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Simple Summary: Hepatocellular carcinoma (HCC) has poor prognosis. We studied blood lipids
by comparing healthy volunteers to patients with chronic liver disease (CLD), and to patients
with HCC caused by viral infections. We contrasted our findings in blood to lipid alterations in
liver tumor and nontumor tissue samples from HCC patients. In blood, most lipid species were
found at increased levels in CLD patients compared to healthy volunteers. This trend was mostly
reversed in HCC versus CLD patients. In liver tumor tissues, levels of many lipids were decreased
compared to paired nontumor liver tissues. Differences in lipid levels were further defined by
alterations in the degree of saturation in the fatty acyl chains. Some lipids, including free fatty acids,
saturated lysophosphatidylcholines and saturated triacylglycerides, showed a continuous trend
in the transition from the blood of healthy controls to CLD and HCC patients. For HCC patients,
phosphatidylglycerides showed similar alterations in both blood and tissues.

Abstract: Hepatocellular carcinoma (HCC) is a worldwide health problem. HCC patients show a
50% mortality within two years of diagnosis. To better understand the molecular pathogenesis at
the level of lipid metabolism, untargeted UPLC MS—QTOF lipidomics data were acquired from
resected human HCC tissues and their paired nontumor hepatic tissues (n = 46). Blood samples of
the same HCC subjects (n = 23) were compared to chronic liver disease (CLD) (n = 15) and healthy
control (n = 15) blood samples. The participants were recruited from the National Liver Institute in
Egypt. The lipidomics data yielded 604 identified lipids that were divided into six super classes. Five-
hundred and twenty-four blood lipids were found as significantly differentiated (p < 0.05 and qFDR
p < 0.1) between the three study groups. In the blood of CLD patients compared to healthy control
subjects, almost all lipid classes were significantly upregulated. In CLD patients, triacylglycerides
were found as the most significantly upregulated lipid class at qFDR p = 1.3 × 10−56, followed by
phosphatidylcholines at qFDR p = 3.3 × 10−51 and plasmalogens at qFDR p = 1.8 × 10-46. In contrast,
almost all blood lipids were significantly downregulated in HCC patients compared to CLD patients,
and in HCC tissues compared to nontumor hepatic tissues. Ceramides were found as the most
significant lipid class (qFDR p = 1 × 10−14) followed by phosphatidylglycerols (qFDR p = 3 × 10−9),
phosphatidylcholines and plasmalogens. Despite these major differences, there were also common
trends in the transitions between healthy controls, CLD and HCC patients. In blood, several mostly
saturated triacylglycerides showed a continued increase in the trajectory towards HCC, accompanied
by reduced levels of saturated free fatty acids and saturated lysophospatidylcholines. In contrast,
the largest overlaps of lipid alterations that were found in both HCC tissue and blood comparisons
were decreased levels of phosphatidylglycerols and sphingolipids. This study highlights the specific
impact of HCC tumors on the circulating lipids. Such data may be used to target lipid metabolism for
prevention, early detection and treatment of HCC in the background of viral-related CLD etiology.

Keywords: cirrhosis; polyunsaturated fatty acids; palmitate; desaturase; lipoproteins

Cancers 2021, 13, 88. https://doi.org/10.3390/cancers13010088 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-6261-8928
https://doi.org/10.3390/cancers13010088
https://doi.org/10.3390/cancers13010088
https://doi.org/10.3390/cancers13010088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13010088
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/1/88?type=check_update&version=2


Cancers 2021, 13, 88 2 of 17

1. Introduction

Hepatocellular carcinoma (HCC), the main type of liver cancer, is the fourth-leading
cause of cancer related deaths worldwide [1,2]. HCC incidence and its main risk factors
show notable disparities across countries [3,4]. In the United States, an increasing rate of
HCC is associated with alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD),
metabolic syndrome and hepatitis C virus infection (HCV) [2,5], all of which are directly
associated with dyslipidemia [5–8]. In Egypt and China, chronic liver disease (CLD) is the
main risk factor of HCC [4,9] due to HCV and hepatitis B virus infection (HBV). Chronic
liver disease (CLD) and its end stage liver cirrhosis are the direct causes of HCC. Clinically,
the underlying CLD in HCC patients hampers early diagnosis due to overlapping manifes-
tations and laboratory markers, such as serum alfa fetoprotein (AFP) and liver function
tests [10,11]. Identifying potential tumorigenesis in CLD patients could provide a possible
diagnostic clue and timely treatment to HCC patients. The liver has a central role in lipid
metabolism. Hepatic lipid metabolism is linked to carbohydrate and protein metabolism to
maintain normal body homeostasis and growth [12,13]. In hepatic diseases, the disturbance
of liver functions is associated with aberrant lipid metabolism [14,15]. Alterations in lipid
metabolism in HCC-related matrices is usually investigated by mass spectrometry based
lipidomics [16]. Disturbed triacylglycerol (TG) and phosphatidylglycerol (PG) metabolism
in HCC tissues from mixed etiologies has been reported [17–20], in addition to a decrease in
the blood levels of cholesteryl esters (CE) and alterations in blood sphingomyelins and free
fatty acids [16,20–22]. While HCC metabolic phenotypes have been studied independently
of either blood or hepatic tissues [16], the association between tumor tissues and blood
lipidomics in the same HCC patients has not been clearly determined yet [23,24]. We
have previously shown that sugar alcohols are significantly upregulated in CLD and HCC
whole blood and tissues compared to nontumor hepatic tissues [25]. We here report a
follow-up study on aberrant lipid metabolism in blood of CLD and HCC from the same
viral etiology patients compared to healthy control subjects. We also show how lipidomic
changes detected in blood correspond to dyslipidemia in HCC tumor tissues compared to
paired nontumor hepatic tissues.

2. Results
2.1. Untargeted Lipidomic Using UPLC MS-QTOF of Whole Blood and Liver Tissues of
Hepatocellular Carcinoma (HCC) and Chronic Liver Disease (CLD) Patients and Healthy
Control Subjects

Untargeted lipidomic profiling was conducted on the whole blood of 23 HCC, 15 CLD
and 15 healthy control subjects. In addition, 46 hepatic tissues were resected from the
same 23 HCC patients in pairs of HCC tumors and surrounding nonmalignant tissues.
Demographic and biochemistry data are given in Tables S1 and S2, as also published
previously [25]. Untargeted lipidomics using Agilent UPLC-QTOF MS (Santa, Clara, CA,
USA) combined positive and negative electrospray ionization mode revealed 604 unique
identified lipid metabolites from a total of 2498 mass-retention time deconvoluted lipid
signals. The identified lipid metabolites were categorized into six lipid super classes com-
prised of a total of 16 subclasses: phospholipids; ceramides and sphingolipids; neutral
glycerolipids; fatty acids; acylcarnitine; and sterols (Figure 1). Phospholipids present
the most abundant lipid class detected in both blood and tissue samples with 58% of all
identified species. Within this class, phosphatidylcholines (PC), plasmalogens and phos-
phatidylethanolamines (PE) were found as the dominant subclasses (Figure 1). The second
most diverse lipid superclass, sphingolipids, was equally divided between sphingomyelin
and ceramide derivatives (Figure 1). Neutral glycerolipids mainly consisted of triacyl-
glycerols (TG), and to lesser extent, diacylglycerols (DG) and few monoacylglycerides
(Figure 1). The 16 lipid subclasses were further categorized according to the numbers of
carbon atoms and double bonds in their corresponding acyl chains. Such characterizations
by acyl chain length and degree of unsaturation are important distinctions that reflect
metabolism and biological function. A summary of the identified lipids organized by types
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of adduct, experimental mass and retention time is given in Tables S1 and S2 for both blood
and tissues.
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Figure 1. Overview of lipids identified in blood and tissue samples of hepatocellular carcinoma (HCC), chronic liver disease
(CLD) and healthy control whole blood subjects using UPLC–QTOF MS. Inner circle: categorization into 6 lipid super
classes: purple, acylcarnitines; grey, free fatty acids; yellow, sterols; blue, glycerophospholipids; orange, sphingolipids;
green, glycerolipids. Outer circle: categorization into 16 subclasses matching the colors of the related superclasses. Each
lipid class is presented with the number of its members and percentage of the total identified lipid metabolites.

2.2. Blood Lipidomic Profiles of HCC and CLD Patients and Healthy Control Subjects

To enable detailed statements on dysregulation of lipid metabolism, we constrained
all statistical analyses to the set of 604 identified lipids, rejecting signals of unidentified
lipids. We started our investigation by multivariate analysis to give an overview about
the degree at which blood lipids were contributing to the differentiation of CLD and HCC
patients and healthy control subjects (Figure 2). Such multivariate overview plots also
assist in finding outlier samples and analytical bias. The raw total ion concentrations
chart of all detected blood lipids showed that CLD patients tend to have higher lipid
levels compared to healthy control subjects, while HCC patients showed the largest vari-
ance in total lipid levels (Figure 2a). Unsupervised principal component analysis (PCA,
Figure 2b) showed that 27% of the overall variance (PCA vector 2) in individual blood
lipids was sufficient to completely separate healthy controls from both CLD and HCC
patients. Supervised multivariate statistics using sparse partial least squares discriminant
analysis (sPLSDA) models (Figure 2c) yielded sPLSDA vector 2 that almost completely
separated CLD from HCC patients, indicating a specific blood lipidomic signature for
HCC subjects. Applying univariate statistical analysis using Kruskal–Wallis test revealed
524 significant (p value < 0.05, q FDR < 0.1) metabolites differentiating HCC, CLD and
healthy control blood samples (Table S1). We used lipid group averages with ward cluster-
ing to construct a hierarchical clustering heatmap that revealed four distinct lipid clusters
(Figure 2d). Cluster A represented blood lipids with increased levels in CLD patients and
decreased levels in HCC patients consisting of some lysophosphatidylcholines (LPC) and
more lysophosphatidylethanolamine (LPE) species. In the same cluster A, saturated free
fatty acids were found at largely decreased levels, indicated by blue bands, in both CLD
and HCC patients compared to healthy control subjects. Cluster B comprised lipids with
increased levels in both CLD and HCC groups compared to the healthy control group, for
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example, phosphatidylcholines (PC) and ceramides. Cluster B included 11 compounds
with increased levels in the HCC group compared to CLD and healthy control groups, for
example, PC (37:3) and PC (37:4), monounsaturated free fatty acids such as FA (19:1) and
FA (16:1), and ceramides Cer (d34:0), Cer (d34:1) and Cer (d34:2). Cluster C represented
lipids with increased levels in CLD patients compared to both the HCC and the healthy
control group, mainly consisting of triacylglycerides (TG). Cluster D yielded lipids with in-
creased levels in CLD patients compared to HCC subjects, while the healthy control group
showed even lower lipid levels compared to either of the diseased groups. Sphingomyelins,
phosphatidylglycerides (PG), phosphatidylethanolamines (PE) and diacylglycerides (DG)
were the main constituents of cluster D. Table S1 details the complete panel for each cluster.
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Figure 2. Multivariate and univariate statistical analyses of identified blood lipids in whole in hepatocellular carcinoma
(HCC) and chronic liver disease (CLD) patients, and healthy control subjects. (a) Distribution of total ion concentrations
(TIC) of all lipids for each subject, organized by subject groups. (b) Unsupervised principal components analysis (PCA)
separating lipid profiles of HCC, CLD and healthy control groups. (c) Supervised sparse partial least squares discriminant
analysis (sPLSDA) separating lipid profiles of HCC, CLD and healthy control groups. (d) Hierarchical clustering heatmap
of 524 significant lipids after univariate Kruskal–Wallis tests (p < 0.05 with qFDR < 0.1). Columns represent lipidomic
averages of each subject group. Levels of individual lipid average intensities colored by auto-scaling from high (red) to blue
(low) levels.

To obtain more details about the trajectory of metabolic differences from healthy
controls to CLD patients and then to HCC subjects, we compared these subjects in pairwise
multivariate statistics models (Figure S1), in addition to nonparametric univariate statistical
analysis using the Mann–Whitney U test. 500 significant lipids were found at p < 0.05 and
q FDR < 0.1 in the transition from healthy subjects to CLD patients, and 398 significant
lipids were found when comparing HCC patients to CLD patients (Table S1). Significantly
altered metabolites were visualized in Volcano plots to indicate significance levels along
with the direction and magnitude of change (Figure 3). Similarly to the overall trend in
total blood lipid contents (Figure 2a), the detailed Volcano plot of individual lipids showed
large increases in numerous blood lipids in CLD patients versus healthy control subjects,
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while in HCC versus CLD patients, most of the significantly altered blood lipid metabolites
were down regulated (Figure 3).
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Classic univariate statistics assumes independence of variables but ignores the bio-
logical fact of interdependence of metabolites. For example, if lipases released fatty acyl
moieties from phosphatidylcholines, the resulting blood signatures would reveal increased
levels of free fatty acids and lysophosphatidylcholines, along with decreased levels of PCs.
To investigate such relatedness of dependent variables, set enrichment statistics are used in
omics analyses. In metabolomics, lipid sets can be defined by relatedness of chemical struc-
tures using chemical set enrichment statistics in ChemRICH [26]. ChemRICH categorizes
each compound to its compound class and calculates significance levels and fold-change
of each class in a pair-wise comparison. ChemRICH plots detailed the very significant
upregulation of almost all lipid classes in CLD patients versus healthy control subjects
(Figure 4a), even after false-discovery rate correction (qFDR). Triacylglycerides were found
as the most significantly upregulated lipid class at qFDR = 1.3 × 10−56, followed by PCs at
qFDR = 3.3 × 10−51 and plasmalogens at qFDR = 1.8 × 10−46. In these plots, the bubble-size
indicates the number of significant individual lipids in each set, and the color signifies
the direction of change. Interestingly, around half of all free fatty acids and about 30% of
all lysophosphatidylcholines were downregulated in CLD patients compared to healthy
controls, indicated by the slightly purple colors of the enriched sets in the ChemRICH plots
(Figure 4a, Figure S2). This finding suggests specific lipase and acyltransferase activities
superseding the overall trend of upregulation of lipid metabolism in CLD patients. Fol-
lowing the trends indicated by heatmap clusters A, C and D (Figure 2d), the ChemRICH
set enrichment plots showed most blood lipid classes are downregulated between HCC
and CLD patients (Figure 4b). Several classes showed notable differences in individual
lipid species, as indicated by purple bubble colors, with a range of individual triacylglyc-
erols at increasing levels compared to CLD patients against the overall decreasing trends,
and similar patterns for lysophosphatidylethanolamines (Figure 4b, Figure S2). Detailed
statistics for each metabolite in each lipid class are given in Table S1. Figure 4c gives the
average intensity of each lipid class to visualize the overall trends of lipid regulation along
disease progression from healthy controls to CLD and HCC patients. It becomes apparent
that most lipid classes that were strongly upregulated in CLD patients still stayed above
the levels of healthy controls, when compared to HCC patients. Exceptions from this trend
were free fatty acids that decreased linearly from healthy control subjects to CLD and HCC
patients, and lysophosphatidylethanolamines that decreased from CLD to HCC patients to
levels that were even lower than in healthy controls (Figure 4c).
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Figure 4. Dysregulated blood lipid metabolism of healthy control subjects and chronic liver disease
(CLD) and HCC patients. (a) Chemical set enrichment statistics (ChemRICH) comparing CLD pa-
tients to healthy control subjects. (b) ChemRICH plot comparing HCC to CLD patients. Bubble
colors range from red (increased) to blue (decreased), with purple colors indicating both increased
and decreased lipid species in lipid classes. Bubble size represents the number of compounds per
lipid class. (c) Box plots of average blood lipid intensities (normalized peak heights) with standard
deviations, indicating differences between healthy controls and CLD and HCC groups. Abbrevia-
tions: PC, phosphatidylcholines; PE, phosphatidylethanolamines; PG, phosphatidylglycerols; PS,
phosphatidylserines; PI, phosphatidylinositols; CE, cholesteryl esters; LPC, lysophosphatidylcholines;
LPE, lysophoaphatidylethanolamines; LPC, lysophosphatidylcholines; FFA, free fatty acids; DG,
diacylglycerols; TG, triacylglycerols.

2.3. Lipidomic Profiles of Resected HCC Tumor Tissues Compared to Paired Nonmalignant
Hepatic Tissues

Using all 604 identified lipids, we then investigated how lipid metabolism was altered
in HCC tumor tissues compared to paired nontumor hepatic tissues from the same HCC
patient and how such changes reflected changes observed in HCC and CLD patients. In
most human cancers, lipids are upregulated compared to surrounding tissues to reflect
the need for lipid membrane biosynthesis during cell division—for examples, take breast
cancers [27] and lung cancer [28]. Surprisingly, in hepatocellular carcinoma, we found
that overall changes were insufficient to yield clear lipidomic profiles to distinguish HCC
tumors from paired nonmalignant samples using either unsupervised PCA or supervised
sPLSDA multivariate statistical analyses (Figure S3). However, univariate statistics by
nonparametric paired Wilcoxon signed-rank tests revealed 62 significantly different lipids
at raw p < 0.05 (Table S2). A volcano plot confirmed this finding (Figure S3). As explained
above though, univariate statistics fail to take metabolic interdependencies into account.
When using ChemRICH chemical set enrichment statistics, we discovered six lipid classes to
be significantly altered in HCC tumors versus nontumor hepatic tissues (Figure 5a). Unlike
other carcinomas, most lipid classes were downregulated in hepatocellular carcinoma,
ranked from ceramides as the most significant class (p = 6.4 × 10−16 and qFDR= 1 × 10−14)
to phosphatidylglycerols (p value = 3.7 × 10−10; qFDR= 3 × 10−9), phosphatidylcholines
and plasmalogens (Figure 5a). Within each lipid class there were specific lipids that did
not follow the overall trend in the class (Figure 5b). Specifically, free fatty acids and
phosphatidylethanolamines had a roughly equal number of up and downregulated lipid
species in their lipid classes (Figure 5a,b, Figure S4). Combined, these findings showed
highly specific regulation of lipid classes and individual lipids in HCC tumor.
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2.4. Differential Desaturation of Lipid Species Defines Metabotypes Both in Blood and in Resected
Liver Tissues

Next, we used the ChemRICH tool to test whether subsets of lipid classes were altered
with respect to the number of double bonds in their fatty acyl chains. Here we manually
assigned all lipid species into three chemical sets with either 0, 1 or 2 and more double
bonds for each lipid class (Figure 6).

Comparing blood of CLD patients to healthy controls, we found that lysoposphatidyl-
cholines with 0 or 1 double bond were significantly downregulated (p < 2.5 × 10−7) but
were upregulated with two or more double bonds (p = 1.7 × 10−11). Free saturated fatty
acids were significantly downregulated (p = 0.0074) (Figure 6). These findings may suggest
a higher activity of lysophosphatidylcholine acyltransferases to maintain levels of saturated
phosphatidylcholines [29]. All other lipid species were found upregulated in CLD patients
versus healthy controls, or insignificant. For blood of HCC versus CLD patients, we found
levels of all lipid classes to be downregulated, regardless of the degree of unsaturation,
except for monounsaturated free fatty acids. This specific subclass was significantly up-
regulated (p = 7.8 × 10−4), albeit at a low overall fold-change (Figure 6). In combination,
the decrease of saturated fatty acids versus the increase in monounsaturated free fatty
acids points to a higher activity of stearoyl CoA desaturase enzyme [30,31]. We also found
significantly decreased levels for mono- and polyunsaturated ceramides (p = 2.8 × 10−8),
but not for saturated ceramides (Figure 6).

In paired analyses of HCC tumor versus nontumor hepatic tissues, all ceramides were
significantly downregulated, regardless of the degree of unsaturation (Figure 6). Similarly,
all phosphatidylglycerols were found deregulated, but only mono- and polyunsaturated
PGs reached ChemRICH significance levels. For phosphatidylcholines, only polyunsatu-
rated PCs were found significantly downregulated, but not mono- and fully saturated PCs
(Figure 6). The same trend was found for phosphatidylethanolamines (PE). Conversely,
only saturated free fatty acids and saturated sphingomyelins were found downregulated
in HCC tumors, but not their mono- or polyunsatured lipid species (Figure 6). Detailed
results are given in Tables S1 and S2. Overall, any statistically significant lipid subclasses
were found to be downregulated in HCC tumors compared to their surrounding nontumor
hepatic resections. This finding may point to a depletion of constituent lipids that are
already consumed by growing tumor cells. On the other hand, the difference between the
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degree of unsaturation within each lipid classes supports the notion of additional, specific
enzymatic regulation.
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2.5. Similarities and Differences in Lipid Metabolism the Transition from CLD to HCC Disease
Patients

CLD is a direct risk factor of HCC. Hence, we were interested in finding blood-based
compounds that are shared in the transition from healthy controls to CLD, and the con-
tinuing pathogenesis towards HCC etiology. Indeed, we found 21 lipid metabolites that
showed such consistent alterations at statistical significance levels p < 0.05 (Figure 7b).
Twelve of these lipids were found downregulated in blood of HCC patients compared
to CLD subjects that were also downregulated between CLD subjects and healthy con-
trols (Figure 7b). These compounds were mainly comprised of C16- and C18-acyl chain
lysophosphatidylcholines, and the magnitude of effects was larger in the comparison of
HCC/CLD than for CLD/healthy controls. Such lipids are products of specific phospho-
lipases that act upon phosphatidylcholine membrane lipids. The fact that three different
C16- and C18-LPC isomers were found to be significantly different points to alteration
in the utilization of branched-chain alkyl groups that are typically found in food- or mi-
crobial sources. Supporting this idea, we found downregulation of odd-chain free fatty
acids C17:0 and C19:0 that are also found in such exogenous sources. Furthermore, we
found a specific lysocardiolipin downregulated containing three linoleic acyl groups (18:2)
(Figure 7b), essential fatty acids that are retrieved from food, and again produced by the
action of a specific lipase.
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Conversely, we mostly found triacylglycerides to be consistently upregulated in the
transition from healthy controls/CLD and from CLD/HCC patients (Figure 7b), and mostly
consisting of saturated fatty acyl rests. Hence, these upregulations were not randomly
distributed across all lipid classes, but the overall magnitudes of differences between
HCC/CLD patients were smaller than for CLD/healthy controls. Few additional com-
pounds were found consistently up regulated, including a single PC and a single PG. The
biochemical interconnections between these lipid pathways are highlighted in Figure 7c.
Overall, the increase in mainly saturated TGs along with the decrease in saturated LPCs
and saturated free fatty acids may suggest a lower ratio of incorporation and use of lipids
with highly saturated fatty acyl groups.

Next, we investigated if there were any common significant alterations in both blood
and tissues from the same HCC patients (Figure 7a). Such data might give clues to common
alterations of lipid metabolism homeostasis in the tumor itself and their imprints on circu-
latory lipids. Thirty-seven lipid metabolites showed such common significant alterations
(Figure 7a). With the single exception of free fatty acid 20:3, all other significant and shared
lipid changes were found as downregulated in both tumor/nontumor tissues and blood of
HCC/CLD patients (Figure 7a). The largest set of downregulated lipids was phosphatidyl-
glycerols, followed by ceramides, sphingomyelins and phosphatidylethanolamines. The
decrease in biosynthesis of both ceramides and sphingomyelins was highly specific for
saturated fatty acyl species (Figure 7a), again pointing to very specific differences in en-
zyme activities, whereas PG and PE lipids were mostly comprised of unsaturated fatty acyl
residues. Such common fatty acyl-dysreglations are therefore clearly caused by specific
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regulatory circuits that ultimately may shed new insights into specific genes and enzymes
that contribute to the pathogenesis of HCC from CLD.

3. Discussion

We previously reported increased sugar alcohols indicating dysregulated glucose
metabolism in blood of chronic liver disease (CLD) patients and hepatocellular carcinoma
(HCC) patients’ blood and tissues [25]. We suspected that aberrant glucose metabolism
might also alter lipids because both pathways have common intermediate metabolites and
signaling receptors [12]. We used whole blood samples to include membrane lipids of blood
cells that represent overall lipid metabolism in a better way than just plasma lipids [32],
because red blood cells contribute to informing us about differences between normal
metabolism and disease states [33–35]. Importantly, we present herein the first study that
focusds on a comparison of predominately HCV-induced hepatocellular carcinoma that
combined tissue analyses with blood analyses, in relation to noncirrhotic chronic liver
disease patients. Other studies, such as Lu et al.’s study [23], tested different cohorts, with
only 1/50 HCC patients diagnosed with underlying HCV infection, and no CLD patient
controls. It is therefore unsurprising that different lipidomic regulations were found. Even
when only comparing our HCV-dominated cohort to healthy controls, discordant data
compared to Lu et al. [23] were found, such as for triacylglycerides and plasmalogens.
We found significant decreases in ceramides, whereas Lu et al. [23] did not report such
differences. One of the few similarities between both studies were significantly decreased
blood phosphatidylglycerides (PG) in HCC patients compared to healthy controls.

Under normal metabolic conditions, lipid metabolism homeostasis is controlled
mainly by the liver and adipose tissue [36]. The liver is the major organ for lipid syn-
thesis, oxidation and transport. It is responsible for the synthesis of apolipoproteins that
are key for lipoprotein assembly and lipid transport [37]. In liver diseases, dysregula-
tion of lipid synthesis, oxidation, storage, transport and chemokines has been frequently
reported [12,38,39]. Chronic HCV and HBV viral hepatitis was reported to be associated
with disturbed lipid metabolism [40,41]. HCV and HBV induce de novo lipogenesis that
facilitates viral replication [40,42,43] while downregulating lipid oxidation that leads to
steatosis [40,42,43]. The prevalence of HCV particles in the blood is associated with the
formation of lipid droplets that contribute to viral pathogenesis and replication [44,45].
These studies support our findings of a significant upregulation of most lipid species in
blood of viral-related CLD patients compared to healthy control subjects. It would be
interesting to compare our result to data reported for different populations of patients with
diverse liver disease phenotypes, such as nonalcoholic fatty liver disease (NAFLD), or
nonalcoholic steatohepatitis (NASH). However, a comprehensive meta-analysis of blood
lipidomic phenotypes in liver diseases is beyond of the scope of this work, also in regard
to the small size of most cohorts reported to date.

Unlike colorectal [46], prostate [47], breast [48] and other types of cancer [49,50], in
our study we found most blood lipids to be downregulated between HCC patients and
their corresponding high-risk group of CLD patients. However, when comparing only
HCC patients to healthy controls specific lipid classes were found up- or downregulated,
as also reported for most other blood lipidomic studies in cancer. Therefore, differences
in HCC-related lipidomic changes may be attributed to the different trajectories of HCC
pathogenesis, either due to viral-related CLD or due to fatty liver-related CLD. Conse-
quently, there is also a discrepancy in literature reports, depending on HCC-comorbidities
and associated risk factors. Increased levels of serum triglycerides were reported in HCC
patients without cirrhosis [51], and another report found decreased levels of triglycerides
and cholesterol to be associated with progression in hepatic pathological conditions [52].
Our finding of downregulation of lipid species in HCC patients in both blood and liver
might be explained by disruption of lipid homeostasis that balance lipoprotein synthesis
along with consumption of lipids by the rapidly proliferating HCC tumor cells [53,54].
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Similarly, cancer lipid profiles showed different findings in the degree of fatty acyl
saturation in cancer patients [55–57]. We report decreased levels of circulatory saturated
free fatty acids in the transition from healthy control to CLD and HCC patients that might
be due to their role in activation of inflammatory cytokines [58]. Activation of the stearoyl-
CoA desaturase (SCD) enzyme by the HCV replication machinery and in cancer cells may
lead to an increased production of monounsaturated fatty acids concomitant to decreased
levels of saturated fatty acids in viral-related CLD and HCC patients [59]. The increased
incorporation of monounsaturated free fatty acids into phosphatidylcholines alters the
membrane fluidity of cancer cells and prevents cancer related endoplasmic stress and
apoptotic signaling in comparison to membrane with higher degrees of saturated fatty
acyl groups [60]. Accordingly, we found decreased levels of lysophosphatidylcholines and
increased levels of phosphatidylcholines in blood of CLD and HCC patients. We found
eicosatrienoic acid (C20:3) increased in paired HCC tissue analysis but decreased in the
comparison of blood levels of HCC to CLD patients. This fatty acid is an aberrant product
in the arachidonate biosynthesis pathway [61], but similarly to our study, it was also found
at decreased blood levels in liver disease patients [62]. It has previously also been reported
as upregulate in colon cancer, possibly due to a decrease in lipid peroxidation and an
increase in cell proliferation in tumor cells [63].

We report phosphatidylglycerols with decreased levels in both blood and tissue
comparisons for HCC patients. Phosphatidylglycerols are phospholipid precursors of
cardiolipins, which have an important role in mitochondrial wall function [63]. Alterations
of phosphatidylglycerols were linked to hepatopathy and hepatic insulin resistance [64].

Ceramides and sphingomyelins belong to the lipid class of sphingolipids that are cell
membrane components and signaling molecules controlling cell growth and apoptosis [65].
Ceramides and sphingomyelins are interconverted and are regulated by more than 28 en-
zymes that reflect the complexity of sphingolipids homeostasis [66]. Upregulation of serine
palmitoyl transferase, a key enzyme of sphingolipids synthesis, has been linked to HCV
replication and hepatic fibrosis process [67,68]. This report is in accordance with our finding
of increased sphingolipids in blood of CLD patients compared to healthy control subjects.
In cancer, increased levels of ceramides and sphingomyelins have been associated with
less aggressive potential in breast [69], prostate [70] and gastric [71] cancers. Conversely,
downregulated ceramides in colon cancer [72] and head and neck tumors [73] was found to
be associated with a higher degree of tumor invasion and metastasis. In HCC tumor tissues,
decreased levels of ceramides have been reported as mechanism to reduce the proapoptotic
function of ceramides, possibly by an additional mechanism of tumor-promoting attraction
of myeloid cells in the surrounding nontumor tissue [24]. Similarly to [24], we also found
decreases in PE and ceramide levels in HCC tumors compared to nonmalignant surround-
ing tissues, yet in our report we also found decreases in sphingomyelins, polyunsaturated
PCs, free fatty acids and importantly, phosphatidylglycerides that were not reported in [24].
Such reports should be combined in systematic meta-analysis studies and extended to
larger cohorts to validate overall findings, including patient stratification by sex, viral
infection status and other criteria, such as cirrhosis. We performed correlation analyses
of blood metabolites of HCC patients against cancer stage, sex, number of focal lesions,
size of focal lesion, AFP levels and current HBV and HCV infections. Perhaps due to the
small size of the study, none of these correlations provided a strong and significant relation
between lipid species and any of the given biochemical data.

4. Materials and Methods
4.1. Participants and Collection of Clinical Samples

Liver tissues and blood samples were obtained from 53 participants recruited from
National Liver Institute, Egypt; 23 whole blood and pairs of tumors and nontumor liver
tissue samples were obtained from HCC patients; 15 whole blood samples obtained from
CLD patients; and another 15 whole blood samples obtained from age and gender matched
healthy control subjects were also tested. The HCV infected patients in this study are
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genotype 4, as it is the most prevalent genotype in Egyptian HCC and CLD patients, and
healthy control subjects included in this study were described in a previous study [25]. Each
participant provided written informed consent. The study protocol (code 00185/2019) was
approved by the ethical committee of the National Liver Institute at Menoufia University
(NLI IRB00003413), Menoufia, Egypt in December 2019.

Initial diagnosis of HCC was based on serum AFP level > 200 ng/mL, ultrasound
and triphasic spiral computed tomography imaging for focal lesions. This diagnosis
was later confirmed histopathologically after surgical resection for all HCC cases. All
CLD patients were diagnosed by PCR testing for hepatitis C virus and hepatitis B virus
infection and validated clinically as positive chronic infection for more than 6 months.
All CLD subjects were examined by diagnostic ultrasonography to exclude cirrhosis. All
blood samples underwent liver function investigations: Aspartate transaminase (AST),
alanine transaminase (ALT) and alpha-fetoprotein (AFP) were measured using a Beckman
Coulter (Synchron CX 9 ALX) Clinical Auto analyzer (Beckman Instruments, Fullerton,
CA, USA). Platelet count and Hemoglobin were analyzed by a Coulter Counter T660
(Coulter Electronics, Hielaeh, FL, USA). International normalized ratio (INR) spectra were
obtained from prothrombin time measured by an STA-Stago Compact CT auto analyzer
using reagents provided by Dade–Behring. Blood samples and tissue specimens were
stored at −80 ◦C until the time of analysis. Samples were shipped on dry ice to the West
Coast Metabolomics Center at UC Davis. Clinical and biochemistry characteristics of the
cohort and HCC tissue characteristics are provided in Tables S3 and S4.

4.2. Sample Pretreatment

About 4 mg of frozen liver tissues were weighted and homogenized using stainless-
steel grinding balls in GenoGrinder 2010 (Spex SamplePrep, Metuchen, NJ, USA) for 2 min
at 1350 Hz. Homogenized tissue samples were subsequently used for metabolomic analyses
in the same way as plasma samples.

Whole blood samples were aliquoted into 1.5 mL Eppendorf tubes, stored at −80 ◦C
and shipped on dry ice. After thawing for 30 min at room temperature, samples were
centrifuged for 30 min at 14,000× g; 20 µL of the supernatant was used for extraction
as described [74]; 225 µL of cold methanol (MeOH) containing a mixture of 27 internal
standards (Tables S1 and S2) was added to the samples and then vortexed for 10 s; 750 µL
of methyl tertiary-butyl ether (MTBE) was added and samples were vortexed for 10 s and
shaken for 5 min at 4 ◦C. Next, 188 µL water was added, vortexed and centrifuged for 2 min
at 14,000 rcf. Two 350 µL aliquots from the nonpolar layer were prepared. One aliquot was
stored at −20 ◦C as a backup and the other was evaporated to dry in a Speed Vac. Dried
extracts were resuspended by 60 µL of a mixture of methanol/toluene (9:1, v/v) containing
an internal standard [12-[(cyclohexylamino) carbonyl]amino]-dodecanoic acid (CUDA)] as
a quality control. Method blanks and pooled human plasma (BioIVT; Westbury, NY, USA)
were extracted and analyzed alongside with the study samples.

4.3. Lipidomic Data Acquisition and Data Processing

Liquid chromatography used a Waters Acquity UPLC CSH C18 column
(100 mm × 2.1 mm, 1.7 µm particle size) coupled to an Acquity UPLC CSH C18 Van-
Guard precolumn (5 × 2.1 mm; 1.7 µm) (Waters, Milford, MA, USA) with mobile phases of
60:40 acetonitrile/water (A) and 90:10 isopropanol/acetonitrile (B). Mobile phases were
buffered with 10 mM ammonium formate and 0.1% formic acid for positive electrospray
ionization (ESI) analysis, and 10 mM ammonium acetate and 0.1% acetic acid for negative
ESI analysis. Mobile phase gradient started with 85% (A) at 0 min; changed to 70% (A)
from 0 to 2 min, 52% (A) from 2 to 2.5 min, 18% (A) from 2.5 to 11 min, 1% (A) from 11 to
11.5 min, 1% (A) from 11.5 to 12 min; and finally went to 85% from 12 to 12.1 min and
continued as 85% (A) from 12.1 to 15 min. Sample temperature was maintained at 4 ◦C in
the autosampler. Samples were reconstituted in LC starting buffers; 2 µL samples were
injected to the column for positive ESI analyses, 5 µL samples for negative ESI analyses.
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For extracted liver samples, 1 µL was injected in positive ESI mode and 3 µL in negative
ESI mode.

Mass spectrometric detection of lipids was performed using an Agilent 6530 Quadrupole
Time of Flight Mass Spectrometer (QTOF MS) system (Santa Clara, CA, USA) in positive
ESI mode, and an Agilent 6550 QTOF MS system (Santa Clara, CA, USA) for analysis
of negative ESI mode. Samples were analyzed in a randomized order with interspersed
method blanks and plasma quality control samples.

Data were processed using open-source software MS-DIAL version 3.98 [75]. MS-
DIAL software allowed baseline correction, peak detection, alignment, gap filling and
adduct identification for raw data. MS-DIAL performed accurate mass/retention time
(m/z-RT) match to an in-house m/z-RT library, while MS/MS was matched to library
spectra from the Mass Bank of North America (MoNA), NIST17, and LipidBlast [76]. All
method blanks detected features were removed from further investigation. Mass Spectral
Feature List Optimizer (MS-FLO) [77] was used to investigate duplicate peaks, isotopes
and adducts. Peak height was used as mass spectral intensity at a specific retention time
for each annotated lipid.

4.4. Statistical Analysis

Differential analysis of biochemical and clinical data was performed using t-tests and
chi-square statistical tests (Tables S3 and S4). For lipidomic data, nonparametric univari-
ate and multivariate statistical tests were used to test for significantly altered individual
lipid metabolites and lipid classes between the study groups. The statistical tests were
applied to nonnormalized data generated after MS-DIAL processing. The Kruskal–Wallis
test was used to detect significant altered features between the three study groups and
the Mann–Whitney U test was used for pairwise comparisons in blood. The Wilcoxon
signed rank test was used to investigate data from paired liver tissue samples. From all
comparisons, p-values less than 0.05 and adjusted p-value using the Benjamini-Hochberg’s
false discovery rate (FDR) q < 0.10 were considered significant. Unsupervised multivariate
analyses were used mainly for quality control, such as presence of outliers or any analyti-
cal bias. Sparse partial least squares—discrimination analysis (sPLS–DA), a multivariate
statistical method, was applied to reflect the comparison of a few samples against a high
number of variables [78]. Heat map hierarchical clustering was performed to show a
graphical summary of differentially altered metabolites, using a clustering Euclidian for
distance measurement allow assorting data by similarity patterns. Volcano plots showed
statistically significant identified lipid metabolites and fold change (FC) represented as
log FC. Enrichment analysis to point chemical classes that were significantly differenti-
ated across blood and tissue study groups was performed by ChemRICH software [26].
ChemRICH is a web interface that utilizes chemical ontologies and structure similarity
to map metabolites to their metabolic modules. Venn diagram is a graphical organizer
summarizing shared lipidomic data across the study groups. Venn diagram was performed
using Venny 2.1.0 [79]. Statistical analyses were calculated using R software version 3.5.3
(R Foundation for Statistical Computing, Vienna, Austria), MetaboAnalystR 3.0 [80] and
lipidr [81].

5. Conclusions

The liver has a central role in lipid metabolism. Consequently, our lipidomics analyses
showed statistically significant differences between blood of healthy controls, CLD and
HCC patients. Interestingly, most lipids that were found upregulated in blood of CLD
patients were reversed in HCC patients, showing differences in the etiology of CLD on the
one hand and HCC on the other. Similarly, we found many lipids to be downregulated in
HCC tumor tissues compared to paired nontumor hepatic tissues. Interestingly, several
lipid changes showed a continued trend in the transition from blood of healthy controls
to CLD and HCC patients, for example, decreased levels of saturated free fatty acids and
saturated lysoposphatidylcholines along with upregulation of saturated triacylglycerides.
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Once these findings are replicated in additional cohorts, the risk for viral-related CLD
patients to develop HCC may be monitored by blood-based biomarker analysis. In addition,
our findings of differential regulation of sphingolipids and phosphatidylglycerols in blood
and tissues of HCC patients may open new opportunites for using the corresponding
enzymes as therapeutic targets. Overall, we here present the first study comparing both
blood and hepatic tissue-based lipidomics of viral-related HCC to its direct risk factor CLD.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/1/88/s1. Table S1: Blood lipidomics of HCC, CLD and healthy control subjects. (A): Result data
set of identified and unknown blood lipids detected by UHPLC-QTOF MS. (B): Univariate statistics
of significant blood compounds comparing healthy control versus CLD subjects, and comparing CLD
versus HCC subjects. (C): Details of blood lipids that separate HCC, CLD and healthy control subjects
in HCA cluster heatmap (see Figure 2d). (D): Set enrichment significance in ChemRICH for sets of
major classes of blood lipids. (E): Set enrichment significance in ChemRICH for sets of major classes
of blood lipids, divided by degrees of saturation of fatty acyl chains. (F): Overlap of statistically
significant metabolites with alterations in the same direction in HCC versus CLD and CLD versus
healthy control. Table S2: HCC tumor versus its paired nontumor tissues’ lipidomics. (A): Result data
set of identified and unknown lipids detected by UHPLC–QTOF MS in HCC tumor versus nontumor
tissues. (B): Statistically significantly differentiated compounds in HCC tissues versus nonmalignant
hepatic tissues. (C): Set enrichment significance in ChemRICH for sets of major classes of HCC tumor
metabolites versus nonmalignant tissues. (D): Set enrichment significance in ChemRICH for sets of
major classes of HCC tumor tissues versus nontumor tissues, divided by degrees of saturation of
fatty acyl chains. (E): Overlap of statistically significant metabolites in blood of HCC versus CLD and
tumor versus nontumor tissues. Table S3: Clinical and biochemical characteristics of study subjects.
Table S4: Characteristics of hepatocellular carcinoma (HCC) patients and HCC tissues. Figure S1:
Multivariate statistics comparison of blood lipidomics by unsupervised principal component analysis
(a,c) and by supervised sparse partial least squares discriminant analysis (b,d). Figure S2: Percentage
of dysregulated lipids as presented in ChemRICH in Figure 4. Figure S3: Multivariate statistics
analysis of lipids in HCC tumor tissues compared to nontumor hepatic tissue. Figure S4: Bar chart
representing percentage and direction of alteration in lipids in each significant altered class in HCC
tissues versus nontumor hepatic tissues.
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