the resulting use
of the risk estimates by both patients and clinicians will be a significant implementation
challenge for any AI/ML tool, going forward.

Growing interest has been shown by commercial enterprises in the deployment of AI
solutions in the clinical workflow such as auto-counting, data analytics, and automated
image QA. Nevertheless, we believe that these algorithms can be improved not only by
daily clinical use but also by the possibility to retrain the algorithms “on-the-fly” when,
for example, manual corrections of the contours is provided by the users (“labelled data”).
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In this view, we foresee a commercial AI product as a dynamic entity, which can be
continuously improved by its usage and is a concept similar to the user “crash/error
report” when using an operating system. We are aware of the FDA pushing to consider AI
applications as medical devices, with the policy to keep an updated “log-file” of wrong
inference or prediction.

3. AI in Medical Imaging: Dealing with Standard of Care Imaging and Confounding
Factors. Are We AI Ready?

Medical images should be considered high dimensional data, embedded with more
information than can be accessed via visual inspection: “images are more than pictures, they
are data”. The application of AI for medical image analysis is not a new topic. In the last
ten years, the number of publications defining prognostic/predictive handcrafted radiomic
features or automated deep learning (DL)-based systems has increased. These publications
have shown potential breakthrough applications to augment clinical decision making;
however, several studies point out concerns about the reliability of such biomarkers [35–37].
As we indicated in some of our studies, reliability of image-derived biomarkers is strongly
affected by A) an instability of prognostic values of radiomic features when validated on
images acquired with different imaging/machine protocols than the ones used during
model development and B) the presence of confounding factors during modelling.

The first concern is based on the fact that many radiomic biomarkers show strong
dependencies on the image-acquisition settings used [37]. Medical images are acquired
and reconstructed for visual inspection or semiqualitative analysis. The human eye mainly
focuses on an image’s global detail; therefore, changes in the granular textures of the
image will likely not impact human activities such as contouring or determination of
morphological properties (e.g., size measurements) of the primary tumor. Conversely, AI
systems apply multiple mathematical transformations to the original images (e.g., wavelet
transforms), and many of these radiomic features are meant to measure granular textures
in the images. It is not surprising that texture imaging features are the least stable with
respect to changes in imaging acquisition parameters. Furthermore, many studies have
shown that certain image-acquisition parameters such as smaller slice thickness (1–2 mm),
inclusion of contrast medium, and or “conventional dose” instead of “low dose” imaging
led to better prognostic or predictive power [37]. This evidence represents a harmonization
problem when translating such biomarkers within the adaptive radiotherapy workflow.
In fact, radiation delivery systems are equipped with imaging facilities, such as cone beam
(CB) CT scanners, but because of hardware constraints, the quality of these images is much
lower than, for example, diagnostic or planning CT scans. A recent study comparing
radiomics computed on CT and CBCT clearly showed that only a small percentage of
radiomic features are interchangeable between these imaging modalities [38]. A similar
reasoning can be extended to images acquired within an MR-linac setup, where during
treatment, the acquisition magnetic field is lower (commonly no more than 1.5T) compared
to the suggested magnetic field to perform radiomic studies (3T) [39]. We are not in the
position to claim that an optimal and unique image configuration for radiomics will exist
because this will be dependent on the specific problem considered.

There are mitigation strategies one can consider when preprocessing medical images
to increase the robustness of image-derived features: (A) correction of the dependencies
of radiomic features on image acquisition settings and (B) investigation of automated
methods to manipulate and improve image quality. Examples of the former have been
shown in a study by Zhovannik et al., where radiomic features were corrected against
changes in exposure values in CT phantom images [36], while Ligero et al. developed a
post-acquisition CT image-correction method for radiomic features based on the ComBat
method, which is borrowed from genomic studies [40]. A ComBat approach could work for
handcrafted radiomic features but may prove challenging for neural network approaches,
since ComBat bypasses, a priori, a definition of relevant imaging features to be extracted.
The latter method (often referred to as domain adaptation and synthetic imaging) involves
the application of advanced DL algorithms, often using generative adversarial networks
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(GANs). GANs are a framework that optimizes an objective by running the zero sum of a
two-player game between two networks. One of the networks, called the generator, tries
to learn the data distribution by trying to fool the other network, called the discriminator,
which simultaneously tries to differentiate between real images and fake images created
by the generator [41]. In a domain adaptation approach, the real image may be a CT scan
acquired by a certain scanner manufacturer (domain, real image) that will be translated into
a corresponding CT scan as acquired within another institution (target, fake image). In a
synthetic imaging approach, the network could try to generate synthetic CTs from CBCTs.
Figure 2a depicts an example of the latter, while Figure 2b shows how this workflow can
be integrated within the current adaptive radiotherapy workflow. GANs’ applications in
radiation oncology are becoming very popular and showing early promising results. For ex-
ample, using GANs for domain translation improved the auto-contouring of pulmonary
nodules when using imaging data from multiple institutions.

Maspero et al. trained four standard CycleGAN models on lung, breast, and head-
and-neck scans—three for each anatomical site and one model for all sites. They showed
that a single model for all three anatomical sites performed comparably with the models
trained per anatomical site, which would simplify clinical adoption [42]. Finally, one of the
major advantages of using GAN models is that the training procedure can be performed
using an unpaired approach (meaning that a 1 to 1 correspondence between the images
input to the network is not needed) compared to the paired approach where the network
needs to receive as an input a pair of CBCT and CT of the patient acquired on the same day.

We foresee exploiting GAN models to improve the image-guided translation of ra-
diomics in the adaptive radiotherapy workflow, with a few caveats. First, as GAN models
are based on two or more networks, the computational time and complexity required to
perform the training procedure is greater than with more traditional approaches. Second,
synthetic images should always be verified by humans to ensure that additional artifacts
or nonsense anatomical properties are not inserted into the synthetic images. The latter
concern is related to false discoveries associated with high dimensional data. A recent
systematic review of texture analyses of medical images pointed out that an optimal cutoff
selection for tuning machine-learning predictive models leads to an increased risk of type
I errors [43]. This spawned a debate about whether necessary precautions are taken into
consideration when developing radiomic signatures or, in general, image-derived prog-
nostic/prediction models. The popular paradigm that ML algorithms or more aggressive
feature selection strategies can mitigate false discoveries as well as eliminate feature re-
dundancies or confounding factors has been challenged by recent studies. For example,
Welch et al. showed that radiomic features are susceptible to underlying dependencies
and multicollinearity within models [44]. Therefore, radiomic models and features must
be tested to determine added prognostic and predictive accuracy compared to accepted
clinical factors. In our recent study, we showed how ML can be used at the early stages
of model building to evaluate and reduce the presence of confounding factors [45]. ML
unsupervised methods, such as kernel principal component analysis (PCA) or hierarchical
clustering, can help identify intercorrelations as well as dependencies between imaging
features and clinically accepted prognostic factors (e.g., tumor extension), as we have
successfully shown in CT scans from lung cancer patients [45].

In summary, we have shown how AI, more specifically ML and DL algorithms, can
be used in the preliminary stages of the model-building computational chain in order
to augment image quality and to improve the methodological aspects connected to the
development of radiomic signatures.
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removing artifacts while preserving the anatomy.

While we focused on describing a methodological workflow for radiomics, a similar
concept holds for deep learning. If on one side the complexity of deep neural networks can
measure high-level imaging features less dependent on image acquisition settings, on the
other, deep learning models still require extensive external validation as well as meticulous
effort in improving the image quality of input data.

4. AI for Biomarker Discovery. from Medical Imaging to Biology

Biological aspects of tumors are known to greatly influence treatment response. For ex-
ample, hypoxia, a common feature of solid tumors, is a strong prognostic factor and is
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known to limit the efficacy of standard-of-care chemotherapy and radiotherapy [46]. On the
other hand, molecular alterations in the tumor also provide new targets for anticancer
treatment. Treatment agents targeting multiple cellular pathways involved in tumorige-
nesis (i.e., EGFR) [47] and immunotherapy have shown efficacy in tumors with a high
mutational border and high PDL1 expression [48]. Accurately mapping tumor biology
is essential in selecting the most optimal, personalized treatment regimen for a patient.
AI can aid clinicians by using medical imaging to noninvasively collect imaging-derived
biomarkers that predict intrinsic tumor biology.

Several factors play roles in the radio- and chemoresistance of solid tumors, including
hypoxia, DNA-repair deficiencies, and cellular senescence [49]. Among these features,
hypoxia offers the possibility to be analyzed using advanced imaging techniques such as
specific hypoxia positron emission tomography (PET) tracers [50] and diffusion-weighted
MRI [31]. In NSCLC, the noninvasive detection of hypoxia has been demonstrated for a
combination of PET/CT and dynamic contrast-enhanced CT [51]. AI has been employed
to develop disease-specific radiomic hypoxia classification signatures [52]. A radiomic
signature comprised of four CT-derived features was identified for lung cancer that reached
an area under the curve (AUC) of 0.80 (95%CI 0.65–0.95) for the prediction of tumor oxy-
genation status in an external validation cohort [53]. Radiomic features derived from
hypoxia-tracer PET imaging have also been used to develop multivariate prognostic mod-
els in malignant glioma (5% relative risk prediction performance increase for overall
survival) [54] and hypoxia-based patient stratification in head-and-neck cancer [55]. All in
all, noninvasive prediction of oxygenation status can aid in the prediction of radio- and
chemoresistance as well as patient stratification for hypoxia-targeting therapies. Addition-
ally, a ML-based model has been developed to predict DNA mismatch repair deficiency,
a contributing factor in radio- and chemo-resistance for endometrial cancer. This model
reached an AUC of 0.78 (95%CI 0.58–0.91) [56]. These examples show the potential of
radiomic-based models in predicting key tumor biological factors implicated in radio- and
chemoresistance.

In NSCLC, several cellular pathways in which targetable mutations occur have been
identified. Alterations in two of these pathways, including mutations in EGFR and ALK
gene rearrangements, have led to the inclusion of tyrosine kinase inhibitors in the standard-
of-care treatment for this subset of metastatic NSCLC patients (and, more recently, for
EGFR-mutated LA-NSCLC patients post-surgical resection) [57]. Several other pathway
inhibitors are currently being studied in clinical trials [4]. AI approaches can aid in treat-
ment decisions by identifying the presence of molecular alterations and by predicting
treatment response or acquired resistance to treatment. Several attempts have been made
to use radiomics signatures to predict EGFR status and other molecular targets in NSCLC
patients [58]. For example, a ML model using CT radiomics and clinical features achieved a
diagnostic accuracy of 88.3% in the external validation dataset for predicting EGFR mutant
NSCLC [59]. Additionally, PET-imaging derived radiomic features have also been used to
predict EGFR mutation status with accuracies around 75–78% [60,61]. The development
of the T790M mutation in EGFR, which can occur during treatment with first-generation
EGFR tyrosine kinase inhibitors (gefitinib and erlotinib) is an important mechanism of
resistance. Radiomics signatures have also been developed to predict the development of
this mutation [59].

An important clinical challenge is the observation that not all patients who harbor a
specific molecular alteration (EGFR mutation) respond to tyrosine kinase inhibitors. CT-
based ML models were developed to identify stage IV EGFR-mutated NSCLC patients who
are not likely to benefit from EGFR-targeted therapy (HR 2.13, 95%CI 1.30–3.49) [62]. Simi-
larly, a radiomic signature was identified that could significantly risk-stratify ALK-positive
NSCLC patients (HR 2.181, p < 0.001) when treated with ALK-inhibitor critzotinib [63].
This could aid clinicians in more optimal patient stratification for tyrosine kinase inhibitors.

A key development in the treatment of NSCLC is the approval of the immune check-
point programmed death 1 (PD1) inhibitor durvalumab in the standard-of-care treatment
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of LA-NSCLC [64]. The expression levels of PDL1 as well as the tumor mutational burden
(TMB) have been proposed as two biomarkers predictive for the response to immune
checkpoint inhibitors.

A radiomic biomarker based upon CT-derived deep learning features was able to
distinguish between high- and low-TMB groups (AUC 0.81, 95%CI 0.77–0.85) in the test
cohort [65]. Similarly, radiomic models were developed to predict PDL1 expression levels
(>1% positivity) with high accuracy for CT features (AUC 0.97 (95%CI 0.93–1.0) [66] and to
predict PDL1 expression (>50% positivity) by using CT radiomic features combined with
clinicopathological features (AUC 0.848) [67].

Furthermore, AI models have been tested to predict responses to immune checkpoint
blockers. A radiomic biomarker was able to stratify patients treated with anti-PD1/PDL1
immunotherapy into two risk cohorts (HR 0.54, 95%CI 0.31–0.95) [66]. FDG-PET radiomics
was also able to predict survival in patients with >1% expression levels of PDL1 receiving
pembrolizumab with 78% (SD 18%) accuracy. Similar results for PET-based radiomics have
also been reported in other studies with AUC values varying from 0.80 to 0.86 [68,69].

Another phenomenon observed in NSCLC patients treated with immune checkpoint
inhibitors is a paradoxical acceleration of tumor growth (hyper progression) after the
initiation of treatment. Radiomic features from pretreatment CT scans were able to stratify
patients at risk for this hyper progression with an AUC of 0.96 in the validation set [70].
Together, these examples present the opportunities for employing AI in predicting the
response to immunotherapy and aid in the accurate stratification of patients.

5. AI for ART Workflow Optimization

It is recognized that the adaptation of radiotherapy could be disruptive to the radio-
therapy workflow and may require additional time and resources, which would further
tax an already complex and time-critical process. Hence, advanced analytics such as AI
are not only useful as efficient and time-saving tools but also a necessary requirement to
meet the demands of such a process. The two key elements are automation and optimized
decision-making.

Automation has been the subject of intense research in RT and traces its roots to the
utilization of onboard imaging techniques such CBCT (and, more recently, MRI scans) for
treatment setup. AI methods can accelerate the replanning processes in IGART via contour
propagation, image registration, and dose recalculation [71]. As previously mentioned,
synthetic image generation and domain adaptation (for example, from MR to synthetic CT)
may become a necessary part of treatment adaptation and the online replanning workflow
for hybrid treatment devices such as an MR-linac. However, a more intriguing and rather
challenging aspect of ART is reoptimizing the required dosage to improve clinical outcomes.
This goes beyond accounting for geometrical changes into improving the therapeutic ratio
of better tumor control to less side effects. This has been an active area in radiotherapy
research employing divergent techniques such as generalized TCP/NTCP models [72]
as well as the use of advanced AI and deep learning [73], as we successfully showed.
For instance, Tseng et al., proposed an ART system to estimate the adaptive dose per
fraction using a 3-component deep reinforcement learning (DRL) approach with a neural
network architecture (Figure 3). The DRL architecture was composed of (1) a GAN to
learn patient population characteristics to overcome training from a limited sample size,
(2) a radiotherapy artificial environment (RAE) reconstructed by a deep neural network
(DNN) utilizing both original and synthetic data (by GAN) to estimate the transition
probabilities for adaptation, and (3) a deep Q-network (DQN) applied to the RAE for
choosing the optimal dose in a response-adapted treatment setting. Interestingly, the DRL
seemed to suggest better decisions than the clinical ones in terms of mitigating toxicity
risks and of improving local control, as seen in Figure 3.
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6. Deployment of Decision Support Systems

The availability of vast quantities of electronic clinical data and the possibility of
real-time streaming from monitoring and treating devices coupled with the falling cost
of high-performance computers in the clinical setting has led to a rush of developments
in intelligent clinical decision support systems (iCDSS). An iCDSS is defined as an active
knowledge software system that incorporates two more or patient data points to generate
situation-specific advice that aids physicians with clinical decision-making. “Active knowl-
edge” relates to algorithms, such as predictive or prognostic models, housed inside the
iCDSS, that can learn from data without being hard coded to provide the expected response.

Progress in the fields of molecular biology, genomics, proteomics, and quantitative
image analysis has led to a wide range of “omics” that can be mined for prognostic and
predictive biomarkers. With the aforementioned explosion in available information and the
number of treatment options, this makes it more difficult for physicians to make evidence-
based choices. AI can be given the task of filtering, extracting essential signals from
data, and then presenting this condensed information in a way that it is more cognitively
accessible to the human mind. However, despite thousands of potentially clinically relevant
AI-based models being published in recent years, few actually make it into an iCDSS that
is regularly used in the clinic.

One of the most commonly quoted barriers is the perception that many AI-based
decision support systems are “black box” applications. That is, the internal logic of some
of these systems may be very difficult to deduce from “outside of the box”, since the only
apparent way to infer the internal logic seems to be to observe the output for a wide range
of test inputs. In the radiotherapy context, some analogies have been drawn between
specification, acceptance testing, and commissioning of iCDSS with other radiotherapy
devices, such as treatment planning software and radiation generators. Improving the inter-
pretability of AI models is an active area of current research, producing helpful tools such
as activation and attention maps, and Shapley additive explanations (SHAP) values [74,75].
However, depending on the methods and features used, even such interpretability tools
may not be furnished much by way of rationalizing a human-like clinical decision.

The “black box” argument arises because of concern about algorithm bias and potential
discrimination entrained in the model. Bias could arise because of unaccounted differences
in practice context, patient characteristics, or imaging settings or be a direct result of
ingrained discrimination and prejudices within human society that are imprinted into the
training data. Patients can be given legal protection to demand a meaningful explanation
of the logic used to reach a decision and have recourse to challenge such a decision
in court [76]. Extensive testing in different practice settings and independent external
validation are key to intercepting algorithmic bias, thus increasing clinical confidence.
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The second barrier to adoption of iCCDS is the lack of emphasis on independent
external statistical validation. Focus on model development alone is inevitably misplaced
because, without strong evidence of generalizability, there would be little confidence that
an iCCDS works as required in a different clinic, region, country, or even similar population
but at a different time.

Assuming an iCCDS is finally deployed into clinical practice, it is important to dis-
tinguish reactive versus proactive approaches for ensuring fitness for clinical purpose.
The former is analogous to quality control (QC) in radiotherapy, where one implements
measures to intercept non-conforming performance by the iCCDS. The inevitability of
concept drift, where the implicit relationship between the input variables and the desired
outcome shifts (for example, due to technological evolution or introduction of new classes
of drugs), suggests that the latter approach may be more appealing. Rather than correcting
an integrated system only after it fails a predefined set of criteria, a continuous evaluation
paradigm seeks to detect drift with statistical procedures similar to industrial process
control. This allows for the option of preventative maintenance before system performance
falls outside of operational criteria.

Figure 4 illustrates the alignment of iCCDS development with continuous evaluation
to a development-operational (DevOps) software lifecycle philosophy. Rather than viewing
the creation of an iCCDS as the conclusion to a process (right half of the cycle), development
needs to merge seamlessly into extensive testing in the real world, with commissioning
and routine quality assurance (left half of the cycle). Understanding the clinical need is
paramount, since an iCCDS must exist to address a clear and present requirement and the
continuous evaluation must ensure that an operational iCCDS always remains fit for its
purpose to serve that clinical need.

Cancers 2021, 13, x 14 of 18 
 

 

 
Figure 4. Overview of the interconnections among the developments of an iCCDS and the traditional software lifecycle 
schema. 

7. Conclusions 
In this review, we present a comprehensive roadmap for using AI to support im-

proved management of LA-NSCLC patients. This roadmap starts with the correct identi-
fication of clinical unmet needs and clinical research questions, which represent chal-
lenges in clinical decision-making for treating physicians. Only after the correct identifi-
cation of these clinical questions should meaningful AI applications be developed to sup-
port the release of clinical decision support systems. We provide an overview of the other 
potential milestones where AI applications can be crucial. Our roadmap integrates multi-
disciplinary inputs from the radiation oncology and computational domains and provides 
a new perspective on developing AI for lung cancer patients as part of a communitarian 
effort. 

Author Contributions: Conceptualization, A.T. and D.d.R.; writing—original draft preparation, all 
authors; writing—review and editing, A.T. and D.d.R. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: The authors thank Sheela Hota-Mitchell for substantive copyediting of the 
manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Govindan, R.; Bogart, J.; Vokes, E.E. Locally Advanced Non-Small Cell Lung Cancer: The Past, Present, and Future. J. Thorac. 

Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2008, 3, 917–928, doi:10.1097/JTO.0b013e318180270b. 
2. Yoon, S.M.; Shaikh, T.; Hallman, M. Therapeutic Management Options for Stage III Non-Small Cell Lung Cancer. World J. Clin. 

Oncol. 2017, 8, 1–20, doi:10.5306/wjco.v8.i1.1. 
3. Ginsburg, G.S.; Phillips, K.A. Precision Medicine: From Science to Value. Health Aff. Proj. Hope 2018, 37, 694–701, 

doi:10.1377/hlthaff.2017.1624. 
4. Yuan, M.; Huang, L.-L.; Chen, J.-H.; Wu, J.; Xu, Q. The Emerging Treatment Landscape of Targeted Therapy in Non-Small-Cell 

Lung Cancer. Signal Transduct. Target. Ther. 2019, 4, 61, doi:10.1038/s41392-019-0099-9. 

Figure 4. Overview of the interconnections among the developments of an iCCDS and the traditional
software lifecycle schema.

7. Conclusions

In this review, we present a comprehensive roadmap for using AI to support improved
management of LA-NSCLC patients. This roadmap starts with the correct identification of
clinical unmet needs and clinical research questions, which represent challenges in clinical
decision-making for treating physicians. Only after the correct identification of these



Cancers 2021, 13, 2382 14 of 17

clinical questions should meaningful AI applications be developed to support the release of
clinical decision support systems. We provide an overview of the other potential milestones
where AI applications can be crucial. Our roadmap integrates multi-disciplinary inputs
from the radiation oncology and computational domains and provides a new perspective
on developing AI for lung cancer patients as part of a communitarian effort.

Author Contributions: Conceptualization, A.T. and D.d.R.; writing—original draft preparation,
all authors; writing—review and editing, A.T. and D.d.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank Sheela Hota-Mitchell for substantive copyediting of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Govindan, R.; Bogart, J.; Vokes, E.E. Locally Advanced Non-Small Cell Lung Cancer: The Past, Present, and Future. J. Thorac.

Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2008, 3, 917–928. [CrossRef] [PubMed]
2. Yoon, S.M.; Shaikh, T.; Hallman, M. Therapeutic Management Options for Stage III Non-Small Cell Lung Cancer. World J.

Clin. Oncol. 2017, 8, 1–20. [CrossRef] [PubMed]
3. Ginsburg, G.S.; Phillips, K.A. Precision Medicine: From Science to Value. Health Aff. Proj. Hope 2018, 37, 694–701. [CrossRef]

[PubMed]
4. Yuan, M.; Huang, L.-L.; Chen, J.-H.; Wu, J.; Xu, Q. The Emerging Treatment Landscape of Targeted Therapy in Non-Small-Cell

Lung Cancer. Signal Transduct. Target. Ther. 2019, 4, 61. [CrossRef] [PubMed]
5. Rajappa, S.; Sharma, S.; Prasad, K. Unmet Clinical Need in the Management of Locally Advanced Unresectable Lung Cancer:

Treatment Strategies to Improve Patient Outcomes. Adv. Ther. 2019, 36, 563–578. [CrossRef]
6. Huber, R.M.; De Ruysscher, D.; Hoffmann, H.; Reu, S.; Tufman, A. Interdisciplinary Multimodality Management of Stage III

Nonsmall Cell Lung Cancer. Eur. Respir. Rev. 2019, 28, 190024. [CrossRef]
7. De Ruysscher, D.; Botterweck, A.; Dirx, M.; Pijls-Johannesma, M.; Wanders, R.; Hochstenbag, M.; Dingemans, A.-M.C.; Bootsma,

G.; Geraedts, W.; Simons, J.; et al. Eligibility for Concurrent Chemotherapy and Radiotherapy of Locally Advanced Lung Cancer
Patients: A Prospective, Population-Based Study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2009, 20, 98–102. [CrossRef]

8. Jalal, S.I.; Riggs, H.D.; Melnyk, A.; Richards, D.; Agarwala, A.; Neubauer, M.; Ansari, R.; Govindan, R.; Bruetman, D.;
Fisher, W.; et al. Updated Survival and Outcomes for Older Adults with Inoperable Stage III Non-Small-Cell Lung Cancer
Treated with Cisplatin, Etoposide, and Concurrent Chest Radiation with or without Consolidation Docetaxel: Analysis of a Phase
III Trial from the Hoosier Oncology Group (HOG) and US Oncology. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 1730–1738.
[CrossRef]

9. Bradley, J.D.; Hu, C.; Komaki, R.R.; Masters, G.A.; Blumenschein, G.R.; Schild, S.E.; Bogart, J.A.; Forster, K.M.; Magliocco, A.M.;
Kavadi, V.S.; et al. Long-Term Results of NRG Oncology RTOG 0617: Standard- Versus High-Dose Chemoradiotherapy With or
Without Cetuximab for Unresectable Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38,
706–714. [CrossRef]

10. Muñoz-Unceta, N.; Burgueño, I.; Jiménez, E.; Paz-Ares, L. Durvalumab in NSCLC: Latest Evidence and Clinical Potential.
Ther. Adv. Med. Oncol. 2018, 10, 1758835918804151. [CrossRef] [PubMed]

11. Rubin, G.D. Data Explosion: The Challenge of Multidetector-Row CT. Eur. J. Radiol. 2000, 36, 74–80. [CrossRef]
12. Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-

Kains, B.; Rietveld, D.; et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach.
Nat. Commun. 2014, 5, 4006. [CrossRef]

13. Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial Intelligence-Based Image Classification Methods for Diagnosis of Skin
Cancer: Challenges and Opportunities. Comput. Biol. Med. 2020, 127, 104065. [CrossRef]

14. Hekler, A.; Utikal, J.S.; Enk, A.H.; Hauschild, A.; Weichenthal, M.; Maron, R.C.; Berking, C.; Haferkamp, S.; Klode, J.;
Schadendorf, D.; et al. Superior Skin Cancer Classification by the Combination of Human and Artificial Intelligence. Eur.
J. Cancer 2019, 120, 114–121. [CrossRef]

15. De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue,
B.; Visentin, D.; et al. Clinically Applicable Deep Learning for Diagnosis and Referral in Retinal Disease. Nat. Med. 2018, 24,
1342–1350. [CrossRef]

16. Lustberg, T.; van Soest, J.; Gooding, M.; Peressutti, D.; Aljabar, P.; van der Stoep, J.; van Elmpt, W.; Dekker, A. Clinical Evaluation
of Atlas and Deep Learning Based Automatic Contouring for Lung Cancer. Radiother. Oncol. 2018, 126, 312–317. [CrossRef]

17. Rios Velazquez, E.; Aerts, H.J.W.L.; Gu, Y.; Goldgof, D.B.; De Ruysscher, D.; Dekker, A.; Korn, R.; Gillies, R.J.; Lambin, P.
A Semiautomatic CT-Based Ensemble Segmentation of Lung Tumors: Comparison with Oncologists’ Delineations and with the
Surgical Specimen. Radiother. Oncol. 2012, 105, 167–173. [CrossRef]

http://doi.org/10.1097/JTO.0b013e318180270b
http://www.ncbi.nlm.nih.gov/pubmed/18670313
http://doi.org/10.5306/wjco.v8.i1.1
http://www.ncbi.nlm.nih.gov/pubmed/28246582
http://doi.org/10.1377/hlthaff.2017.1624
http://www.ncbi.nlm.nih.gov/pubmed/29733705
http://doi.org/10.1038/s41392-019-0099-9
http://www.ncbi.nlm.nih.gov/pubmed/31871778
http://doi.org/10.1007/s12325-019-0876-4
http://doi.org/10.1183/16000617.0024-2019
http://doi.org/10.1093/annonc/mdn559
http://doi.org/10.1093/annonc/mdr565
http://doi.org/10.1200/JCO.19.01162
http://doi.org/10.1177/1758835918804151
http://www.ncbi.nlm.nih.gov/pubmed/30344651
http://doi.org/10.1016/S0720-048X(00)00270-9
http://doi.org/10.1038/ncomms5006
http://doi.org/10.1016/j.compbiomed.2020.104065
http://doi.org/10.1016/j.ejca.2019.07.019
http://doi.org/10.1038/s41591-018-0107-6
http://doi.org/10.1016/j.radonc.2017.11.012
http://doi.org/10.1016/j.radonc.2012.09.023


Cancers 2021, 13, 2382 15 of 17

18. Mitchell, J.R.; Kamnitsas, K.; Singleton, K.W.; Whitmire, S.A.; Clark-Swanson, K.R.; Ranjbar, S.; Rickertsen, C.R.; Johnston,
S.K.; Egan, K.M.; Rollison, D.E.; et al. Deep Neural Network to Locate and Segment Brain Tumors Outperformed the Expert
Technicians Who Created the Training Data. J. Med. Imaging 2020, 7. [CrossRef]

19. Nobel, J.M.; Puts, S.; Bakers, F.C.H.; Robben, S.G.F.; Dekker, A.L.A.J. Natural Language Processing in Dutch Free Text Radiology
Reports: Challenges in a Small Language Area Staging Pulmonary Oncology. J. Digit. Imaging 2020, 33, 1002–1008. [CrossRef]
[PubMed]

20. Kazmierska, J.; Hope, A.; Spezi, E.; Beddar, S.; Nailon, W.H.; Osong, B.; Ankolekar, A.; Choudhury, A.; Dekker, A.;
Redalen, K.R.; et al. From Multisource Data to Clinical Decision Aids in Radiation Oncology: The Need for a Clinical Data
Science Community. Radiother. Oncol. 2020, 153, 43–54. [CrossRef]

21. Traverso, A.; van Soest, J.; Wee, L.; Dekker, A. The Radiation Oncology Ontology (ROO): Publishing Linked Data in Radiation
Oncology Using Semantic Web and Ontology Techniques. Med. Phys. 2018, 45, e854–e862. [CrossRef]

22. Mayo, C.S.; Moran, J.M.; Bosch, W.; Xiao, Y.; McNutt, T.; Popple, R.; Michalski, J.; Feng, M.; Marks, L.B.; Fuller, C.D.; et al.
American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology. Int. J.
Radiat. Oncol. 2018, 100, 1057–1066. [CrossRef] [PubMed]

23. Mitchell, J.R.; Szepietowski, P.; Howard, R.; Reisman, P.; Jones, J.D.; Lewis, P.; Fridley, B.L.; Rollison, D.E. Cabernet: A Question-
and-Answer System to Extract Data from Free-Text Pathology Reports (Preprint). J. Med. Internet Res. 2021. [CrossRef]

24. Thor, M.; Apte, A.; Haq, R.; Iyer, A.; LoCastro, E.; Deasy, J.O. Using Auto-Segmentation to Reduce Contouring and Dose
Inconsistency in Clinical Trials: The Simulated Impact on RTOG 0617. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1619–1626.
[CrossRef]

25. Korc-Grodzicki, B.; Holmes, H.M.; Shahrokni, A. Geriatric Assessment for Oncologists. Cancer Biol. Med. 2015, 12, 261–274.
[CrossRef] [PubMed]

26. Calvani, R.; Marini, F.; Cesari, M.; Tosato, M.; Anker, S.D.; von Haehling, S.; Miller, R.R.; Bernabei, R.; Landi, F.; Marzetti, E.; et al.
Biomarkers for Physical Frailty and Sarcopenia: State of the Science and Future Developments. J. Cachexia Sarcopenia Muscle 2015,
6, 278–286. [CrossRef] [PubMed]

27. Dunne, R.F.; Loh, K.P.; Williams, G.R.; Jatoi, A.; Mustian, K.M.; Mohile, S.G. Cachexia and Sarcopenia in Older Adults with
Cancer: A Comprehensive Review. Cancers 2019, 11, 1861. [CrossRef]

28. Grove, O.; Berglund, A.E.; Schabath, M.B.; Aerts, H.J.W.L.; Dekker, A.; Wang, H.; Velazquez, E.R.; Lambin, P.; Gu, Y.; Bal-
agurunathan, Y.; et al. Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor
Heterogeneity with Prognosis in Lung Adenocarcinoma. PLoS ONE 2015, 10, e0118261. [CrossRef]

29. Grossmann, P.; Stringfield, O.; El-Hachem, N.; Bui, M.M.; Rios Velazquez, E.; Parmar, C.; Leijenaar, R.T.; Haibe-Kains, B.; Lambin,
P.; Gillies, R.J.; et al. Defining the Biological Basis of Radiomic Phenotypes in Lung Cancer. eLife 2017, 6, e23421. [CrossRef]

30. Cherezov, D.; Goldgof, D.; Hall, L.; Gillies, R.; Schabath, M.; Müller, H.; Depeursinge, A. Revealing Tumor Habitats from Texture
Heterogeneity Analysis for Classification of Lung Cancer Malignancy and Aggressiveness. Sci. Rep. 2019, 9, 4500. [CrossRef]

31. Li, Y.; Liu, X.; Xu, K.; Qian, Z.; Wang, K.; Fan, X.; Li, S.; Wang, Y.; Jiang, T. MRI Features Can Predict EGFR Expression in Lower
Grade Gliomas: A Voxel-Based Radiomic Analysis. Eur. Radiol. 2018, 28, 356–362. [CrossRef]

32. Glick, D.; Lyen, S.; Kandel, S.; Shapera, S.; Le, L.W.; Lindsay, P.; Wong, O.; Bezjak, A.; Brade, A.; Cho, B.C.J.; et al. Impact of
Pretreatment Interstitial Lung Disease on Radiation Pneumonitis and Survival in Patients Treated With Lung Stereotactic Body
Radiation Therapy (SBRT). Clin. Lung Cancer 2018, 19, e219–e226. [CrossRef]

33. Krafft, S.P.; Rao, A.; Stingo, F.; Briere, T.M.; Court, L.E.; Liao, Z.; Martel, M.K. The Utility of Quantitative CT Radiomics Features
for Improved Prediction of Radiation Pneumonitis. Med. Phys. 2018, 45, 5317–5324. [CrossRef]

34. Cunliffe, A.; Armato, S.G.; Castillo, R.; Pham, N.; Guerrero, T.; Al-Hallaq, H.A. Lung Texture in Serial Thoracic Computed Tomog-
raphy Scans: Correlation of Radiomics-Based Features with Radiation Therapy Dose and Radiation Pneumonitis Development.
Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 1048–1056. [CrossRef]

35. Xu, Y.; Hosny, A.; Zeleznik, R.; Parmar, C.; Coroller, T.; Franco, I.; Mak, R.H.; Aerts, H.J.W.L. Deep Learning Predicts Lung Cancer
Treatment Response from Serial Medical Imaging. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3266–3275. [CrossRef]
[PubMed]

36. Zhovannik, I.; Bussink, J.; Traverso, A.; Shi, Z.; Kalendralis, P.; Wee, L.; Dekker, A.; Fijten, R.; Monshouwer, R. Learning from
Scanners: Bias Reduction and Feature Correction in Radiomics. Clin. Transl. Radiat. Oncol. 2019, 19, 33–38. [CrossRef]

37. Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J.
Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [CrossRef]

38. van Timmeren, J.E.; Leijenaar, R.T.H.; van Elmpt, W.; Reymen, B.; Oberije, C.; Monshouwer, R.; Bussink, J.; Brink, C.; Hansen, O.;
Lambin, P. Survival Prediction of Non-Small Cell Lung Cancer Patients Using Radiomics Analyses of Cone-Beam CT Images.
Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2017, 123, 363–369. [CrossRef]

39. Ammari, S.; Pitre-Champagnat, S.; Dercle, L.; Chouzenoux, E.; Moalla, S.; Reuze, S.; Talbot, H.; Mokoyoko, T.; Hadchiti, J.;
Diffetocq, S.; et al. Influence of Magnetic Field Strength on Magnetic Resonance Imaging Radiomics Features in Brain Imaging,
an In Vitro and In Vivo Study. Front. Oncol. 2020, 10, 541663. [CrossRef]

40. Ligero, M.; Jordi-Ollero, O.; Bernatowicz, K.; Garcia-Ruiz, A.; Delgado-Muñoz, E.; Leiva, D.; Mast, R.; Suarez, C.; Sala-Llonch, R.;
Calvo, N.; et al. Minimizing Acquisition-Related Radiomics Variability by Image Resampling and Batch Effect Correction to
Allow for Large-Scale Data Analysis. Eur. Radiol. 2020. [CrossRef]

http://doi.org/10.1117/1.JMI.7.5.055501
http://doi.org/10.1007/s10278-020-00327-z
http://www.ncbi.nlm.nih.gov/pubmed/32076924
http://doi.org/10.1016/j.radonc.2020.09.054
http://doi.org/10.1002/mp.12879
http://doi.org/10.1016/j.ijrobp.2017.12.013
http://www.ncbi.nlm.nih.gov/pubmed/29485047
http://doi.org/10.2196/preprints.27210
http://doi.org/10.1016/j.ijrobp.2020.11.011
http://doi.org/10.7497/j.issn.2095-3941.2015.0082
http://www.ncbi.nlm.nih.gov/pubmed/26779363
http://doi.org/10.1002/jcsm.12051
http://www.ncbi.nlm.nih.gov/pubmed/26675566
http://doi.org/10.3390/cancers11121861
http://doi.org/10.1371/journal.pone.0118261
http://doi.org/10.7554/eLife.23421
http://doi.org/10.1038/s41598-019-38831-0
http://doi.org/10.1007/s00330-017-4964-z
http://doi.org/10.1016/j.cllc.2017.06.021
http://doi.org/10.1002/mp.13150
http://doi.org/10.1016/j.ijrobp.2014.11.030
http://doi.org/10.1158/1078-0432.CCR-18-2495
http://www.ncbi.nlm.nih.gov/pubmed/31010833
http://doi.org/10.1016/j.ctro.2019.07.003
http://doi.org/10.1016/j.ijrobp.2018.05.053
http://doi.org/10.1016/j.radonc.2017.04.016
http://doi.org/10.3389/fonc.2020.541663
http://doi.org/10.1007/s00330-020-07174-0


Cancers 2021, 13, 2382 16 of 17

41. Lan, L.; You, L.; Zhang, Z.; Fan, Z.; Zhao, W.; Zeng, N.; Chen, Y.; Zhou, X. Generative Adversarial Networks and Its Applications
in Biomedical Informatics. Front. Public Health 2020, 8, 164. [CrossRef]

42. Maspero, M.; Houweling, A.C.; Savenije, M.H.F.; van Heijst, T.C.F.; Verhoeff, J.J.C.; Kotte, A.N.T.J.; van den Berg, C.A.T. A
Single Neural Network for Cone-Beam Computed Tomography-Based Radiotherapy of Head-and-Neck, Lung and Breast Cancer.
Phys. Imaging Radiat. Oncol. 2020, 14, 24–31. [CrossRef]

43. Chalkidou, A.; O’Doherty, M.J.; Marsden, P.K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic
Review. PLoS ONE 2015, 10, e0124165. [CrossRef] [PubMed]

44. Welch, M.L.; McIntosh, C.; Haibe-Kains, B.; Milosevic, M.F.; Wee, L.; Dekker, A.; Huang, S.H.; Purdie, T.G.; O’Sullivan, B.; Aerts,
H.J.W.L.; et al. Vulnerabilities of Radiomic Signature Development: The Need for Safeguards. Radiother. Oncol. 2019, 130, 2–9.
[CrossRef] [PubMed]

45. Traverso, A.; Kazmierski, M.; Zhovannik, I.; Welch, M.; Wee, L.; Jaffray, D.; Dekker, A.; Hope, A. Machine Learning Helps
Identifying Volume-Confounding Effects in Radiomics. Phys. Med. 2020, 71, 24–30. [CrossRef] [PubMed]

46. Vaupel, P.; Mayer, A. Hypoxia in Cancer: Significance and Impact on Clinical Outcome. Cancer Metastasis Rev. 2007, 26, 225–239.
[CrossRef]

47. Aran, V.; Omerovic, J. Current Approaches in NSCLC Targeting K-RAS and EGFR. Int. J. Mol. Sci. 2019, 20, 5701. [CrossRef]
48. Paver, E.C.; Cooper, W.A.; Colebatch, A.J.; Ferguson, P.M.; Hill, S.K.; Lum, T.; Shin, J.-S.; O’Toole, S.; Anderson, L.;

Scolyer, R.A.; et al. Programmed Death Ligand-1 (PD-L1) as a Predictive Marker for Immunotherapy in Solid Tumours: A Guide
to Immunohistochemistry Implementation and Interpretation. Pathology 2021, 53, 141–156. [CrossRef]

49. Palmer, J.D.; Zaorsky, N.G.; Witek, M.; Lu, B. Molecular Markers to Predict Clinical Outcome and Radiation Induced Toxicity in
Lung Cancer. J. Thorac. Dis. 2014, 6, 387–398. [CrossRef]

50. Sanduleanu, S.; Wiel, A.; Lieverse, R.I.; Marcus, D.; Ibrahim, A.; Primakov, S.; Wu, G.; Theys, J.; Yaromina, A.; Dubois, L.J.; et al.
Hypoxia PET Imaging with [18F]-HX4—A Promising Next-Generation Tracer. Cancers 2020, 12, 1322. [CrossRef]

51. Even, A.J.G.; Reymen, B.; La Fontaine, M.D.; Das, M.; Jochems, A.; Mottaghy, F.M.; Belderbos, J.S.A.; De Ruysscher, D.; Lambin,
P.; van Elmpt, W. Predicting Tumor Hypoxia in Non-Small Cell Lung Cancer by Combining CT, FDG PET and Dynamic
Contrast-Enhanced CT. Acta Oncol. 2017, 56, 1591–1596. [CrossRef] [PubMed]

52. Marcu, L.G.; Forster, J.C.; Bezak, E. The Potential Role of Radiomics and Radiogenomics in Patient Stratification by Tumor
Hypoxia Status. J. Am. Coll. Radiol. 2019, 16, 1329–1337. [CrossRef]

53. Sanduleanu, S.; Jochems, A.; Upadhaya, T.; Even, A.J.G.; Leijenaar, R.T.H.; Dankers, F.J.W.M.; Klaassen, R.; Woodruff, H.C.; Hatt,
M.; Kaanders, H.J.A.M.; et al. Non-Invasive Imaging Prediction of Tumor Hypoxia: A Novel Developed and Externally Validated
CT and FDG-PET-Based Radiomic Signatures. Radiother. Oncol. 2020, 153, 97–105. [CrossRef]

54. Assessment of the Prognostic Value of Radiomic Features in 18 F-FMISO PET Imaging of Hypoxia in Postsurgery Brain Cancer
Patients: Secondary Analysis of Imaging Data from a Single-Center Study and the Multicenter ACRIN 6684 Trial. Tomography
2020, 6, 14–22. [CrossRef] [PubMed]

55. Crispin-Ortuzar, M.; Apte, A.; Grkovski, M.; Oh, J.H.; Lee, N.Y.; Schöder, H.; Humm, J.L.; Deasy, J.O. Predicting Hypoxia
Status Using a Combination of Contrast-Enhanced Computed Tomography and [18F]-Fluorodeoxyglucose Positron Emission
Tomography Radiomics Features. Radiother. Oncol. 2018, 127, 36–42. [CrossRef] [PubMed]
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