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Simple Summary: The global methylation profile of two human metastatic colorectal carcinoma
subgroups with significantly different outcomes (primary-resistant versus drug-sensitive tumors)
was analyzed and compared with the gene expression and methylation data from The Cancer
Genome Atlas COlon ADenocarcinoma (TCGA COAD) metastatic colorectal carcinoma dataset
with the aim to identify a prognostic signature of functionally methylated genes. A novel
epigenetic eight-gene signature, with hypermethylation of the promoter regions, was identified
and validated for its capacity to predict poor outcome, which had a CpG-island methylator
phenotype (CIMP)-high status and microsatellite instability (MSI)-like phenotype.

Abstract: Epigenetics is involved in tumor progression and drug resistance in human colorectal
carcinoma (CRC). This study addressed the hypothesis that the DNA methylation profiling may
predict the clinical behavior of metastatic CRCs (mCRCs). The global methylation profile of two
human mCRC subgroups with significantly different outcome was analyzed and compared with
gene expression and methylation data from The Cancer Genome Atlas COlon ADenocarcinoma
(TCGA COAD) and the NCBI GENE expression Omnibus repository (GEO) GSE48684 mCRCs
datasets to identify a prognostic signature of functionally methylated genes. A novel epigenetic
signature of eight hypermethylated genes was characterized that was able to identify mCRCs with
poor prognosis, which had a CpG-island methylator phenotype (CIMP)-high and microsatellite
instability (MSI)-like phenotype. Interestingly, methylation events were enriched in genes located on
the g-arm of chromosomes 13 and 20, two chromosomal regions with gain/loss alterations associated
with adenoma-to-carcinoma progression. Finally, the expression of the eight-genes signature and
MSl-enriching genes was confirmed in oxaliplatin- and irinotecan-resistant CRC cell lines. These
data reveal that the hypermethylation of specific genes may provide prognostic information that is
able to identify a subgroup of mCRCs with poor prognosis.
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1. Introduction

Colorectal carcinoma (CRC) is among the most frequent causes of cancer-related
death in Western countries [1] and, despite significant improvements in treatment
strategies, the prognosis of metastatic CRC (mCRC) remains poor [2]. First-line therapy
includes either chemotherapeutics (i.e., fluoropyrimidines, oxaliplatin, irinotecan) or
molecular-targeted agents and standard regimens are based on doublet- or
triplet-chemotherapy regimens (i.e, FOLFOX, XELOX, FOLFIRI, and FOLFOXIRI)
combined with antiangiogenic (i.e., bevacizumab) or anti-Epidermal Growth Factor
Receptor (EGFR) (i.e., cetuximab or panitumumab) monoclonals. However, the main
cause of treatment failure is drug resistance, and currently, a major clinical issue is tumor
molecular profiling to improve our capacity to predict patients” prognosis and design
personalized treatments.

At present, among several proposed biomarkers, NRAS, KRAS, and BRAF
mutational status and microsatellite instability (MSI) are the most reliable tools in clinical
setting, allowing the selection of RAS/BRAF wild-type tumors that are more likely to
respond to anti-EGFR agents [3,4] and MSI tumors that are more likely to respond to
immune checkpoint inhibitors. No biomarkers are available to predict
resistance/sensitivity to first-line chemotherapy and antiangiogenic agents.

For a long time, genetic aberrations and mutations in oncogenes and tumor
suppressor genes have been considered the only molecular events driving tumor
initiation and progression. Nowadays, epigenetic alterations gained consideration as
additional crucial events in the multistep carcinogenetic process [5,6]. Indeed, the
emerging leaning suggests a crosstalk between gene mutations and epigenetic
alterations [5], and this interplay is responsible for the activation of signaling pathways
regulating cancer hallmarks with an impact on clinical outcomes. Particularly, the
majority of human cancers is characterized by mutations in enzymes (i.e., writers,
readers, and erasers) involved in chromatin organization; hence, tumor cells are
triggered by epigenetic alterations [7,8], and this results in the loss and gain of functions
in genes correlated with tumorigenesis [9], drug resistance, and stem cell differentiation
[10]. DNA methylation is the first epigenetic mechanism reported in humans [11-13],
and the evaluation of DNA methylation of CpG island promoters represents the starting
point of many cancer studies in this field. Moreover, since methylation remodeling is a
rapid event compared to genetic mutations, it is likely that cancer cells preferentially use
this mechanism to rapidly adapt to unfavorable conditions and trigger survival
pathways, and this is particularly relevant in acquired and de novo resistance to
anticancer agents [14]. Hence, a novel frontier for biomarker development is the
identification of gene methylation patterns to predict clinical outcome, thus driving the
selection of patients who may benefit from specific anticancer treatments. In such a
context, this study examined the DNA methylation pattern of a cohort of
primary-resistant mCRCs in comparison with drug-sensitive tumors treated with
1st-line FOLFOX or FOLFIRI backbone chemotherapy to identify epigenetic
modifications able to predict patient’s prognosis.

2. Results

2.1. DNA Methylation Profile Is Remodeled in Primary-Resistant mCRCs

Primary-resistant mCRCs were selected for this study as representative colorectal
malignancies with poor prognosis and poor response to anticancer agents [15]. Thus, in



Cancers 2021, 13, 158

3 of 17

order to identify epigenetic alterations with prognostic relevance, global DNA
methylation was assessed on 24 mCRCs primary-resistant to 1st-line FOLFOX (16
patients) or FOLFIRI (eight patients) chemotherapy combined or not with molecular
targeted agents. Twelve drug-sensitive mCRCs (four treated with FOLFOX and eight
treated with FOLFIRI combined with molecular targeted agents) were used as controls

to obtain the

differential

methylation profile between primary-resistant and

drug-sensitive tumors (in-house cohort; Table S1). Differential methylation profiles were
analyzed in a multistep process, as described in Figure S1. Indeed, 74,843 and 36,876
probes were significantly differentially methylated in, respectively, FOLFOX and
FOLFIRI datasets (p-value < 0.05) (Figure 1A,B), and these were widely distributed
between different genomic regions (Figure 1C,D).
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Figure 1. Methylation profile is remodeled in primary-resistant versus drug-sensitive metastatic colorectal carcinomas
(mCRCs). (A,B). Volcano plots representing differentially methylated probes between primary-resistant and
drug-sensitive mCRCs. Overall, statistically significant differentially methylated probes were 74,843 and 36,876 in,
respectively, FOLFOX and FOLFIRI datasets (p-value < 0.05). In particular, statistically significant probes with an
absolute difference of Beta value > 0.2 are highlighted as blue dots, corresponding to hypomethylated probes (3227 in
FOLFOX and 1475 in FOLFIRI datasets), or as red dots, corresponding to hypermethylated probes (3899 in FOLFOX and
1393 in FOLFIRI datasets). (C,D). Differentially methylated probes distribution according to genomic regions.

2.2. Epigenetic Alterations Predict Prognosis in Human mCRCs

Since it is well established that promoter hypo/hypermethylation is the main mark
resulting in gene expression modifications [16], only genes with methylation
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modifications in promoter regions (with a p-value < 0.05) were used in subsequent
analyses. In particular, 19,454 probes, corresponding to 9760 genes, for patients treated
with 1st-line FOLFOX and 10892 probes, corresponding to 7218 genes, for patients
treated with 1st-line FOLFIRI, resulted differentially methylated between drug-resistant
and drug-sensitive tumors (Supplementary Materials Dataset S1).

We next questioned whether these DMGs were also functionally methylated
(fMET), with a methylation profile consistent with the gene expression profile. Since we
could not obtain gene expression data from in-house colorectal tumor samples due to the
poor amount and quality of RNA purified from paraffin-embedded specimens, this issue
was addressed using a cohort of 33 mCRCs obtained from The Cancer Genome Atlas
COlon ADenocarcinoma (TCGA COAD) database, which provides gene expression, DNA
methylation, DNA sequencing, and clinical data for each patient (Table S2). The result
from the intersection of methylation data from TCGA and the in-house cohorts resulted
in 7341 probes, corresponding to 4494 genes, for patients treated with 1st-line FOLFOX
and 4961 probes, corresponding to 3774 genes, for patients treated with 1st-line
FOLFIRI. We labeled these two lists FOLFOX differentially methylated genes (DMGs)
and FOLFIRI DMGs, respectively (Supplementary Materials Dataset S2).

From the analysis of gene expression and methylation TCGA COAD data, we
obtained 741 fMET genes defined as COAD fMET genes. Among these 741 TCGA COAD
fMET genes, 542 were DMGs in the FOLFOX dataset and 248 were in the FOLFIRI dataset
(Supplementary Materials Dataset S3), and 49 of them were common to both datasets.
Applying more stringent filters (p-value < 0.01 and absolute difference of beta value > 0.2)
on the FOLFOX_DMGs, we obtained 55 probes further restricted to eight
hypermethylated fMET genes when selecting the COAD fMET genes with R2 > 0.5.

On the 248 genes of the FOLFIRI dataset, we applied a bit more relaxed filter
(p-value < 0.05 and absolute difference of beta value > 0.1) obtaining 143 genes further
restricted to 20 hypermethylated fMET genes (R2 > 0.5) (Supplementary Material Dataset
S3). In order to produce two signatures, we performed an initial differential analysis on
the COAD TCGA mCRCs dataset using, respectively, eight and 20 fMET genes and
retaining only five and four genes differentially methylated with a greater stringency
(see methods) (Table S3).

Interestingly, hierarchical clustering on these sets of genes (using both expression
and methylation data) allowed us to separate the TCGA COAD samples into two quite
homogeneous clusters characterized by over or under expression (Figure 2A,D) and hypo
or hyper methylation (Figure 2B,E) of, respectively, the above five and four fMET genes.
A similar separation was obtained in our in-house FOLFOX and FOLFIRI cohorts upon
hierarchical clustering of methylation data using the same gene sets (Figure 2CF). In
order to evaluate the prognostic relevance of these five and four fMET gene signatures, a
log-rank test was performed on both the TCGA COAD and the in-house cohorts using
the two previously obtained clusters. Noteworthy, with the exception of Relapse-Free
Survival (RFS) using FOLFOX gene expression data, a significant (p-value < 0.05)
separation for Event-Free Survival (EFS), Overall Survival (OS), and RFS curves was
observed between hypermethylated/underexpressed tumors, which were characterized
by worst prognosis, and hypomethylated/overexpressed tumors using the five-gene
FOLFOX signature (Figure S2A-F). Consistently, OS and EFS curves were significant
using the four-gene FOLFIRI signatures (Figure S3A-F). A log-rank test performed on
in-house FOLFOX (Figure S4A,B) and FOLFIRI (Figure S4C,D) cohorts resulted in a
significant (p-value < 0.05) separation of the two clusters considering RFS and a
non-significant separation considering OS. Based on this evidence, the two cohorts were
labeled as “good” and “poor” prognosis clusters.

As a next step, we combined the five and four fMET gene signatures from FOLFOX
and FOLFIRI datasets obtaining a new signature of eight fMET genes, being one of them
common to both datasets (Figure 3). Hierarchical clustering using such signature
separated TCGA COAD patients into two well-defined cohorts (22 hypo and 11
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hypermethylated tumors) (Figure 3A,B and Table S2). A similar clustering was obtained
in our in-house FOLFOX dataset (Figure 3C) and partially in the FOLFIRI dataset
(Figure 3D). Furthermore, upon combination of in-house FOLFOX and FOLFIRI
datasets, the eight-gene signature obtained a separation between 19 hypo and 17
hypermethylated tumors (Figure 3E). It is noteworthy that the hypomethylated cluster
contains a tight sub-cluster of six drug-sensitive samples characterized by strongly
hypomethylated genes. The log-rank test confirmed that the cohort with
hypermethylation of the eight-gene signature is characterized by significantly shorter
survival (RFS, OS, and EFS; p-value < 0.05) compared to the cohort with
hypomethylation of these genes in both TCGA COAD and in-house cohorts (Figure 3F-
H). Altogether, these data suggest that this eight-fMET gene signature discriminates
between mCRC patients with good (hypomethylated tumors) and poor
(hypermethylated tumors) prognosis.
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Figure 2. Hierarchical clustering of mCRCs according to the five and four-gene signatures. (A-F). Heatmaps of
functionally methylated genes in The Cancer Genome Atlas COlon ADenocarcinoma (TCGA COAD) dataset (A,B,D,E)
and in in-house first-line FOLFOX (C) or FOLFIRI (F) datasets. (A) and (D). Differential gene expression profiles in
TCGA COAD. (B) and (E). Differential methylation profiles in TCGA COAD dataset. (C) and (F). Differential
methylation profiles in in-house FOLFOX or FOLFIRI cohorts. HC, hierarchical clustering; DR, drug response.
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Figure 3. Hierarchical clustering and Kaplan-Meyer survival curves of mCRCs according to the eight-gene signature.
(A-E). Heatmaps of functionally methylated (fMET) genes in TCGA COAD dataset (A,B) and in 1st-line FOLFOX (C),
FOLFIRI (D) or combined FOLFOX/FOLFIRI (E) in-house datasets. (A,B). Differential gene expression (A) and
methylation (B) profiles in TCGA COAD. (C-E). Methylation profiles in in-house cohorts. (F-H). Relapse-Free (F),
Overall (G), and Event-Free (H) survival curves according to TCGA COAD or in-house clusters, as reported in (A,B,E).
HC, hierarchical clustering; DR, drug response.

2.3. Differential Epigenetic Alterations Obtained According to the Eight-Gene Signature Are
Similar in in-House, TCGA, and GSE48684 Datasets

To strengthen our results, we retrieved another dataset, the GSE48684 from NCBI
GENE expression Omnibus repository (GEO), which provided the methylation profile of
24 mCRCs. Upon clustering the GSE48684 samples according to the eight-gene
signature, we observed two homogeneous methylation clusters (Figure S5A), as
previously reported for the COAD TCGA and the in-house cohorts. Thus, we performed
differential methylation analysis on the GSE48684, the TCGA, and the whole in-house
datasets, obtaining a very significant overlap (p-value < 0.01) between the lists of DMGs
in the three cohorts (Supplementary Materials Dataset S4). In parallel, Gene Set Analysis
(GSA) of the same three datasets exhibited a significant overlap between the
enrichments of the collections retrieved from the mSigDB repository (Supplementary
Materials Dataset S5-S7 and Figure S5B). Altogether, these data confirm the significance
of the epigenetic reprogramming observed in the in-house FOLFOX/FOLFIRI
primary-resistant cohort.

2.4. The Poor Prognosis Hypermethylated Cluster Is Characterized by an MSI-Like Phenotype and
Is Enriched of CIMP-High Tumors

The poor prognosis hypermethylated and the good prognosis hypomethylated
clusters were further characterized with respect to their clinical and biological profiles
using gene expression and DNA sequencing and gene copy number data from the TCGA
COAD database. No major differences were observed between the poor and good
prognosis clusters with respect to T and N categories and sites of primary tumor (right
versus left colon) (Table S2). Similarly, no major differences were observed with respect
to the tumor mutational load, with the exception of two hypermutated cases in the poor
prognosis cluster (Figure S6, insert). Interestingly, specific gene mutations were
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differently distributed between the two subgroups, being mutations in SRGAP2B,
AC007682.1, AC104820.2, and AF121898.3 genes enriched in the good prognosis cluster
and mutations in the GRP98, NRXN2, HDN1, and TTC40 genes in the poor prognosis
cluster (Figure S6). Consistently, several gene aberrations were significantly more
abundant in the good prognosis cluster (Figure S7).

Considering that a slight difference was observed in the hierarchical clustering of
TCGA mCRCs according to the eight-gene signature using gene expression or
methylation data (Figure 3A,B), we produced two lists of DEGs, one for each clustering,
and tested these lists of genes for the significance of the overlap. As expected, the two
DEGs lists are significantly overlapped (Supplementary Materials Dataset S8); thus, for
further analyses, we decided to use methylation clusters. A differential gene expression
comparison between hypermethylated and hypomethylated tumors yielded 444
Differentially Expressed Genes (DEGs) (false discovery rate, FDR, adjusted p-value < 0.05
and abs(logFC) > 0.58). Among these, 307 genes were downregulated and 137 were
hypermethylated in  the  poor  prognosis cluster = and  conversely
upregulated/hypomethylated in the good prognosis subgroup (Figure S8). GSA was
performed on the gene set collection of the mSigDB repository, obtaining significant
enrichments for signaling pathways and positional collections.

Among different signaling pathways (Figure 4A), GSA identified the Watanabe gene
set, which includes genes discriminating between MSI and MSS (microsatellite
instability/stability) colorectal cancers [17]. The statistical analysis identified 19 genes in
our list of DEGs, which enrich the Watanabe gene dataset and whose expression profile is
consistent with a separation of the TCGA cohort in good and poor prognosis clusters
(Figure 4B). Noteworthy, the Watanabe pathway result was significantly enriched
(p-value < 0.01) in the eight-gene hypermethylated cluster of the GSE48684 and in-house
datasets (Figure S9A,B). Since these observations suggest that the eight-gene
hypermethylated signature identifies a subgroup of mCRCs with an MSI-like phenotype,
an independent MSI-like gene expression signature was evaluated for the capacity to
reproduce the separation of the TCGA COAD cohort in the same good and poor
prognosis clusters, according to the eight-gene signature. Noteworthy, the MSI-like gene
expression signature of Pacinkova et al. [18] mirrored the separation of the 33 mCRCs
TCGA cohort in the same clusters as obtained by our eight-gene signature (Figure 4C).
Consistently, 11 genes from the Pacinkova signature were characterized by an expression
profile consistent with the expression profile of the MSI-like poor prognosis TCGA
cluster.

Interestingly, 15-20% of human CRCs are characterized by the CpG-island
methylator phenotype (CIMP), subdivided in CIMP-high (CIMP-H) and CIMP-low
(CIMP-L), and this correlates with the MSI phenotype [19]. Thus, the relationship
between our eight-gene hypermethylated signature and CIMP status was evaluated in
the TCGA COAD dataset and in our in-house cohort according to Hinoue et al. [20]. Of
note, the poor prognosis TCGA hypermethylated cohort was enriched of CIMP-H cases,
being four out of five CIMP-H samples classified as poor prognosis patients, whereas
the hypomethylated good prognosis cohort was enriched on no-CIMP tumors. CIMP-L
cases were distributed between the two subgroups (Figure 4D). This difference between
the groups was statistically significant by a two-sided Fisher exact test (p-value < 1 x
102). In our in-house cohort, while all the CIMPs belong to FOLFOX/FOLFIRI-resistant
samples, they divide evenly between the eight-gene signature clusters (Figure S10A).
Finally, six of nine CIMP tumors belong to the hypermethylated cluster in the 24
GSE48684 mCRC samples (Figure S10B). Thus, the prognostic relevance of our
eight-gene signature was compared to CIMP status and, noteworthy, RFS, OS, and EFS
curves showed a better capacity of our eight-gene hypermethylated signature to predict
poor prognosis in the TCGA COAD dataset (Figure 4E-G). Altogether, these
observations strongly support the conclusion that the eight-gene hypermethylated
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signature correlates with an MSI-like phenotype and is characterized by a better capacity
to predict prognosis compared to CIMP status.
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Figure 4. The characterization of the poor prognosis hypermethylated cluster highlights a microsatellite instability
(MSI)-like/CpG-island methylator-high (CIMP-H) phenotype. (A). Significant enrichments for signaling pathways upon
Gene Set Analysis (GSA). (B). Heatmap (HM) of differentially expressed genes enriching the Watanabe gene set in 33
mCRCs from the TCGA COAD dataset. (C). Heatmap of differentially expressed genes from the MSI-like gene
expression Pacinkova signature in 33 mCRCs from the TCGA COAD database. (D). Heatmap of CIMP status in 33
mCRCs from the TCGA database according to the eight-gene signature. CIMP status is labeled in black. (E-G).
Relapse-Free, Overall, and Event-Free survival curves of TCGA COAD patients according to the eight-gene signature or
CIMP status. HC, hierarchical clustering; DR, drug response.

2.5. Hypermethylated Genes Are Enriched on Arms q of Chromosomes 13 and 20

Among positional collections, GSA identified enrichments of chromosome 13 arm q
and chromosome 20 arm q gene sets (Figure 5A). Interestingly, 56/307 downregulated
genes in our list of DEGs are located on chromosome 13 arm q, and 17 of them are
hypermethylated. Consistently, 21/307 downregulated genes are located on chromosome
20 arm q, seven of them hypermethylated. It is noteworthy that the expression profile of
each of these gene sets (Figure S11A,B) and of their combination (Figure 5B) mirrored
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the separation of the TCGA COAD cohort in the good and poor prognosis clusters,
which were obtained according to the eight-genes signature. These data suggest an
enrichment of methylation events in genes located in specific chromosomal regions in
mCRCs with poor prognosis. In such a context, a slightly relaxed enrichment analysis
for signaling pathways identified the Ding lung cancer expression by copy number
(adjusted p-value 0.08) and the Nikolsky breast cancer 20q12-13 amplicon (adjusted
p-value 0.09) gene sets. These authors reported respectively a correlation between the
copy number variation and the expression of 26 genes in lung cancers [21] and the
identification of 149 genes in amplicon 20q12-13 in breast tumors [22]. As expected, all
the genes enriching the Nikolsky gene set overlap with our chromosome 20 arm q genes,
as well as Ding genes overlap with our chromosome 13 arm q genes. In both cases, the
expression profile of these genes reproduced the separation of the TCGA dataset in good
and poor prognosis clusters (Figure S11C,D). Altogether, these data highlight the
relevance of expression/methylation modifications of genes located on chromosomes 13
and 20 in human colorectal cancer.
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Figure 5. The poor prognosis hypermethylated cluster is enriched of genes located on arm q of chromosomes 13 and 20.
(A). Significant enrichments for the genomic positional collections upon GSA analysis. (B). Heatmap (HM) of
differentially expressed genes enriching chromosome 13 arm q and chromosome 20 arm q gene sets in 33 mCRCs from

the TCGA COAD dataset.

2.6. Epigenetic Modifications Are Reproduced in Drug-Resistant Cell Models

To validate epigenetic data obtained from FOLFOX and FOLFIRI primary-resistant
mCRCs, we generated in vitro drug-resistant cellular models chronically adapted to
oxaliplatin (Oxa; HCT116-OxaR and HT29-OxaR cells) or irinotecan (Iri; HCT116-IriR
and HT29-IriR cells). In preliminary experiments, apoptotic cell death was evaluated in
drug-sensitive and drug-resistant cell lines in response to Oxa or Iri in combination or
not with the demethylating agent 5-Azacytidine (5-Aza-dC). These experiments
confirmed that cell lines chronically exposed to chemotherapeutics are indeed poorly
sensitive to Oxa and Iri and that drug resistance is reverted upon treatment with
5-Aza-dC (Figure 6A,B). Since these data support the hypothesis that methylation
modifications are responsible for resistance to Oxa and Iri in these CRC cell lines, in
subsequent experiments, drug-resistant cell lines were used to validate the expression
profiles of the eight-fMET gene signature. Real-Time RT-PCR analysis of the eight genes
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confirmed a significant downregulation of six genes in HCT116-OxaR, HT29-OxaR, and
HT29-IriR cell lines (Figure 6C,D,F) and five genes in HCT116-IriR cell lines (Figure 6E)
compared to the respective drug-sensitive cell lines. NROB2 was undetectable in both
cell lines. It is noteworthy that the pretreatment of drug-resistant cell lines by 5-Aza-dC
resulted in a significant upregulation of the majority of the downregulated genes: six
genes in HT29-OxaR cell line (Figure 6D), five genes in, respectively, HCT116-OxaR and
HT29-IriR (Figure 6C,F), and four genes in HCT116-IriR (Figure 6E). These data suggest
that the downregulation of genes belonging to the eight-gene signature correlates with
the onset of drug resistance in CRC cell lines and that this downregulation is likely
mediated by methylation events. In parallel analyses, starting from GSA results
suggesting an enrichment of an MSI-like phenotype in hypermethylated poor-prognosis
tumors, seven representative genes enriching the Watanabe pathway and five
representative genes belonging to the mismatch repair system [18] were evaluated in
drug-resistant cell lines (Figure S12). Indeed, PCR data confirmed the downregulation of
the majority of these genes in drug-resistant cell lines with HT29-OxaR and HT29-IriR
characterized by a more evident MSI-like phenotype (Figure 512).
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Figure 6. Validation of the eight-gene signature in drug-resistant CRC cell lines. (A,B). Apoptotic cell death in HCT116
and HT29 drug-sensitive and drug-resistant CRC cell lines exposed to 10 uM 5-Azacytidine (5-Aza-dC) for 48 h and/or 3
uM oxaliplatin (Oxa) (A) or 2uM irinotecan (Iri) (B) for 24 h. (C-F). Real-time differential expression analysis of eight
genes belonging to the prognostic signature between drug-resistant and drug-sensitive CRC cell lines before and after
exposure to 10 uM 5-Aza-dC for 48 h. C. HCT116-OxaR: D. HT29-OxaR; E. HCT115-IriR; F, HT29-IriR. Significantly
modulated genes are indicated by asterisks: * = p < 0.05; ** = p < 0.01; *** = p < 0.001. Apoptosis and PCR analyses were
performed in triplicate.
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3. Discussion

Molecular profiling is a major objective in mCRC in order to define prognostic
homogeneous subgroups of patients and deliver personalized therapies [23]. In such a
context, genetic mutations and gene expression profiles have been proposed as potential
predictive/prognostic biomarkers and some of them have entered in daily clinical
practice [24,25]. By contrast, while preclinical evidence is currently available on the role
of epigenetic modifications in tumor progression [26], their significance as prognostic
tools is so far mostly unexplored and/or results are conflicting [27,28]. Indeed, the
majority of human CRCs are characterized by global hypomethylation and
promoter-specific DNA methylation [29], whereas 15-20% of them exhibit the CIMP
status, with extensive and co-ordinate patterns of hypermethylation events in numerous
CpG islands surrounding the promoter regions of several genes whose transcriptional
silencing contributes to the onset and progression of CRC [30,31]. The prognostic
significance of CIMP is controversial, with several studies suggesting that CIMP status is
an independent prognostic factor of poor outcome [32,33]. However, this conclusion is
still debated, which is likely due to different definitions of CIMP among studies with
respect to methylation loci and laboratory methods [32]. Recently, in contrast with the
conclusion that CIMP status predict poor prognosis, a prognostic score based on the low
methylation level of seven CpG sites was strongly associated with poor CRC survival
[32]. Thus, in order to better define the prognostic relevance of promoter
hypermethylation events in human CRC, this study was designed to characterize
epigenetic signatures helpful to identify mCRCs molecular subgroups with defined
clinical behavior. In such a context, primary-resistant colorectal carcinomas were selected
as cases representative of poor outcome [33] based on the evidence that methylation
modifications are key events used by cancer cells to rapidly adapt to unfavorable
environments and acquire drug resistance [34,35]. Our data suggest that the methylation
profile of eight functionally methylated genes is predictive of clinical outcome being able
to clusterize two independent mCRC cohorts (i.e., the TCGA COAD and the in-house
datasets) in two well-defined clusters with hypermethylated tumors characterized by
worse prognosis and an MSI-like phenotype compared to hypomethylated tumors. As
expected, the hypermethylated poor prognosis cluster is enriched with CIMP-H cases in
the TCGA COAD cohort, but our eight-gene signature showed a better capacity to
identify hypermethylated malignancies with poor prognosis compared to CIMP status.
Clinically relevant is the observation that the poor prognosis cohort with
hypermethylation of the eight-gene signature is characterized by an MSI-like phenotype.
Consistently with this conclusion, the eight-gene signature was able to identify a cluster
of hypermethylated mCRCs enriched of MSI-like and CIMP-H cases in a third
independent dataset (GEO GSE48684).

The CIMP-H status is frequently associated with the methylation of MLH1 promoter
region and consequent gene silencing [20], resulting in the acquisition of MSI and strong
immune activation [36]. In such a context, the relevance of the MSI phenotype is a
controversial issue in CRCs. Indeed, TNM stage II colorectal tumors with deficient
mismatch repair system/MSI-high phenotype are characterized by good prognosis, but
they do not benefit from 5-fluorouracile adjuvant chemotherapy [37]. By contrast, there
are several controversies about whether the MSI-high phenotype is a good prognostic
factor in mCRC patients. Some studies proved that MSI-high is a beneficial factor
associated with a better outcome [38,39], whereas several others came to the opposite
conclusion, indicating MSI-high as an adverse factor [40,41]. On the other hand, unlike
MSS CRCs, MSI-high CRCs showed a much better response to immune checkpoint
inhibitors [42,43]. More recently, several MSI-like gene expression signatures were also
proposed with likewise controversial significance [18,44,45]. Our data suggest that the
eight-gene hypermethylated cohort of mCRCs is characterized by an MSI-like phenotype
and that the methylation profile of the eight-gene signature may represent an alternative
strategy to better define a subgroup of mCRCs with a CIMP-H status and an MSI-like
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phenotype, which is characterized by a poor clinical outcome. In such a context, a
limitation of our study is the limited number of cases in our series, even though the
biological and the clinical significance of the eight-gene signature was proven in,
respectively, three and two independent mCRC datasets. However, its prognostic
relevance needs to be further validated in a larger series to establish its wider use in a
clinical setting, and further studies are also needed to establish whether this gene
signature may improve our capacity to select mCRCs amenable to immunotherapy. In a
biological perspective, it is noteworthy that two genes in our list, C130rf18 and LRRC2,
are putative oncosuppressor genes. Indeed, C130rfl8, a gene with a hypermethylation
status common to both FOLFOX and FOLFIRI first-line datasets, is frequently
hypermethylated and silenced in cervical cancer, and its re-expression results in the
growth inhibition of cervical tumor cells [46]. In addition, C130rfl8 is significantly
downregulated in our drug-resistant cell lines, and its expression is reverted by the
demethylating treatment. LRRC2 gene expression is impaired in renal carcinoma cell
lines, this also suggesting a putative oncosuppressive gene function [47]. Thus, the
functional hypermethylation of both these genes in a cohort of mCRCs with poor
outcome supports the hypothesis that these genes may play a role in colorectal
carcinogenesis.

Finally, GSA enrichment analysis suggests that methylation events are enriched in
genes located on arm q of chromosomes 13 and 20 in mCRCs with poor prognosis,
supporting the hypothesis that epigenetic remodeling may not occur in a random
manner during colorectal carcinogenesis, but rather, it may be a coordinated process with
the hypo/hypermethylation of selective genomic regions. This hypothesis is consistent
with the evidence that the accumulation of gains/losses in 13q and 20q regions is strongly
associated with adenoma-to-carcinoma progression [48] and that mutations in the same
chromosomal regions are relevant in other human malignancies. Indeed, the GSA
identified the Ding lung cancer expression by copy number and the Nikolsky breast
cancer 20q12-13 amplicon gene sets. Ding et al. reported a correlation between the copy
number variation and the expression of 26 genes in lung cancers [21], whereas Nikolsky
et al. reported the identification of 149 genes in amplicon 20q12-13 in breast tumors [22].
It is intriguing that genes enriching Ding and Nikolsky gene sets reproduced the
clustering of TCGA mCRCs in the same cohorts as obtained by the eight-gene signature.
Consistently, the vast majority of genes enriching the Nikolsky and the Ding gene sets
overlap with our chromosome 20 arm q or 13 arm q genes.

In conclusion, this study provides the proof of concept that epigenetic profiling
may represent a strategy to predict patients’ prognosis in mCRC and that a novel
eight-gene methylation signature may better define a poor prognosis subgroup of
mCRCs with CIMP-H status and an MSI-like phenotype.

4. Materials and Methods
4.1. Patients and Samples Collection

Twenty-four primary-resistant mCRCs treated with 1st-line FOLFOX (16 patients)
or FOLFIRI (8 patients) chemotherapy in combination or not with bevacizumab or
anti-EGFR agents and 12 drug-sensitive mCRCs (4 treated with FOLFOX and 8 treated
with FOLFIRI combined with molecular targeted agents) were selected for this study.
Patients’ characteristics are described in Table S1. Tumors were selected based on the
evidence of tumor progression (primary-resistant) or partial/complete response
(drug-sensitive) at the first radiological assessment after 2-3 months of first-line therapy.
Patients were enrolled at the Medical Oncology Units of the IRCCS-CROB (Rionero in
Vulture, Italy) and the Fondazione Policlinico Universitario “A. Gemelli” (Rome, Italy)
and were called the “in-house” cohort. All experiments were performed in accordance
with protocols approved by Ethics Committee of IRCCS CROB (reference number
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20120010288). Express written informed consent to use biological specimens for
investigational procedures was obtained from all patients.

4.2. Cell Lines and In Vitro Drug-Resistant Models

Human HT29 and HCT116 CRC oxaliplatin and irinotecan-resistant cell lines were
obtained in our laboratory as described in Supplementary Information. Experiments
were carried out at 70% cell confluence and confirmed at least in three independent
replicates. Cell cultures were routinely screened for mycoplasma contamination.

4.3. Array-Based DNA Methylation Profiling

DNA was isolated from formalin-fixed, paraffin-embedded (FFPE) primary CRCs
(Supplementary Information). Five hundred ng of total gDNA were treated with sodium
bisulfite using the Zymo EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA)
according to the Infinium HD Methylation Assay protocol. The bisulfite converted
gDNA was hybridized on the Infinium Human Methylation 850 BeadChip array
(Ilumina Inc, San Diego, CA, USA), following the manufacturer’s instructions. After
washing and staining procedures, chips were scanned by the Illumina HiScanSQ system.

4.4. Bioinformatics Analysis

To identify a prognostic signature of fMET genes, a multistep analysis was
performed as described in Figure S1. In the first step, global DNA methylation profiles
were obtained from primary-resistant and drug-sensitive in-house tumor specimens [49],
as described in Supplementary Information.

In a subsequent step, since gene expression data from in-house tumors were not
available, fMET genes were defined based on gene expression and methylation data from
the TCGA COAD data collection. To this purpose, the gene expression, methylation,
DNA sequencing, gene copy number, and clinical data of 33 patients with mCRC from
the TCGA COAD database were downloaded using the TCGA biolink package (Table
S2).

Moreover, the methylation dataset GSE48684, containing 24 stage IV mCRCs, was
used to validate our methylation and GSA data.

All differential analyses were performed applying linear modeling (limma) to the
log2 ratio of the intensities of methylated versus unmethylated probe (from now on
M-value) datasets. We also calculated the beta value as the ratio of the methylated probe
intensity and the overall intensity.

The DMGs from the TCGA, GSE48684, and in-house datasets were all filtered at a
p-value < 0.05 and absolute difference of beta value > 0.1, if not reported differently.

Annotation of the methylation datasets is according to illumina R packages. In
particular, being the TCGA and the GSE48684 dataset based on Illumina 450k
technology, we reduced the considered probes of our in-house dataset to such
annotations to make the comparisons meaningful.

The overlap between two DMGs or enriched gene sets was simply evaluated by a
hypergeometric test, while the overlap among three or more of them was based on a
more complex framework implemented in the R SuperExactTest package [50].

We defined as fMET genes those showing a significant (FALSE DISCOVERY RATE,
FDR, adjusted p-value < 0.05), and inverse correlation (R Squared > 0.1) between the
promoter’s methylation and the gene expression profile in the TCGA dataset. Among
these, we selected only the DMGs in the FOLFOX or in the FOLFIRI dataset.

For the FOLFOX in-house dataset, given the 8 fMET genes, we performed a
hierarchical clustering on the TCGA mCRCs datasets (Mvalues) obtaining two clusters,
one grouping the samples with the hypermethylated genes signature and the other with
the hypomethylated gene signature. Finally, we checked if the 8 genes were differentially
methylated (p-value < 0.05 and either BetaFC > 0.2 or logFC > 1), obtaining the final
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5-gene signature. The same procedure was performed for the 20 FOLFIRI fMET genes,
obtaining the final 4-gene signature. Hierarchical clustering was performed using Ward's
linkage and Euclidean distance.

To evaluate differences in prognosis, Kaplan-Meier estimator and log-rank tests
were applied to both TCGA COAD and in-house overall, relapse, and event-free data. To
identify biological and clinical differences between the identified clusters, a
hypergeometric test for the enrichment analysis (GSA) was performed on all gene set
collections of the mSigDB repository using CluterProfiler R package [51].

4.5. RNA Extraction and Real-Time RT-PCR Analysis

Total RNA was extracted using the TRIzol Reagent (Invitrogen, Whitby, CANADA)
from parental and drug-resistant strains of HCT116 and HT29 CRC cells lines. In specific
experiments, RNA was obtained from cell lines exposed to 5-Aza-dC (Sigma-Aldrich,
Burlington, MA, USA), an inhibitor of DNA methyltransferase 1 (DNMT1), at a final
concentration of 10 uM for 72 h. Real-Time PCR analysis was described in
Supplementary Information. Primers are reported in Table S4.

4.6. Apoptosis Assay

Parental and drug-resistant cell lines were seeded on day 0 in 6-well plates in
triplicate and incubated on day 1 in normal medium or exposed to 10 uM 5-Aza-dC for
72 h. After 48 h, cells were further treated with 3 uM Oxa or 2 uM Iri for 24 h. Apoptosis
was evaluated by cytofluorimetric analysis (Supplementary Information).

4.7. Data Availability

DNA methylation data generated in this study have been deposited at the NCBI
GENE expression Omnibus repository (GEO) and are accessible through the accession
number GSE148766 (www.ncbi.nlm.nih.gov/geo/).

5. Conclusions

In spite of significant improvements in the treatment of mCRC, the prognosis
remains still poor. Until today drug resistance is the main cause of treatment failure and
the main issue is tumor molecular profiling to improve our capacity to predict patients’
prognosis. The data showed in this paper represent the proof of concept that the
hypermethylation of specific sets of genes may provide prognostic information being
able to identify a subgroup of mCRCs with poor prognosis.

Supplementary Materials: The following are available online at
www.mdpi.com/2072-6694/13/1/158/s1, Figure S1: Study flow chart, Figure S2: Kaplan-Meyer
survival curves of mCRCs clusters according to the five-gene 1st-line FOLFOX signature in the
TCGA COAD dataset, Figure S3: Kaplan—-Meyer survival curves of mCRCs clusters according to
the four-gene 1st-line FOLFIRI signature in the TCGA COAD dataset, Figure 54: Kaplan-Meyer
survival curves of mCRCs clusters according to the five- and four-gene signatures in 1st-line
FOLFOX and FOLFIRI in-house datasets, Figure S5: Validation panels, Figure S6: DNA mutational
characterization of the poor and good prognosis cluster, Figure S7: DNA functionally gene
aberrations in poor and good prognosis cluster, Figure S8: Heatmap (HM) of 444 differentially
expressed genes (DEGs) between the TCGA hypermethylated/poor prognosis and
hypomethylated/good prognostic clusters, Figure S9: Watanabe signature in GSE48684 and
in-house datasets, Figure S10: The in-house tumors CIMP status, Figure S11: Hierarchical
clustering according to enrichment analysis gene sets, Figure S12: Validation of Watanabe and
mismatch repair genes in drug-resistant CRC cell lines, Table S1: Baseline patients’ characteristics
of the in-house cohort, Table S2: Baseline patients’ characteristics of the TCGA cohort, Table S3:
Functionally methylated genes obtained from the intersection of in-house and TCGA datasets,
Table S4: Oligonucleotides utilized in Real-Time RT-PCR analysis, Supplementary Dataset S1:
Differentially methylated promoter probes between primary-resistant and drug-sensitive mCRCs,
Supplementary Dataset S2: Differentially methylated genes (DMGs) between drug-resistant and
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drug-sensitive tumors after TCGA intersection, Supplementary Dataset S3: COAD fMET genes,
Supplementary Dataset S4: Overlap between the DMGs obtained in the three datasets,
Supplementary Dataset S5: Overlap between the mSigDB gene sets enriched in in-house and
GSE48684, Supplementary Dataset S6: Overlap between the mSigDB gene sets enriched in
in-house and TCGA, Supplementary Dataset S7: Overlap between the mSigDB gene sets enriched
in TCGA and GSE48684, Supplementary Dataset S8: Overlap between the mSigDB gene sets
enriched in TCGA expression samples using methylation or expression based clustering
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