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Simple Summary: B-cell Acute Lymphoblastic Leukaemia is one of the most common cancers
in childhood, with 20% of patients eventually relapsing. Flow cytometry is routinely used for
diagnosis and follow-up, but it currently does not provide prognostic value at diagnosis. The volume
and the high-dimensional character of this data makes it ideal for its exploitation by means of
Artificial Intelligence methods. We collected flow cytometry data from 56 patients from two hospitals.
We analysed differences in intensity of marker expression in order to predict relapse at the moment
of diagnosis. We finally correlated this data with biomolecular information, constructing a classifier
based on CD38 expression.

Abstract: Artificial intelligence methods may help in unveiling information that is hidden in high-
dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantita-
tive data with the potential to be used for the construction of response biomarkers. Many computational
methods from the bioinformatics toolbox can be applied to these data, but they have not been exploited
in their full potential in leukaemias, specifically for the case of childhood B-cell Acute Lymphoblastic
Leukaemia. In this paper, we analysed flow cytometry data that were obtained at diagnosis from 56
paediatric B-cell Acute Lymphoblastic Leukaemia patients from two local institutions. Our aim was to
assess the prognostic potential of immunophenotypical marker expression intensity. We constructed
classifiers that are based on the Fisher’s Ratio to quantify differences between patients with relapsing
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and non-relapsing disease. We also correlated this with genetic information. The main result that
arises from the data was the association between subexpression of marker CD38 and the probability
of relapse.

Keywords: Acute Lymphoblastic Leukaemia; flow cytometry data; Fisher’s Ratio; CD38; mathemati-
cal oncology; response biomarkers; personalised medicine

1. Introduction

Acute Lymphoblastic Leukaemia (ALL) is the most common childhood cancer, ac-
counting for 40% of all paediatric neoplasias [1]. This disease is characterised by the
abnormal growth of immature lymphocytes in the bone marrow (BM). ALLs are classi-
fied as B- or T-ALL, depending on the lineage of the cells of origin of the malignancy [2].
The former comprises the majority of cases in children and it has better prognosis than
the latter. The current treatment protocols yield survival rates of around 80% [3], but the
prognosis of relapsing patients is substantially worse [4]. These high survival rates are a
result of combined progress in therapeutical options and diagnostic methods [5]. With re-
spect to the former, the current options consist of multi-agent chemotherapeutic regimes,
which are accompanied by Central Nervous Systems (CNS) preventive therapy and im-
munosuppressive drugs [6]. With respect to the latter, patients are stratified according
to a risk-based scheme and treated accordingly. The criteria for risk group assignment
have been refined over the years and they represent a paradigmatic cooperation of fields,
including cytomorphology, cytogenetics, molecular biology, and immunobiology. High risk
patients are usually defined by a high leukocyte count in peripheral blood, hypodiploid
karyotype, high degree of CNS infiltration, and the presence of genetic alterations, such as
BCR/ABL and MLL/AF4 translocations [7]. Improving the risk assessment is fundamental
for the early identification of relapsing patients.

Among the set of diagnostic techniques, flow cytometry is employed for the identifi-
cation of the immunophenotype of the clone [8], which allows quantifying tumor burden
at diagnosis and follow up [9]. In fact, minimal residual disease (MRD) after one month of
treatment is one of the most relevant prognostic factors [10,11]. Flow cytometry measures
the surface expression levels of selected proteins for individual cells. Typical diagnostic
flow cytometry studies interrogate between 10° and 10° cells, and the flow cytometers
used in clinical contexts can detect between four and 18 markers [12]. This leads to the
consistent generation of large datasets with single-cell information. However, the level of
marker expression is not currently employed in risk assessment. The impediment to the
full exploitation of these datasets is the complexity and scale of the data, which cannot be
analysed single-handedly by the cytometrist [13]. In this sense, the routine analysis that is
carried out by visualizing histograms and bidimensional plots is falling behind technical
progress in the field [14].

The abundance of flow cytometry data in comparison to its restricted clinical use
opened the door to the application of artificial intelligence algorithms and methods, which
now conform the growing field of computational flow cytometry. Machine learning al-
gorithms have the potential to speed up, automatise, and reduce bias in conventional
analyses, but also complement the work done by the human operator [15]. Recent exam-
ples in haematology include leukocyte recognition, the prediction of refractory Hodgkin
lymphoma, minimal residual disease detection in Acute Myeloid Leukaemia, risk strati-
fication in multiple myeloma, or predicting resistance in myelodisplastic syndrome [16].
In childhood B-cell ALL, machine learning has taken advantage of clinical data in order
to predict either diagnosis [17] or relapse [18], with the work of Good et al., including
proteomics data for the latter purpose [19]. Reiter et al. proposed a way to automatise
MRD detection in follow-up [20].
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Our purpose with this work is to contribute to this growing field and show the
potential of artificial intelligence applications in medical context and in childhood B-ALL
specifically, which lags behind other diseases in terms of contributions. We take advantage
of the high dimensionality of flow cytometry data and a multicentre database of patients in
order to find differences in marker expression levels between relapsing and non-relapsing
patients at diagnosis. In what follows, we detail the data collection and preprocessing steps,
the feature selection by means of Fisher’s linear discriminant analysis, and the development
and validation of the classifier. We also correlate it with genetic information. Finally, we
compare it with current knowledge on prognostic value of protein markers and discuss the
future applicability of this methodology.

2. Materials and Methods
2.1. Patients

A retrospective study was designed in accordance with the Declaration of Helsinki,
and the protocol was approved by the institutional review board (IRB) of the two partici-
pating local institutions (LLAMAT Project, 2018).

The inclusion criteria for the study were ALL diagnosis between February 2009 and
October 2017, age less than 19 years, and availability of BM flow cytometry data. A total of
105 patients satisfied the inclusion criteria, 62 from Virgen del Rocio Hospital (HVR) and
43 from Nifio Jestis Hospital (HN]J). The exclusion criteria were the unavailability of Flow
Cytometry Standard (FCS) 3.0 files, patients without a minimum of 15 immunophenotypic
(IPT) markers in common with others in the dataset, and insufficient follow-up for non-
relapsing patients, i.e., patients without relapse, but with less than three years after no
refractory values for minimal residual disease. Finally, 56 patients were retained for further
analysis. We considered the data from each hospital separately: Dataset 1 included 30 non-
relapsed and eight relapsed patients from HVR, while Dataset 2 included 13 non-relapsed
and five relapsed patients from HN]. Table 1 shows the patient characteristics.

2.2. Flow Cytometer Machines and Antibodies

Marker expression was obtained on FACSCanto II flow cytometers, in accordance
with the manufacturer’s specifications for sample preparation. The final samples were
stained using an eight-colour panel with six fluorochrome-conjugated antibodies.

FCS 3.0 files contained information on forward scatter (FSC) (interpreted as size), side
scatter (SSC) light (interpreted as complexity), and monoclonal antibodies used routinely
in diagnosis. The markers used included B-cell (CD19, CD10, CD20, CD22, CD24, IgM,
CD66¢, CD79a, kappa, lambda, etc.) and T-cell-related (CD7, cyCD3) IPT markers, markers
that are related to the myeloid lineage (CD9, CD13, CD33, CD123), and some general ones
(CD15, CD34, CD38, CD45, CD58, CD71, HLA-DR).

2.3. Genetic Data

Patient data were completed with clinical characteristics at diagnosis, such as sex,
age, blast percentage in bone marrow, and relapse status. Genetic characteristics were
also obtained. Cytogenetic analyses were performed by conventional karyotyping and
FISH, with at least 20 metaphases per sample. In the case of insufficient number of mitoses,
standard karyotyping was replaced by DNA index and specific chromosomal aberrations
were identified through molecular studies (RT-PCR assays).
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Table 1. Patient characteristics.

Dataset 1 (HVR) * Dataset 2 (HN]J) ** Total
(N =38) (N =18) (N = 56)

Sex—no. (%)

Male 23 (60) 9 (50) 32 (57)

Female 15 (40) 9 (50) 24 (43)
Age at diagnosis—yr/mo

Median 3/8 3/7 3/9

Range 0/2-12/11 1/6-8/8 0/2-12/11
Long term status—no. (%)

Relapse 8 (21) 5(27) 13 (23)

No relapse 30 (79) 13 (73) 43 (77)
Immunophenotype—no. (%)

Common 24 (63) 11 (61) 35 (62)

Pre-B 3(8) 2(11) 5(9)

Pro-B 10 (26) 1(5) 11 (20)

Mixed 1(3) 2(11) 3(5)
BM blasts at diagnosis—%

Median 81 90 84

Range 11-96 33-95 11-96
Karyotype—mno. (%)

Hyperdiploid (>50) 12 (32) 2 (11) 14 (25)

Normal (40-50) 15 (39) 13 (72) 28 (50)

Hypodiploid (<40) 1(3) 0(0) 1(2)
Chromosomic alterations—no. (%)

ETV6/RUNX1 (12;21) 5(13) 3(23) 8 (14)

TCF3/PBX1 t(1,19) 1(3) 1(6) 2(4)

MLL/AF4 t(4;11) 1(3) 0 (0) 1(2)

MLL rearrangement 3(8) 0 (6) 3(5)

BCR/ABL1 t(9;22) 0(0) 0(0) 0(0)

* Ten patients from Dataset 1 lacked data on karyotype; ** Three patients from Dataset 2 lacked data on age, blast

percentage, and cytogenetics.

2.4. Preprocessing of Flow Cytometry Files

The files were first imported into Flow]o (Becton Dickinson, 10.6.1) and FACSDiva
(Becton Dickinson, 8.0.1) and inspected manually. Quality control was performed and
margin events, debris, dead cells, and doublets were removed, as shown in Figure 1 steps
1-4. The files were then further processed in R (3.6.0) and RStudio (1.2.1335). This software,
in conjunction with Bioconductor (3.11), provides packages and methods for analysis
of flow cytometry data. The tubes were compensated by means of the spillover matrix
that was included in each file and then transformed with the Logicle transformation [21]
included in the flowCore package (2.0.1) [22] with parameters w = 0.75, t = 262,144,
m = 4.5, and a = 0. Our next step was to bring, into a single file, the information that
is contained in each of the patient’s tubes. Because each tube contains marker intensity
for different markers and cells, the full set of 20 markers was not available for any of the
cells, as shown in Figure 1 step 5. This posed a problem of missing data imputation, which
is addressed in different ways in the context of flow cytometry [23-26]. We followed the
methodology that is described in [23], which consists of nearest-neighbour imputation
while using the common or backbone markers in all aliquots. The result of this process
was a set of 56 files, one per patient, containing complete information on the IPT markers
selected for the analysis. After this step, 10° events were randomly sampled from each file
in order to have the same number of cells for each patient.

Because data of multicentre retrospective studies can be affected by batch effects and
technical variations across time and centre, we performed a normalisation that was based
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on a modified min-max transformation. This transformation brings all data points to the
range [0, 1], but it is sensitive to outliers. Instead of selecting the maximum and minimum
values, we chose quantiles 0.05 and 0.95 and applied the following transformation:

/ X — X40.05

X=— ey
X0.95 — X40.05

where x40,05 is the 5th percentile and x,0.95 is the 95th percentile. Finally, we used the
common B-cell antigen CD19 to select the B-cell subpopulation, as shown in Figure 1 step
6. We did this in an automated way by means of the flowDensity package (1.24.0) [27],
which incorporates methods for density-based cell population identification. The files were
finally imported into MATLAB (Mathworks, R_2020a) via the fca_readfcs function [28].

Step 1: Quality control Step 2: Remove margin events Step 3: Remove doublets Step 4: Remove debris

= = <
(8] Q [$]
(2] (7] (73
w w (7]
|
||
|
i
|
FSCA FSC.A
Step 5: Normalize and Merge Step 6: Select B lymphocytes
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CD19

Figure 1. Preprocessing pipeline of Flow Cytometry Files. Preprocessing was carried out in six steps. The first four were
performed in FlowJo and they consisted in the removal of abnormal acquisitions (quality control), margin events, doublets,
and debris. The files were then imported into R in step 5 and, for each patient, all tubes or aliquots were merged into a
single file by means of nearest-neighbour imputation. Finally, in step 6, the CD19* population (B cells) was automatically
selected for further analysis.

2.5. Marker Expression Characterisation

In flow cytometry, the IPT marker expression level is usually indicated by the median
fluorescence intensity (MFI). In addition to this value, we also consider the mean fluores-
cence intensity and standard deviation. These are single-parametric representations of
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marker expression profiles. We fitted the cumulative distribution of every marker (Figure 2)
to a generalized logistic equation in order to capture more information:

K
F(l)=—— 2
I( ) (1—|—A€7”‘1)1/7 ( )

Here, I represents normalized marker intensity and Fj gives the accumulated intensity.
The generalized logistic equation represents families of sigmoid functions. In particular,
v = 1 gives the conventional logistic equation and, as v approaches zero, it yields the
Gompertz equation. These are two well-known sigmoid functions. The carrying capacity K
was set to 1 and initial value was fixed to the first percentile of the distribution (this deter-
mines parameter A). Parameter a represents the growth rate of the curve, and parameter vy
provides information regarding the position of the point of maximum growth. Fitting was
performed in MATLAB with function Isqcurvefit.

08

06

04

Normalised CD20
Normalised CD20
Normalised CD20

02f

02 (B.2)
0.4 L L L L L L L L L L L L L L L L
0.2 0 0.2 0.4 0.6 0.8 1 12 3500 3000 2500 2,000 1500 1,000 500 0 1 0.8 0.6 0.4 0.2 0
Normalised CD10 Cell number Cumulative distribution '
12,000 T T T 1 T T
0.823 0.376
0.9F 0.854 0.428
10,000 F 0.868 0.460
0.8 0.877 0.484
0.883 0.504
o7k 1 0.889 0.521
8,000 1 5 > 0.894 0.537
_ s ] 0.898 0.554
2 = 0.902 0.569
g 6,000 g 05k 0.906 0.585
5 2 0.910 0.601
S S sk 0.914 0.616
g 0.917 0.634
4,000 o 0.921 0.653
osr 0.926 0.673
0.930 0.698
2000 o2r 0.936 0.724
0.943 0.758
(B.1) o1 (C.1) (D) 0.953 0.810
o o CD10 CD20
0 0.2 0.4 0.6 0.8 1 [ 0.2 0.4 0.6 0.8 1 5 .
Normalised CD10 Normalised CD10 Marke rs pe rcent”es VeCtOrS

Figure 2. Percentile vector construction. (A) Scatter plot of a patient i for two normalised parameters, j; = CD10 and
j» = CD20. (B.1) and (B.2). Histograms cell count of, respectively, j; = CD10 and j, = CD20. (C.1) and (C.2). Cumulative
distribution of markers j; = CD10 and j, = CD20, respectively. In red, percentiles curve from 5th to 95th percentile.
(D) Each percentile curve for each patient i and marker j results in a vector x;; € R, where P represents the number of
percentiles chosen.

2.6. Fisher’s Linear Discriminant for Relapse Prediction

We consider x;; € R” as vectors that were obtained for each patient i and each common
feature j, fori = 1,..., N patients, j = 1, ..., M IPT markers, and P a number of percentiles.
Thus, for each patient i, this results in a matrix X € RM*P of the P percentiles from all
IPT markers M, as shown in Figure 2. Let us define the general Fisher’s Ratio (FR) Matrix
FR € RM*P[29], where
(HRy — 1)

FRy =
] 2 2
U'Rjk + a/\[jk

4 (3)
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for each IPT marker j in each percentile k, for j = 1,.., Mand k = 1,..., P. In this case, HR;,
and p 7, are the median of percentiles k for the distribution of the IPT marker j in each
class of patients. R stands for relapsing patients, while N refers to the non-relapsing ones.
Parameters OR; and N, are the standard deviation measures within the classes.

We can select the highest FRjy in order to construct a classifier, thus obtaining per-
centiles from several IPT markers with the lowest deviation and highest difference in
median between each subset. Thus, we would obtain a general discriminant classifier of
M* < M markers and associated discriminant percentiles P* < P.

Let us now consider a certain IPT marker j and percentile k. We can then associate it
to a specific central measure HRj OF PN, and dispersion measure OR; OF ON for each class
of patients. Thus, we set two control points

B KR
ik = o, \
o, )
Nik =5
U/\/jk

If we now consider a new patient that is not assigned to any set and 7, as the value of
percentiles k of IPT marker j, we can compute a control point

Z7]'k

k= (O'Rjk+0'j\/’],k> : (5)

2

P;

This point is normalised by the mean of both dispersion measures, as we consider
P to be a non-assigned patient control point. Now, we can use a distance function d :
RF x RF — [0, 00) to measure the separation between the new patient ’ij and the control
points R and Ny (Figure 3).

We construct a probability measure [P for each IPT marker and percentile as

_ d(Py, Rix)
P(P; S i —
(P]k © R) d(P]kl R]k_) + d_(P]k/ -/V}k) ' (6)
P(PheN) — s Uk
ik d(Pir, Rix) +d(Pi, Nix.)’

The mean of the probability measures for all of the IPT markers selected for each
patient may allow for us to classify the patient in the relapsing or non-relapsing classes.

2.7. Classifier Construction and Feature Relevance

When constructing classifiers, we split the dataset in test and train set. We used
the train set to select the most significant IPT markers j according to the Fisher Ratio
(FRjx > 0.5). We used the test set in order to assess the performance of the classffier by
means of a receiver operating characteristic (ROC) curve and its associated Area Under
Curve (AUC). Accuracy was obtained as the number of correctly classified samples divided
by the total number of classified samples. Along with these magnitudes, we computed
from each confusion matrices the sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV).

K-fold and Leave-One-Out cross-validation (LOOCYV) techniques were applied. We per-
formed each method 20 times in order to obtain a more robust measure of the perfor-
mance [30] and ensure that the selection of the most important features in each classifier
was not dependent on the dataset partition. For both techniques, a minimum of one patient
of each set was always in the training set.
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Figure 3. Example of synthetic IPT markers distributions. Mean distribution of a marker with, respectively, (A) high and
(B) low Fisher’s Ratio, with (C,D) their respective cumulative distribution of the median + the standard deviation values.
(E) Median cumulative distribution of the two sets of patients for a marker with high Fisher’s Ratio. In solid red line,
median cumulative distribution of relapsed patients R and in blue dotted line for the non-relapse ones. In yellow dashed
line and green dashed dotted line the median cumulative distribution for the marker 7 was represented for two different
virtual patients i. The distances to each set median, dl}{ and dé\,, are represented with black headed arrows, with dashed lines
for Patient 1 and dashed dotted lines for Patient 2. In this example, Patient 1 would be considered to be a relapsed patient,
while Patient 2 would belong in the non-relapsed set.

To obtain an idea of feature relevance, we performed 100 random splits with a training
to test ratio of 75:25. For each split, we used the training data in order to construct a
classifier and computed its performance on the test data as described above. As a result
of this we gathered a collection of 100 classifiers and their performances. We next set an
accuracy threshold and computed the frequency with which every marker was used in
the set of classifiers that were above that threshold. This calculation was performed for
different values of the accuracy threshold.

Finally, we performed 100 Random Forest classifications with 50 trees each and a 75:25
split of patients in order to contrast these results with other methods. Out-of-bag error and
permutation feature relevance were obtained to assess feature importance. Figure 4 shows
a summary of the dataset exploration, classifier construction and feature relevance analysis.

2.8. Statistical Analysis

Median, mean intensity, and standard deviation were compared with t-tests, when
considering a p-value that is lower than 0.05. The parameters of the generalized logistic
function fit were also compared with t-tests. Correlations between percentiles of marker
expression and clinical and genetic data were done with Pearson correlation coefficient.
T-tests were performed to assess the significance. These computations were carried out in
Python with package Pingouin [31].
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Figure 4. Main steps of the analysis with Fisher’s ratio. In step 1, we compute differences in marker expression between
relapsing and non-relapsing patients, comparing the distributions of the most relevant markers. In step 2, we perform
k-fold and Leave-One-Out cross-validation (LOOCYV), constructing the classifiers with the most relevant markers of the
respective train set. In step 3, we analyse the frequency with which markers are employed in 100 classifiers coming from
72:25 splits of the dataset.

3. Results

Exploratory analysis reveals differences in marker expression and accumulated in-
tensity profile. Marker CD38 showed statistically significant differences in the median in
all datasets, with underexpression in relapsing patients. Marker CD66¢ showed significant
differences in median in Dataset 2, this time being overexpressed in relapsing patients
(Figure 5). Mean fluorescence intensity showed the same statistical differences as the
median fluorescence intensity (see Figure S1 in Supplementary Information). Statistical
differences for standard deviation were only found in Dataset 2, for IPT markers CD22,
and IGM. (Figure 52 in Supplementary Information)

We also fitted cumulative intensity profiles to a a generalised logistic equation (see
Equation (2)). We compared the parameters « and <y between relapsing and non-relapsing
patients. Statistical differences between the averages of these parameters were found for
markers CD38, CD45, and CD33. However, these differences disappeared when using
median parameter values (see Figure S3). Figure 54 shows an example of this fitting.
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Figure 5. Median of immunophenotypic markers for relapse and non-relapse patients. Comparison was performed via

t-test. Asterisk denotes markers with p-value lower than 0.05.

CD38 distribution differed significantly between relapsing and non-relapsing pa-
tients. While noting there were significant differences in MFI, we next considered the full
distribution by means of the percentile curves. We employed Fisher’s ratio in order to
obtain a measure of the degree of separation between relapsing and non-relapsing patients.

The results for FR differences between relapsing and non-relapsing patients are shown
in Figure 6. We also show the median cumulative distribution of the most relevant mark-
ers. For Dataset 1, CD38 FR was high in almost all percentiles, with FRj; > 0.3, as seen in
Figure 6(A.1). IPT marker CD123 had high FR for the highest percentiles, with FRj > 0.3
for k € (50,95). For Dataset 2, the differences between FR were significantly higher,
with FRj; > 3.5 in percentiles j € (20,95) for IPT marker CD38, and mean FRj > 2.5
for IPT marker CD66¢, as shown in Figure 6(B.1). For the combination of both datasets, only
CD38 achieved a high FR with mean FRj; > 0.9 in all percentiles, as shown in Figure 6(C.1).
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Figure 6. Fisher’s Ratio analyses and median cumulative distributions of markers with highest FR. Fisher’s Ratio Matrices
for Dataset 1 (A.1), Dataset 2 (B.1), and both datasets combined (C.1). The common parameters within each dataset are
represented in the x-axis, while in the y-axis we represent the percentiles of the median cumulative distribution. Colorbars
show the intensity of the Fisher’s Ratio for each percentile and marker. Median cumulative distributions and standard
deviation bands of the IPT markers with highest FR, for relapsed (red, dotted lines) and non-relapsed (blue, solid lines)
patients are represented in the following charts: for Dataset 1, CD38 (A.2) and CD123 (A.3); for Dataset 2, CD38 (B.2) and
CDé66c¢ (B.3); and, for both datasets combined, CD38 (C.2).
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Immunophenotypical markers CD38 and CD123, for Dataset 1, and markers CD38
and CD66¢, for Dataset 2, predicted relapse after repeated cross-validation. We next
assessed the predictive value of the differences that were reported above, constructing
classifiers, as explained in Section 2.7. We performed repeated K-fold cross validation
and LOOCYV. The results are shown in Table 2. We observed that the markers represented
in Figures 6(A.2, A.3, B.2, B.3, C.2) were always present in the classifiers scoring high
in accuracy. The maximal number of folds was determined by the number of relapsing
patients (8 for Dataset 1, and 5 for Dataset 2).

Table 2. Validated predictive performance of best classifiers.

Method Accuracy Sensitivity Specificity PPV NPV AUC
LOOCV 0.75 £ 0.04 0.74 £ 0.05 0.76 + 0.05 0.76 + 0.04 0.75 £ 0.04 0.76 £ 0.02
2-Fold 0.59 £0.1 0.63 +£0.14 043 +0.2 0.81 £+ 0.04 0.24 +£0.12 0.56 0.1
Dataset 1 4-Fold 0.62 £ 0.07 0.63 £0.1 0.58 +0.12 0.85 4 0.03 0.3 +0.06 0.65 £ 0.06
6-Fold 0.64 & 0.05 0.66 & 0.05 0.58 +£0.13 0.85 £+ 0.04 0.31 £ 0.06 0.67 £ 0.06
8-Fold 0.7 £0.04 0.7 £0.04 0.71 £ 0.06 0.9 £0.02 0.39 £0.04 0.72 +£0.03
LOOCV 0.66 & 0.06 0.95 £+ 0.05 037+ 0.1 0.6 +0.04 0.88 £0.1 0.89 £0.05
Dataset 2 2-Fold 0.72 £ 0.07 0.95 £ 0.06 0.13 £ 0.22 0.74 £ 0.05 0.42 + 041 0.68 £0.16
4-Fold 0.78 £ 0.04 0.95 £+ 0.05 0.34 +£0.15 0.79 £+ 0.03 0.81 £0.2 0.86 £ 0.06
LOOCV 0.69 & 0.05 0.62 £+ 0.09 0.75 £+ 0.09 0.72 £ 0.07 0.67 £ 0.05 0.78 +0.04
2-Fold 0.64 +0.13 0.6 £0.17 0.75 £ 0.12 0.87 = 0.09 0.38 = 0.08 0.73 £0.11
4-Fold 0.69 £ 0.01 0.67 £+ 0.02 0.77 £ 0.01 0.91 £ 0.01 0.41 £ 0.01 0.77 £0.04
Datasets 1 & 2 6-Fold 0.7 £0.02 0.68 £ 0.02 0.77 £0.01 091 £0.01 0.42 £ 0.02 0.79 £ 0.02
8-Fold 0.7 +0.01 0.68 & 0.02 0.77 +0.01 0.91 £+ 0.01 0.42 £ 0.02 0.79 £ 0.02
10-Fold 0.7 £0.01 0.68 £ 0.02 0.77 £0.01 0.91 £0.01 042 +0.01 0.8 £0.02
12-Fold 0.69 = 0.01 0.67 £ 0.02 0.77 £ 0.01 091+0.01 0.41 +0.01 0.79 £0.01

PPV: Positive Predictive Value. NPV: Negative Predictive value. AUC: Area under curve.

Train-test splitting revealed other markers with potential predictive value. We tested
the predictive value of the variables by splitting all datasets (1, 2, and both combined)
into training and test set with ratio 75:25. We used the training set in order to construct a
classifier with the most relevant features according to FR. Figure 7A shows the frequency
of the IPT markers used in the classifiers for the 100 different splits. IPT marker CD38 arose
again as the marker used in all of the classifiers, while CD33 was used on almost 70% of
them. We then assessed the performance of every classifier on their respective 25% test
sets. Having obtained the accuracy for the 100 classifiers, we measure the frequency of IPT
markers in the classifiers whose prediction accuracy was above a given threshold, as shown
in Figure 7B. IPT markers CD13, CD24, CD33, CD38, CD45, and CD66c¢ are consistently
selected in classifiers with an accuracy above 50%.

Random-Forest analysis matched the results from the constructed classifiers. After
100 random forests, IPT markers CD33, CD38, and CD66c were the only ones with positive
Out-of-bag feature importance (Figure 7C). However, after repeating the simulations only
considering these markers, Out-Of Bag Classification Error was not significantly lower
in comparison to the analysis with the whole set of IPT markers (mean out-of-bag error
of 0.28 versus 0.31, respectively) (Figure 7D). Nevertheless, feature importance coincided
with those markers with highest frequency in the previous analyses.
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Figure 7. The results of feature importance analysis. (A) Frequency of the markers in all classifiers after 100 simulations of
train-test splitting. (B) Histograms of the number of markers after establishing a threshold for the accuracy. (C) Out-of-bag
feature importance of the markers after 100 Random Forests. (D) Mean and standard deviation bands of the Out-of-bag
Classification Error in Random Forest analysis for the whole set of markers (blue, solid line) and for the set of markers with
positive feature importance CD33, CD38 and CD66¢ (red, dotted line).

CD38 marker expression correlated with genetic information. We finally correlated
marker CD38 expression with clinical and cytogenetic information. Figure 8 shows the
results. For the sake of readability, we only selected percentiles 15, 50, and 85 (P;5, P5p and
Pgs) to represent low, normal, and high expression of CD38. The expected correlations
include those between age and relapse age, as well as CD38 percentiles between themselves
and with relapse. High CD38 expression as measured by Pgs showed significant direct
correlation (p = 0.03) with the presence of chromosomic alteration t(12;21) and significant
inverse correlation with hyperdiplod karyotype (p = 0.039). These correlations were not
significant for lower percentiles. Hyperdiploid karyotype was also directly correlated with
relapse and with time to relapse from diagnosis (p = 0.041 and p = 0.047, respectively).
We also found that female patients showed a higher expression of CD38 than male patients
(p = 0.02).
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Figure 8. Pearson correlation coefficient between clinical, cytogenetic and marker CD38 expression data. Upper triangle

shows p-values. Asterisks (*) denote significant correlations (p < 0.05).

4. Discussion and Conclusions

The unprecedented amount and complexity of clinical data that is available nowadays
has resulted in the proliferation of bioinformatics pipelines and artificial intelligence
algorithms. There are a number of issues that still hamper the integration of Al and
the respective clinical context. As happens in general with the relationship between
mathematics and medicine, researchers at both ends often speak a different language [32].
Many Al algorithms behave as a "black boxes", providing an outcome directly from raw
data and hindering a mechanistic interpretation of the underlying phenomena. For clinical
use, it is highly desirable that the features that are uncovered by these algorithms can be
interpretable and actionable. As Radakovich et. al. puts it, “Algorithms can only be as
clinically meaningful as the outcomes that they are designed to predict” [33].

In this work, we designed an intuitive algorithm that purports to identify patients at
diagnosis with potential of relapse versus those with no risk of relapse in B-cell childhood
ALL. We used flow cytometry data that were obtained at diagnosis from two local institu-
tions and based the analysis on two concepts that are already employed in this context; the
intensity and range of surface markers expression and frequency of cells within that range.
Currently, this information is used for the identification and quantification of the leukaemic
population, but marker expression level is not used as a prognostic factor. In our analysis,
we took this into account by assigning each patient and marker its percentile curve and
then used the Fisher’s ratio to look for meaningful differences between both groups of
patients. That approach allowed for us to construct a classifier based on this measure in
order to assess the significance of the previously obtained differences. Given the small
sample size, we used the cross-validation routines to assess the validity of the Fisher’s
ratio-based measure. This was later correlated with genetic information from the patients.
Despite the exploratory nature of the study, we were able to find some common trends in
the data.

We first carried out a more conventional analysis of marker expression by means of
median and mean fluorescence intensity. This showed significant differences between
relapsing of non-relapsing patients in CD38 in Dataset 1 and 2, as well as in both combined.
CDé66c also showed significant differences in Dataset 2. In order to look further into this,
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we moved from a one-parametric representation to a bi-parametric representation by means
of logistic curve fitting of intensity profiles. A comparison of the fitted parameters did
not yield significant results, which suggests that differences are not in the shape of the
distribution but on the level of expression.

In order to delve into these differences, we compared the whole distribution by means
of percentile vectors. We observed that the Fisher’s ratio displayed differences in the
expression levels between relapsing and non relapsing patients. This was especially signifi-
cant for the second dataset. Given that both of the datasets were pre-processed identically,
the difference in the significance of the measure could be due to either sample size or
different acquisition routines in either hospital. We expect to have a clearer understanding
of this after increasing the number of patients in each dataset or the number of datasets
as a whole. K-fold cross validation showed that, when restricting the analysis to the most
important features according to the previously calculated Fisher’s ratio, the algorithm was
able to better separate between relapsing and non relapsing patients, always using data
only available on diagnosis.

The measurements of performance yielded good values for this biomarker, as mea-
sured by Accuracy and AUC. However, although specificity was high, we obtained a low
negative predictive value, i.e., the algorithm underperformed when detecting relapses.
This could be due to the intrinsic unbalance in the datasets, with only 25% of relapsed
patients. The relevant information, nonetheless, was the agreement in the selection of the
most important features. The Monte-Carlo based and Random Forest feature importance
computation later confirmed this.

The most consistent result, in the different analyses and for both local institutions,
was the association between a lower expression of CD38 marker and relapse. CD38 is
a surface receptor that is present in a broad variety of immune cells. It is considered to
be a cell activation marker and it operates both as a receptor and an enzyme [34]. In the
B cell compartment, both bone marrow precursors and terminally differentiated cells
express CD38 [35]. In the context of haematological disease, high CD38 levels have been
associated with worse prognosis in Chronic Lymphocytic Leukaemia [36]. Previous studies
have suggested that CD38 is a suitable therapeutic target in both AML and ALL [37,38].
There has been some controversy concerning the existence of a CD34+/CD38- population of
leukaemia initiating stem cells [39—42]. In B-ALL, the accumulated evidence indicates that
lower levels of CD38 could be associated with a worse outcome in terms of survival [43-46].
Our results aligned with this evidence, which suggested that a higher frequency of low
CD38 expressing B cells could be an early indicator of relapse risk.

Other markers that were found to be relevant in this study were CD33 and CDé66c¢.
These two markers are normally expressed in the cells of the myeloid lineage, and they
have been linked to paediatric B-ALL in the context of myeloid antigen expressing B-cell
malignancies. This refers to the fact that some malignant B cells can express markers from
the myeloid line. CD66c is the most frequently observed aberrant myeloid antigen in
B-cell ALL. Upon studying the correlation of the expression of this antigen with known
prognostic factors, previous studies have found that CD66c¢ is associated with BCR/ABL
translocation, which has been shown to confer the worst prognosis [47-49]. Here, we found
that relapsing patients were more prone to the overexpression of this marker on diagnosis.
With respect to CD33, there has been some controversy regarding its prognostic value,
but evidence suggests that the presence of high expressing CD33+ cells identifies patients
with worse prognosis [50], contrary to the differences that are exhibited by the percentile
curves here.

The immunophenotypical marker CD123 was also highlighted by Fisher’s ratio,
but only in Dataset 1. Its importance could not be further assessed since it was not
available in Dataset 2. This marker was first described as a marker of Acute Myeloid
Leukaemia stem cells. It was later shown to be uniformly expressed in B-ALL blasts, being
proposed for the detection of minimal residual disease [51,52] and recently identified as
a potential target for immunotherapies [53,54]. Interestingly, high expression of CD123
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correlated with hyperdiploid karyotype, an indicator of favourable prognosis in childhood
B-cell ALL [55]. In our cohort, we found a high proportion of CD123 expressing cells in
relapsing patients.

Finally, we complemented the analysis of CD38 expression with clinical, cytogenetic,
and molecular biology information, also relevant in the prognostic assessment of haema-
tological diseases. CD38 intensity correlated inversely with the presence of hyperdiploid
karyotypes, something that has been previously reported in the literature for the case of
B-ALL [56,57]. This is interesting, because the presence of hyperdiploid karyotype is a
favorable prognostic factor, while we and others found that the low expression of CD38
is an indicator of relapse. In fact, in our dataset hyperdiploid karyotype correlated with
possible relapse. This is a matter of further exploration. On the contrary, the correlation
between high expression of CD38 and the existence of translocation t(12;21) agrees on
predicting a favourable outcome. Another interesting result is that percentile 85 presented
significant correlation with a number of these features. This points out the importance of
considering multi-parametric analysis of immunophenotypic markers, instead of the more
conventional MFL

In this sense, while differences in CD38 expression according to Fisher’s Ratio were
present across the whole range of expression of the marker, that was not the case for CD33
and CD123. For those markers, differences were only observed in the low expression region
for the former and in the high expression region for the latter. The fact that there is less
evidence for their prognostic value suggests that the method presented here only leads
to significant results if there is a constant difference in expression levels between both
sets of patients. Indeed, this is a limitation of the study; by representing the expression
as a percentile curve, we may miss information that can be clinically relevant and that
refers not to the frequency of cells or intensity of expression, but to the presence or absence
of a given subpopulation. In this regard, we already mentioned that a subpopulation of
CD34+/CD38- cells could be associated with leukaemia initiating cells, and the same could
happen for a restricted subpopulation of CD34+/CD38-/CD123+; this one agrees with the
results that are presented in this paper. Another downside of using percentile curves is the
high degree of correlation between percentiles of a given marker. In this sense, alternative
representations should be considered when relating marker expression information to
other kind of data. For example, this could be done by considering cell percentage rather
than fluorescence intensity.

Another limitation of our analysis is the data, a recurrent concern in artificial intel-
ligence in haematology [33]. Given the limited size of the dataset, conclusions should
be contrasted in an extended future study. This is why we focused on building a robust
methodology, keeping the exploratory nature of the work in mind. Besides, the set of re-
lapsing patients only represented 25% of the whole dataset and unbalance could introduce
biases in the analysis. A larger dataset should allow for a 50/50 analysis. Finally, there is
the issue of data variability, given that it was collected retrospectively, belonging to patients
from different years and hospitals. This highlights the importance of the preprocessing
routine, which is also amenable to improvements in order to ensure the comparability
of the samples. These weaknesses provide future lines of work. While in the process of
recruiting more patients and hospitals, efforts will we directed towards the automation of
the preprocessing workflow and towards the combination with more complex analyses,
like dimensionality reduction, network analysis, and clustering.

Notwithstanding these limitations, this works adds to the growing field of artificial
intelligence in haematology and, specifically, in B-cell childhood Acute Lymphoblastic
Leukaemia. We attempted to delineate differences in marker expression between patients
who relapse from the disease and those that respond to treatment, obtaining results that
are directly interpretable from the clinical point of view. The main result would be the
underexpression of surface marker CD38 at diagnosis in patients experiencing relapse after
the first-line chemotherapy treatment. This result emerged from an unspecific comparison
of intensity of marker expression and not as a particular aim of the study, which favours
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its extension to any other disease that uses flow cytometry as a routinary clinical tool.
We hope that this contribution will be found to be useful for the purpose of exploiting
flow cytometry data and marker expression level for prognostic assessment in paediatric
leukaemia and other malignancies.
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The following abbreviations are used in this manuscript:

BM Bone Marrow

MRD Minimal Residual Disease

FCS Flow Cytometry Standard

IRB Institutional Review Board

CNS Central Nervous System

IPT Immunophenotypic

FR Fisher’s Ratio

CD Cluster of Differentiation

ALL Acute Lymphoblastic Leukaemia
ROC Receiver Operating Characteristic

AUC Area Under Curve
LOOCV  Leave-One-Out cross-validation
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