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Simple Summary: As convergence points of signaling cascades, transcription factors (TFs) play
a crucial role in cell physiology, including B cell differentiation, and are deregulated in solid and
hematologic malignancies, including multiple myeloma (MM), a malignant clonal plasma cell prolif-
erative disorder. In particular, there is accumulating evidence that aberrant gene expression programs
induced by the Activator Protein-1 (AP-1) TF family are associated with MM cell growth, survival,
migration, drug resistance, bone marrow angiogenesis and bone disease. Therefore AP-1 TFs, which
have been deemed as “undruggable” until most recently, represent appealing targets for novel
therapeutic approaches. Indeed, strategies to target TFs such as AP-1 emerge among today’s most
promising anti-MM therapies.

Abstract: Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the
clonal expansion of malignant plasma cells within the bone marrow. Activator Protein-1 (AP-1) tran-
scription factors (TFs), comprised of the JUN, FOS, ATF and MAF multigene families, are implicated
in a plethora of physiologic processes and tumorigenesis including plasma cell differentiation and
MM pathogenesis. Depending on the genetic background, the tumor stage, and cues of the tumor
microenvironment, specific dimeric AP-1 complexes are formed. For example, AP-1 complexes con-
taining Fra-1, Fra-2 and B-ATF play central roles in the transcriptional control of B cell development
and plasma cell differentiation, while dysregulation of AP-1 family members c-Maf, c-Jun, and JunB
is associated with MM cell proliferation, survival, drug resistance, bone marrow angiogenesis, and
bone disease. The present review article summarizes our up-to-date knowledge on the role of AP-1
family members in plasma cell differentiation and MM pathophysiology. Moreover, it discusses
novel, rationally derived approaches to therapeutically target AP-1 TFs, including protein-protein
and protein-DNA binding inhibitors, epigenetic modifiers and natural products.

Keywords: activator protein 1 (AP-1); transcription factor (TF); plasma cell (PC); multiple myeloma
(MM); bone marrow (BM); microenvironment

1. Introduction

First described in the 1980′s [1–5], members of the Activator Protein-1 (AP-1) tran-
scription factor (TF) family contain the characteristic basic leucine zipper (bZIP) domain,
which enables dimer formation via a stretch of hydrophobic leucines, and facilitates DNA
interaction via positively charged amino acids. AP-1 family members include the JUN
(c-Jun, JunB and JunD), FOS (c-Fos, FosB, Fra-1 and Fra-2), ATF (ATF2, ATF3/LRF1, ATF4,
ATF5, ATF6B, ATF7, B-ATF, B-ATF2, B-ATF3, JDP1 and JDP2) and MAF (MafA, MafB,
c-Maf, Nrl and MafF/G/K) multigene subfamilies [6]. While Jun proteins heterodimerize
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or homodimerize with members of their own subfamily, Fos proteins must heterodimer-
ize. Depending on their composition, AP-1 TFs bind to the TPA-response element (TRE)
[5′-TGA (C/G) TCA-3′] and, with lower affinity, to the cAMP response element (CRE)
[5′-TGA CG TCA-3′], which is almost identical to TRE. Specifically, Jun: Jun dimers and
Jun: Fos dimers preferentially bind to TRE and CRE, but also to variant sequences within
the DNA; ATF-containing Jun: ATF and ATF: ATF dimers preferentially bind CRE; and
MAF-containing dimers bind either to MAF-recognition element (MARE) I [5′-TGC TGA
(C/G) TCA GCA-3′] or to MARE II [5′-TGC TGA CG TCA GCA-3′], extensions of TRE and
CRE sequences [1]. In addition, AP-1 dimers interact with non-bZIP proteins including
CBP/p300, p65/NFκB and Rb. AP-1 activity is induced by a multitude of intrinsic and
extrinsic stimuli and environmental insults including cytokines, growth factors, direct
cell-cell and cell-extracellular-matrix interactions, hormones, phorbol esters, UV radia-
tion as well as viral and bacterial infections. It is predominantly regulated via MAPK-,
PI3K- and NFκB- dependent transcription, but also via post-translational phosphorylation,
mRNA turnover and protein stability [1,7,8]. Ultimately, these events determine specific
transcriptional programs.

Accounting for ~10% of hematologic malignancies, Multiple Myeloma (MM) is char-
acterized by the clonal expansion of malignant plasma cells (PCs) within the bone marrow
(BM) and the abnormal increase of monoclonal paraprotein, leading to specific end-organ
damage, including hypercalcemia, renal failure, anemia and lytic bone lesions (CRAB
criteria) [9]. The development of MM is initiated from a pre-malignant, asymptomatic
stage called Monoclonal Gammopathy of Undetermined Significance (MGUS), and a more
advanced pre-malignant, asymptomatic stage called Smoldering MM (SMM), due to cy-
togenetic alterations in post-germinal center (GC) PCs. During the evolution of MGUS
or SMM into MM and ultimately PC leukemia (PCL), additional genetic aberrations as
well as the supportive BM microenvironment play pivotal roles [10,11]. The incidence
of MGUS is >3% of the population over the age of 50, with a progression rate of 1% per
year to MM; whereas SMM transforms to MM at a rate of ~10% per year during the
first five years after diagnosis. As primary genetic events, approximately 40% of MM
patients harbor trisomies of chromosomes, ~30% have immunoglobulin (Ig) heavy chain
(IgH) translocations and ~15% have both trisomies and IgH translocations. The IgH lo-
cus is located on chromosome 14q32, and the translocations and genes affected include
t(4;14)(p16;q32) (FGFR3 and MMSET), t(6;14)(p21;q32) (CCND3), t(11;14)(q13;q32) (CCND1),
t(14;16)(q32;q23) (c-MAF) and t(14;20)(q32;q11) (MAFB). Secondary genetic events include
gains and deletions of chromosomes, global hypomethylation, mutations and secondary
translocations t(8;14)(q24;q32) (MYC). Specifically, high-risk MM is characterized by the
presence of gain of chromosome 1q, deletion of chromosome 17p (del(17p)), t(4;14), t(14;16),
t(14;20) or p53 mutations [9,12]. Despite therapeutic advances including the introduction
of ImmunoModulatory Drugs (IMiDs), proteasome inhibitors (PIs), monoclonal antibodies
and most recently selinexor, a Selective Inhibitor of Nuclear Export (SINE) that binds
and inactivates exportin-1 (XPO1) [13], the B Cell Maturation Antigen (BCMA) targeting
antibody-drug-conjugate (ADC) belantamab-mafodotin [14], and BCMA-directed CAR-T
cells [9], the management of MM remains challenging, mainly due to the development of
drug resistance. Therefore, the identification of novel therapeutic targets and the develop-
ment of derived anti-MM treatment strategies are urgently needed.

Our increasing knowledge of B cell differentiation and resultant generation of normal
PCs have been fundamental to understand how these processes are deranged in MM
cells [15]. PCs that undergo IgH switch recombination home to the BM, where they occupy
special survival niches, and become long-lived PCs [16]. Besides their central role in many,
if not all, physiologic processes, including PC differentiation, deregulation of AP-1 TFs has
been implicated in solid and hematologic malignancies, including MM [17]. Deregulation of
TFs contributes to MM pathogenesis through: (1) direct TF modifications (e.g., mutations);
(2) intrinsic genetic alterations or extrinsic stimuli within the BM microenvironment that
trigger signaling pathway-mediated TF activation or inhibition; (3) epigenetic changes in
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DNA methylation, histone modifications and non-coding RNAs; and (4) TF dependency
on prolonged oncogene activity (“oncogenic addiction”) [11,18–22].

The present review article will comprehensively summarize our up-to-date knowledge
on the critical role of AP-1 TFs in PC differentiation and MM pathophysiology. Moreover,
we will discuss novel, rationally derived strategies to therapeutically target AP-1 TFs,
including protein-protein and protein-DNA binding inhibitors, epigenetic modifiers and
natural products.

2. AP-1 in Plasma Cell Biology

AP-1 TFs play a critical role in PC formation and function. When compared to IgM-
positive B cells, c-Jun, c-Fos and FosB expression are upregulated in PCs, whereas JunB
expression is downregulated and JunD remains unchanged [23]. In B cells, increased
expression levels of JunB, JunD, FosB and Fra-1 are detected after stimulation of primary B
cells via the B cell receptor (BCR) and/or the CD40 receptor [24]. Moreover, AP-1 TFs c-Jun,
JunB, JunD, c-Fos and FosB are induced through activation of Mef-2, a TF associated with
B cell development from pre-B cells to immature B cells [25]. Of note, PC differentiation is
coupled to division-dependent DNA hypomethylation at CpG loci at enhancer sites; with
binding motifs for AP-1 TFs B-ATF, ATF3 and Fra-1 being demethylated first [26]. Specific
functions of selected AP-1 TF family members during PC differentiation will be discussed
below (Figure 1A and Table 1).

Table 1. Function of AP-1 in plasma cell biology and multiple myeloma pathophysiology.

AP-1 Member Activity Mechanism References

Plasma cell biology

Fra-1 Suppresses B cell differentiation into PCs and
decreases Ig production

Inhibition of Prdm1/Blimp-1 expression
by

preventing binding of c-Fos to the
promoter

[27–29]

Fra-2 Enhances B cell proliferation and
differentiation at multiple stages

Transcriptional induction of FOXO-1
and IRF-4

expression, and their downstream
targets Ikaros, IL7Ra, Rag1/2 and

Aiolos

[24]

B-ATF

Essential for GC formation
and effective CSR

Downstream of FOXO-1, modulating
the

expression of Aicda/AID and GLTs
from the

Ig locus of B cells in the GC

[30,31]

Regulates B cell activation
and GC response

Binding of B-ATF containing AP-1
complexes and IRF-4 to the AICE motif

of target genes
[32,33]
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Table 1. Cont.

AP-1 Member Activity Mechanism References

Multiple myeloma

c-Maf
MafB

Overexpressed in MM

Chromosomal translocation t(14;16),
t(14;20)

MMSET/MEK/ERK/AP-1 signaling
sequelae

[11,18,34]

Promote MM cell proliferation,
migration and invasion, survival,

adhesion and pathological
interactions with BMSC

Regulation of cyclin D2, ARK5,
DEPTOR,

and integrin β7 expression
[35–37]

Confer resistance to PIs bortezomib and
carfilzomib

Abrogation of GSK3β-mediated
proteasomal degradation of c-Maf and

MafB
[38,39]

c-Jun

Lower expression in primary MM cells
compared to normal PCs Unknown [40]

Upregulated in MM cells by
adaphostin or bortezomib

Inhibits proliferation and induces
apoptosis

Caspase-mediated c-Abl cleavage
Upregulation of EGR-1

Upregulation of p53
[41–44]

JunB

BMSC- and IL-6- triggered upregulation in
MM cells MEK/MAPK- and NFκB- dependent

[45]Promotes MM cell proliferation Cell cycle regulation
Protects MM cells against

dexamethasone- and bortezomib- induced
cell death

Inhibition of apoptotic pathways

Promotes MM BM angiogenesis
Transcriptional regulation of

angiogenic factors VEGF, VEGFB and
IGF1

[46]

Bone metabolism

c-Fos
Regulates OC differentiation

(Block in OC differentiation in mice
lacking c-Fos)

Induced by RANKL and M-CSF
Transcriptional regulation of Fra-1 and

NFATc1
[47–50]

Fra-1

Regulates OB activity
and bone matrix formation

(Mice overexpressing Fra-1 develop
osteosclerosis)

Regulation of bone matrix component
production by OBs (osteocalcin,

collagen1α2,
and matrix Gla protein)

[51,52]

Fra-2

Regulates OB differentiation
(Fra-2-overexpressing mice are

osteosclerotic)

Transcriptional regulation of
osteocalcin

and collagen1α2
[53]

Controls OC survival and size
(Increased size and numbers of OCs in

Fra-2-deficient mice)

Transcriptional induction of LIF via
Fra-2:c-Jun heterodimers

Modulation of
LIF/LIF-receptor/PHD2/HIF1α

signaling sequelae

[54]

JunB

Regulates OB proliferation
and differentiation

(Mice lacking JunB are osteopenic)

Cyclin D1 and cyclin A expression,
and collagen1α2, osteocalcin and

bone sialoprotein production [55]

Regulates OC proliferation
and differentiation Dimerization partner of c-Fos (?)

Abbreviations: PCs, plasma cells; Ig, immunoglobulin; GC, germinal center; CSR, class switch recombination; AID, activation- induced
cytidine deaminase; GLTs, germline transcripts; AICE, AP-1-IRF composite element; MM, multiple myeloma; BM, bone marrow; BMSC,
bone marrow stromal cells; PIs, proteasome inhibitors; OC, osteoclast; RANKL, receptor activator of NFκB ligand; M-CSF, macrophage
colony stimulating factor; NFAT, nuclear factor of activated T cells; LIF: leukaemia inhibitory factor; OB, osteoblast.
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Figure 1. Functions of Activator Protein-1 (AP-1)/JUN, FOS, ATF and MAF transcription factor (TF) subfamily members in
plasma cell (PC) biology, multiple myeloma (MM) pathophysiology, bone metabolism and MM associated bone disease. (A)
Functions of AP-1 TFs in PC biology. (B) Functions of AP-1 TFs in MM pathogenesis. (C) Functions of AP-1 TFs in bone
metabolism and MM associated bone disease. Ig, immunoglobulin; GC, germinal center; CSR, class switch recombination;
AID, activation- induced cytidine deaminase; GLT, germline transcript; AICEs, AP-1-IRF composite elements; BM, bone
marrow; BMSC, bone marrow stromal cell; PI, proteasome inhibitor; OC, osteoclast; RANKL, receptor activator of NFκB
ligand; M-CSF, macrophage colony stimulating factor; NFAT, nuclear factor of activated T cells; LIF, leukaemia inhibitory
factor; OB, osteoblast.
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2.1. Fra-1

The Fos-related antigen 1 (Fra-1) reduces proliferation and can induce apoptosis
depending on the cellular context. Specifically, Fra-1 suppresses B cell differentiation
into PCs. This effect is mediated through inhibition of Blimp-1 expression by direct
binding of Fra-1 to the Prdm1/Blimp-1 promoter, which thereby prevents binding of c-
Fos. Consequently, enhanced PC differentiation and elevated antibody responses occur
in mice with B cell-specific deletion of Fra-1. In contrast, Fra-1-overexpressing mice are
characterized by impaired PC differentiation and decreased Ig production [27–29].

2.2. Fra-2

Independent of Fra-1, Fra-2 acts as an enhancer of B cell proliferation and differen-
tiation at multiple stages. Fra-2-deficient mice display decreased B cell numbers in the
BM and spleen. Moreover, the in vitro transition of pro-B cell/large pre-B cells from Fra-
2-deficient mice to small B cells and immature B cells is impaired. Mechanistically, Fra-2
induces FOXO-1 and IRF-4 gene expression followed by downstream activation of Ikaros,
IL7Ra, Rag1/2 and Aiolos [24]. Together with Fra-1, Fra-2 play key regulatory roles in bone
metabolism [29] (see below).

2.3. B-ATF

B-ATF is a key regulator of GC formation and class switch recombination (CSR).
Mechanistically, B-ATF acts as a downstream target of FOXO-1 and regulates CSR by
modulating the expression of Activation-induced cytidine deaminase (Aicda/AID) and
GermLine Transcripts (GLTs) from the Ig locus of B cells in GC. Subsequently, GC B cells
are able to differentiate into PCs or memory B cells [30,31,56]. In this context, B-ATF-/- B
cells partially phenocopy IRF-4−/− B cells. Of note, due to its low DNA binding affinity
IRF-4 forms a heterodimer- complex with B-ATF and binds to the AP-1-IRF composite
(AICE) motif (GAAA(NNNN)TGAGTCA), thereby inducing expression of genes involved
in B cell activation and the GC response [32,33].

3. AP-1 in Multiple Myeloma

Besides acting as critical regulators in PC differentiation, AP-1 TFs are emerging as
“master regulators” of aberrant gene expression programs in MM. Below we will discuss
functions of AP-1 TFs that have specifically been associated with MM pathogenesis during
recent years, c-Maf and MafB, c-Jun, JunB, in particular. Whether Fra-1, Fra-2, B-ATF and
other AP-1 family members are deregulated in MM cells is currently unknown and subject
of our own and others’ ongoing research efforts (Figure 1B and Table 1).

3.1. c-Maf and MafB

Somatic hypermutation (SHM) and CSR of Igs, two key features of B cell development
in GC, are also involved in the ontogeny of MM. Aberrant CSR, V(D)J rearrangement or
receptor revision mediated via aberrant expression of AID results in chromosomal translo-
cations, one of the central characteristics of MM. In up to 90% of MM cells, chromosomal
translocations affect chromosome 14q32, leading to the placement of various oncogenes
under the control of the powerful enhancer of IGH genes. Importantly, these oncogenes
also include members of the AP-1 TF family, c-MAF in t(14;16) (~3–5%) and MAFB in
t(14;20) (~1.5%), in particular. In addition to t(14;16), c-Maf expression is also triggered by
the MMSET/MEK/ERK/AP-1 (c-Fos) signaling pathway (~50%) [34].

By comparing two independent gene-expression profiling studies, 12 deregulated
genes have been identified within the molecular “Maf subgroup” (t(14;16)/c-MAF or
t(14;20)/MAFB), including cyclin D2, integrin β7 and ARK5 [57]. c-Maf, in particular,
promotes MM cell proliferation via cyclin D2; cell migration and invasion via ARK5; cell
survival via DEP domain-containing mTOR-interacting protein (DEPTOR)-dependent
activation of the PI3K/AKT pathway; and pathological interactions between BM stroma
and MM cells followed by VEGF secretion via integrin β7 [34–37,57]. These early initiating
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events define the biological background of MM cells and influence secondary events
including copy number changes (chromosome gains/losses), mutations and secondary Ig
translocations. Indeed, genetic and microenvironmental alterations impact the likelihood
of developing high-risk states of the disease [11,12,15,18,57].

Of note, “poor-prognostic” MM patients with the t(14;16) translocation, unlike other
molecular subgroups, are characterized by innate resistance to the proteasome inhibitor (PI)
bortezomib. Mechanistically, increased c-Maf protein stability and PI resistance is mediated
through the inhibition of Glycogen Synthase Kinase 3 beta (GSK3β) [38]. Similar to c-Maf,
PIs bortezomib and carfilzomib also abrogate degradation of MafB protein, which leads to
intrinsic resistance to PIs in MM cells with MafB overexpression [39].

Finally, while lytic lesions are pathognomic for MM (occurring in more than 80% of
patients), the Maf subtype has a low incidence of bone disease. The lack of bone disease
may be, at least in part, explained by c-Maf or MafB-induced osteopontin (OPN) expression
by MM cells [58,59] (also see Section 3.4).

3.2. c-Jun

Surprisingly, our own and other data have demonstrated that MM patients with low
levels of “oncogenic” c-Jun have a shorter overall and event-free survival when compared
to patients with normal or high levels of c-Jun. Indeed, drug- induced upregulation of
c-Jun inhibits MM cell proliferation and induces apoptosis via caspase-mediated c-Abl
cleavage [41] as well as via Early Growth Response protein 1 (EGR-1) [43]. In agreement
with these data, logic programming demonstrated a significantly lower c-Jun/Fos activity
in MM patients vs. normal controls, regardless of treatment or age [40]. Moreover, PIs
bortezomib, carfilzomib and ixazomib induce caspase-dependent cleavage of Myeloid Cell
Leukemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family. The resultant Mcl-1128–350

fragment translocates into the cell nucleus and triggers MM cell death via induction of
c-Jun [42]. Finally, JNK-induced c-Jun binds to the AP-1 binding site of the p53 promoter
region and triggers apoptosis by upregulation of p53 [44].

3.3. JunB

Recently, we demonstrated for the first time that another AP-1 family member, JunB,
plays a pivotal role in MM pathogenesis. Our data showed that a specific and rapid,
MEK/MAPK- and NFκB-dependent induction of JunB in MM cells is essential for MM cell
proliferation and survival. In addition, JunB protected MM cells against dexamethasone-
and PI bortezomib-induced cell death [45]. Our most recent data additionally demon-
strated a role for JunB in MM BM angiogenesis. Specifically, we showed that BM-induced
expression of JunB was significantly correlated with angiogenic factors VEGF, VEGFB and
IGF1 expression and secretion in primary MM cells and cell lines both in vitro and in vivo,
and consequently with increased vessel density in patient-derived BM sections [46].

3.4. AP-1 in Bone Metabolism and MM Bone Disease

Increased size and number of bone resorbing osteoclasts (OCs) and a decreased activ-
ity of osteoblasts (OBs) characterize MM bone disease, a hallmark of MM. Besides c-Maf
and MafB, whose expression levels are correlated with a low number of bone lesions in
MM, other AP-1 members have been associated with osteolytic bone disease in MM [58,59].
Specifically, c-Fos acts as an essential TF for OC differentiation. The lack of c-Fos results
in a block of OC differentiation and in increased numbers of BM macrophages [47,60].
Mechanistically, c-Fos is induced by Macrophage Colony-Stimulating Factor (M-CSF) and
Receptor Activator of NFκB Ligand (RANKL) and promotes the expression of Fra-1 and Nu-
clear Factor of Activated T cells c1 (NFATc1). At the final stage of OC differentiation, NFATc1
cooperates with c-Fos in order to induce OC-specific genes such as TRAP, calcitonin recep-
tor and cathepsin K [48–50]. Moreover, the size and survival of OCs is controlled by Fra-2
through Leukaemia Inhibitory Factor (LIF) and hypoxia. Fra-2 transcriptionally induces
LIF via Fra-2/c-Jun heterodimers, and modulates LIF/LIF-receptor/PHD2/HIF1α signal-
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ing. Fra-2 transgenic mice exhibit osteosclerosis with enhanced bone formation, whereas
bones of Fra-2-deficient newborn mice have increased size and numbers of OCs [29,54]. In
addition, Fra-2 regulates OB differentiation through transcriptional regulation of osteo-
calcin and collagen1α2; and Fra-2-overexpressing mice are osteosclerotic [53]. Similarly,
another member of Fos proteins, Fra-1, regulates the activity of OBs via the production
of bone matrix components, including osteocalcin, collagen1α2 and matrix Gla protein.
Mice overexpressing Fra-1 develop osteosclerosis [51,52]. Specifically, both Jun and Fos
proteins regulate bone formation and remodeling. JunB is essential for OB proliferation
and differentiation. Mice lacking JunB are osteopenic, with reduced cyclin D1 and cyclin
A expression, and decreased collagen1α2, osteocalcin and bone sialoprotein production.
Moreover, loss of JunB in osteoclast precursors leads to defects in OC proliferation and
differentiation, probably through acting as partner of c-Fos [55] (Figure 1C and Table 1).

MM cells suppress OBs through expression and secretion of the Wnt antagonist
sclerostin, an osteocyte-expressed negative regulator of bone formation. Consequently,
downregulation of Fra-1, Fra-2 and c-Jun in BM stromal cells cocultured with MM cells in
an OB differentiating medium was rescued by an anti-sclerostin monoclonal antibody [61].
Furthermore, bortezomib inhibits OC differentiation and the bone resorption activity of
OCs. The mechanisms of inhibition involved in the later phase of differentiation and activa-
tion among others occurred through inhibiting AP-1 TFs [62]. These findings indicate that
deregulated AP-1 TFs, Fos proteins in particular, play an essential role in the differentiation
and activity of OB and OC, and regulate bone metabolism in MM.

4. Targeting AP-1 TFs for MM Therapy

Accumulating evidence demonstrates a crucial role of deregulated AP-1 TFs in tu-
morigenesis in general, and MM in particular. AP-1 TFs therefore represent appealing
therapeutic targets. However, TFs have been considered “undruggable” until recently due
to their structural disorder (three-dimensional (3D) structure and architecture are very
labile and dependent on TF interaction with functional proteins), their lack of tractable
active sites (large protein-protein interfaces, lack of deep protein pockets) and their intra-
cellular (often nuclear) localization. Nevertheless, with the progress of our understanding
of the biochemical and biological properties of TFs, this paradigm does not hold true any
longer. Indeed, members of the AP-1 family have emerged as worldwide actively pursued
therapeutic targets, with a potentially high therapeutic index [17,63–65]. In MM, our own
and other studies suggest therapeutic strategies that inhibit c-Maf or JunB and induce c-Jun
activity.

Besides inhibiting their expression (i.e., by siRNAs, miRNAs), novel approaches to
target TFs in general, and AP-1 TFs in particular, include: (1) the disruption of either their
interaction with functionally critical protein binding partners or; (2) their binding to the
DNA (oligodeoxynucleotide decoys, pyrrole-imidazole polyamides or small molecules); (3)
the modulation of their epigenetic binding through DNA methylation, histone methylation
or modification; (4) the induction of proteasomal degradation of TFs by altering their
ubiquitylation; as well as by utilizing PROteolysis-TArgeting Chimaeras (PROTACs) or
Degronomids; (5) the inhibition of TF expression by modulating their regulators (i.e.,
MAPK- or NFκB-signaling molecules); (6) the use of reversible covalent drugs directed
against non-conserved cysteines; and (7) the modulation of TF auto-inhibition. Moreover,
disordered regions within TFs, which become structured upon interaction with binding
partners (“coupled folding and binding”) may also represent attractive therapeutic targets.
Indeed, these regions have a higher proportion of potential cavities and can more easily
adjust to small molecules [65–69]. Below we discuss some potential approaches to target
AP-1 TFs in MM (Figure 2 and Table 2).
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Figure 2. Pathophysiologic functions of AP-1 TFs in MM and derived therapeutic strategies. Intrinsic cellular (translocations,
mutations) and intermittent extracellular environmental signals (e.g., growth factors, cytokines) trigger AP-1 TF activity
via various signaling pathways including the extracellular-signal regulated kinase (ERK), JUN amino-terminal kinase
(JNK), p38 and NFκB. Target genes of AP-1 TFs play a pivotal role in MM pathogenesis mediating tumor cell proliferation,
adhesion, migration and invasion, apoptosis, survival and drug resistance as well as BM angiogenesis. Besides inhibiting TF
expression by siRNAs or miRNAs, novel approaches to target TFs in general, and AP-1 TFs in particular, include: disrupting
the interaction of TFs with either functionally critical protein binding partners (e.g., by peptide antagonists of dimerization)
or the DNA (by oligodeoxynucleotide decoys, pyrrole-imidazole polyamides or small molecules); modulating the epigenetic
events through DNA methylation, histone methylation or modification (e.g., by histone deacetyltransferases inhibitors
(HDACi) or protein arginine methyltransferases inhibitors (PRMTi)); inducing proteasomal degradation of TFs by altering
their ubiquitylation, as well as by utilizing PROteolysis-TArgeting Chimaeras (PROTACs) or Degronomids; and inhibiting TF
expression by modulating their regulators (i.e., MAPK- or NFκB- signaling molecules).
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Table 2. Potential strategies to target AP-1 and candidate inhibitors.

Strategies Inhibitors Targets References

Inhibition of protein-protein
interactions

Peptidic inhibitors of c-Maf
dimerization Leucine zipper motif of c-Maf [70]

Peptide antagonists of c-Jun
dimerization Leucine zipper motif of c-Jun [71–74]

Peptide antagonists of c-Jun-c-Fos
dimerization Leucine zipper motif of c-Jun or c-Fos [75,76]

Leucine zipper peptide
(Superzipper)

Leucine zipper dimerization domains
of both c-Jun and c-Fos [77]

Inhibition of protein-
DNA binding

T-5224 bZIP domain of c-Fos/AP-1 -DNA
complex [78,79]

MLN944 (XR5944) TRE [80]
SR11302 TRE [81,82]

Dominant negative peptide A-Fos bZIP domain of c-Jun [83]

Regulation of epigenetic
events

Valproic acid (VPA)
Vorinostat (SAHA)

Trichostatin A (TSA)
LBH589

HDAC
(Transcriptional suppression of c-Jun

and Fra-1 expression)
[84]

TC-E 5003 (TC-E)
PRMT

(Suppression of c-Jun expression
and nuclear translocation)

[85]

Natural products

Curcumin Suppression of c-Fos and c-Jun
expression and their binding to DNA [86]

Resveratrol Suppression of c-Fos and c-Jun
expression and AP-1 activity [87]

Veratramine TRE [88]

Abbreviations: bZIP, basic leucine zipper; TRE, TPA-response element; HDAC, histone deacetyltransferases; PRMT, protein arginine
methyltransferases.

4.1. Targeting Protein-Protein Interaction

Based on the secondary structure and dimerization properties of the leucine zipper
domain of c-Maf, potential peptidic c-Maf dimerization inhibitors were computationally
designed. These peptide inhibitors are able to interact selectively with the c-Maf leucine
zipper, thereby affecting the degree of their structural organization and destabilizing
homodimers [66,70].

In addition, many efforts have been made to search for peptides which exhibit high
affinity for the leucine zipper dimerization domains of c-Jun or c-Fos and to inhibit these
bZIP proteins by preventing the formation of functional c-Jun homodimers and c-Jun:
c-Fos heterodimers [71–76,89]. Excitingly, an anti-Jun and anti-Fos superzipper has been
demonstrated to bind to both the c-Jun and c-Fos leucine zipper peptides [77]. Finally,
pharmacological inhibition of transcriptional co-factors of AP-1 TFs, such as CBP/p300,
may represent yet another strategy to attenuate AP-1 activity [17].

4.2. Targeting Protein-DNA Interaction

Informed by the x-ray crystal structure of the bZIP domain of the AP-1-DNA complex,
3D pharmacophore modeling led to the design and synthesis of T-5224 and its analogues.
Specifically, T-5224 inhibits the DNA binding activity of c-Fos: c-Jun without affecting
DNA-binding of other TFs or the expression levels of Fos members. Excitingly, T-5224 has
been investigated in phase II clinical trials [63,78,79].

Similarly, MLN944 (XR5944) is a DNA binding compound that interacts with the
5′-ATGCAT-3′ palindromic sequence through its two phenazine rings to induce a right-
handed twist of the DNA helix. It thereby inhibits c-Jun-DNA binding to the AP-1 TRE
site. However, MLN944 also modulates the estrogen receptor alpha-DNA binding on the
estrogen response element [80,90]. A new class of conformationally restricted synthetic
retinoids has been found to selectively inhibit AP-1 TRE activity without activating the
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retinoic acid response element [81]. SR11302, an AP-1 inhibition-specific retinoid, displayed
antitumor effects in vivo, and represents an important research tool compound [82].

Besides small molecule inhibitors, the peptidic inhibitor A-Fos forms heterodimers
with the whole bZIP domain of c-Jun through leucine zipper and an acidic extension, and
thereby obstructs binding of c-Jun: A-Fos to the DNA [83].

4.3. Epigenetic Inhibitors

Epigenetic alterations activate or suppress AP-1 activities and offer the opportunity to
selectively target AP-1 transcriptomes [68].

The acetylation state of lysine residues in histones is determined by the balance be-
tween histone deacetyltransferases (HDACs) that remove acetyl groups and histone acetyl-
transferases (HAT) that transfer acetyl groups, which is critical for regulating gene tran-
scription. HDAC inhibitors (HDACis) including valproic acid (VPA), vorinostat (SAHA),
trichostatin A (TSA) and LBH589 suppress the transcription of both c-Jun and Fra-1 and
thereby reduce c-Jun: Fra-1 heterodimer formation and activity [84], which may, at least in
part, explain their anti-MM activity. Panobinostat, an oral HDACi, has been approved by
US FDA for the treatment of MM in patients who have received at least two prior standard
therapies [91].

In addition, protein arginine methyltransferases (PRMTs) are ‘writers’ of arginine
methylation in histone and non-histone proteins and are involved in aberrant epigenetic
networks in cancers. The selective PRMT1 inhibitor TC-E 5003 (TC-E) downregulates
the nuclear translocation of c-Jun as well as of NFκB subunits p65 and p50, and directly
regulates c-Jun gene expression following lipopolysaccharides (LPS) treatment [68,85].

Of note, novel technologies enhance our understanding of the epigenetic impact
on TF binding to the DNA. For example, utilizing Selective Microfluidics-based Ligand
Enrichment followed by sequencing (SMiLE-seq), a novel semi-automated protein-DNA
interaction characterization technology, recently resulted in a de novo motif discovery
on all Jun: Fos heterodimers. It thereby provided novel insights into partner- specific
heterodimer DNA-binding preferences [92]. Moreover, c-Jun: c-Fos selectively binds
to DNA sequence motifs with methylated CpG residues (meAP-1), thereby reversing
epigenetic silencing [92,93]. Conversely, the anti-MM activity of small molecule inhibitors of
DNA methyltransferase (DNMT), such as 5-azacytidine, may be, at least in part, explained
by inhibition of c-Jun: c-Fos binding [94].

4.4. TF Degradation

By demonstrating that glucocorticoids increase ubiquitination-dependent degradation
of c-Maf [95], early studies already indicated the therapeutic potential of TF degradation.
Moreover, c-Maf and MafB phosphorylation followed by destabilization and degradation
is mediated by the Ser/Thr kinase Glycogen Synthase Kinase 3 (GSK3) [96].

Representing a new treatment technology, PROteolysis Targeting Chimeras (PRO-
TACs) and Degronomids hijack E3 ubiquitin ligases (e.g., Von Hippel-Lindau (VHL),
cereblon (CRBN), Inhibitor of Apoptosis Proteins (IAPs), and Murine Double Minute 2
(MDM2)) for selective protein ubiquitination and subsequent degradation by the protea-
some [97,98]. Specifically, PROTACs and Degronomids contain a small molecule or peptide
as a ligand to recruit the E3 ubiquitin ligase, a ligand to bind the protein of interest (POI),
and a linker connecting the two ligands to ensure optimal interaction of the E3 ligase
and the POI [97]. To date over forty target proteins have been specifically degraded by
PROTACs. Recent data have demonstrated great potential of PROTACs to target “difficult-
to-target” proteins, including TFs and transcription regulating proteins, such as nuclear
receptors and Bromodomain and ExtraTerminal (BET) proteins [98,99].

In MM, IMiD-based CRBN-targeted and VHL-targeted PROTACs (i.e., ARV-825 and
ARV-763, respectively), which degrade the BET-domain-containing protein BRD-4 induced
cell cycle arrest and apoptosis and overcame drug resistance in pre-clinical models of
MM [100–104].
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Additional PROTACs that are directed against a multitude of other “difficult-to-target”
proteins including AP-1 TFs are under development. Ongoing efforts aim to improve the
pharmacokinetics, bioavailability and tissue distribution of PROTACs; as well as to identify
suitable E3 ubiquitin ligases for these molecules to target specific proteins [105].

Of note, both the E3 ubiquitin ligase HERC4 as well as TMEPAI mediate c-Maf ubiqui-
tination and proteasomal degradation, thereby inhibiting MM growth. Further supporting
a key role for c-Maf in MM progression, HERC4 as well as TMEPAI expression levels
steadily decrease during disease progression [106,107]. Therefore, therapeutic strategies
that restore functional HERC4 and TMEPAI expression may represent promising therapeu-
tic strategies for MM therapy. In contrast, the deubiquitinase USP7 stabilizes Maf proteins
and promotes MM cell survival. Therefore, targeting the USP7/Maf axis may represent
another potential strategy for MM therapy [108].

4.5. Natural Products

Although underlying mechanisms are not fully understood, several natural products
modulate AP-1 TF activity and exhibit anti-tumor effects (reviewed in [109]). For example,
the anti-MM activity of curcumin but also resveratrol (trans-3,4′,5-trihydroxystilbene)
may be, at least in part, explained by their ability to inhibit c-Fos and c-Jun expression,
heterodimer formation and DNA binding [86,87]. Moreover, veratramine, an alkaloid
derived from Veratrum plants, has been identified as a potent natural modulator of AP-1,
which selectively binds to TRE and regulates AP-1-dependent gene transcription [88].

5. Conclusions

AP-1 TFs play essential roles in the transcriptional control of GC B cell development
and PC differentiation. Dysregulation of AP-1 is an important mechanism in the oncogenic
transformation and drug resistance of MM. Although recent discoveries are exciting, the
therapeutic exploration of AP-1 TFs has just begun. Continuing basic and translational
research on AP-1 TFs utilizing new technologies such as NMR-based screens, differential
scanning fluorimetry (DSF), in silico 3D modelling, as well as Slim-seq will be fundamental
to further advance our insights on the complex function of this TF family, facilitating the
identification of valuable targets and the development of derived innovative therapies for
MM to once more improve patient outcome.
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