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Simple Summary: It is well established that ovarian cancer “runs in families”, where ovarian and
other cancers (commonly breast cancer) occur at early ages at onset and in multiple generations.
After decades of genetic studies, rare high-risk genetic mutations in cancer susceptibility genes and
over 40 common genetic variants with much smaller risks have been identified. However, based
on familial studies, we know that additional heritable genetic risk factors exist. It is possible that
epigenetic variation—differences in how DNA is read, and which genes are actively expressed (or not)
—also contributes to ovarian cancer susceptibility. This review summarizes the current collection of
epidemiological studies that have investigated the role of DNA methylation—one type of epigenetic
mechanism—in the risk of ovarian cancer.

Abstract: Epigenetic alterations are somatically acquired over the lifetime and during neoplastic
transformation but may also be inherited as widespread ‘constitutional’ alterations in normal tissues
that can cause cancer predisposition. Epithelial ovarian cancer (EOC) has an established genetic
susceptibility and mounting epidemiological evidence demonstrates that DNA methylation (DNAm)
intermediates as well as independently contributes to risk. Targeted studies of known EOC suscep-
tibility genes (CSGs) indicate rare, constitutional BRCA1 promoter methylation increases familial
and sporadic EOC risk. Blood-based epigenome-wide association studies (EWAS) for EOC have
detected a total of 2846 differentially methylated probes (DMPs) with 71 genes replicated across
studies despite significant heterogeneity. While EWAS detect both symptomatic and etiologic DMPs,
adjustments and analytic techniques may enrich risk associations, as evidenced by the detection of
dysregulated methylation of BNC2—a known CSG identified by genome-wide associations studies
(GWAS). Integrative genetic–epigenetic approaches have mapped methylation quantitative trait loci
(meQTL) to EOC risk, revealing DNAm variations that are associated with nine GWAS loci and,
further, one novel risk locus. Increasing efforts to mapping epigenome variation across populations
and cell types will be key to decoding both the genomic and epigenomic causal pathways to EOC.

Keywords: DNA methylation; epigenetics; epimutations; ovarian cancer; genetic susceptibility;
meQTL; epigenome-wide association studies; genome-wide association studies

1. Introduction

Epithelial ovarian cancer (EOC) is a relatively rare cancer with a large heritable
component that presents an opportunity for genetic risk prediction [1] to inform early
intervention as well as therapeutic strategies. First-degree relatives of women with EOC
have an approximately three-fold higher risk of developing the disease and this can
increase up to 10-fold when multiple relatives are affected [2]. Genetic epidemiology
studies have identified a range of susceptibility alleles across the allelic spectrum from
rare, high penetrance variants in BRCA1 and BRCA2 to uncommon, moderate penetrance
(e.g., BRIP1, RAD51C/D, MSH6) and over 40 common, low penetrance variants from
genome-wide association studies [3]. Collectively, known genetic variants account for 45%
of the estimated EOC heritability [3] and the remaining portion may be explained by other
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sources of heritability. Epigenetic variation contributes to phenotypic variance, evolution,
and complex trait heritability [4] and could play an important role in EOC susceptibility.

The concept of epigenetics was first introduced in 1942 [5] to explain changes in
cellular phenotypes during organismal development. Since then, epigenetics has grown
to encompass a broad catalogue of biological mechanisms and molecules that control
DNA-template processes such as transcription, replication, and repair, to establish and
maintain a wide range of cellular phenotypes and physiological states [6]. Mechanistically
this is achieved by altering the organization and function of chromatin through the plastic
layering of post-translational modifications to DNA and histones, as well as non-coding
RNA interference [7,8]. The most studied and well-understood epigenetic mechanism
is DNA methylation (DNAm), whose critical role in carcinogenesis was first recognized
almost 40 years ago [9]. As the most stable and readily measured—particularly with
relatively low-cost microarray technology—DNAm is the only mechanism that has been
evaluated in human population studies thus far [10,11].

Over the years an extensive collection of epigenetic literature has been amassed and
several lines of evidence now demonstrate that inheritance of epigenetic information
influences metabolic and behavioral states and disease [12]. Recently, the transgenera-
tional epigenetic inheritance of cancer susceptibility was functionally authenticated in a
mouse model where the deletion of chromatin regulator KDM6A in the paternal germ line
increased tumor incidence in genetically wild type progeny [13]. Furthermore, DNAm
changes in mutant sperm were found to be retained in the somatic tissue of wild-type
progeny. Moving forward, observational quantitative genetic and epigenetic studies will
be key to determining if this is a representative model of epigenetic inheritance for cancer
in human populations.

Here, we provide a review of the epidemiological studies that have evaluated DNAm
in association with EOC susceptibility. As a preface, we briefly summarize the molecular
and population features of DNA methylation and their known role in cancer development
and heritability.

2. DNA Methylation in Epigenetic Control and Heritability

In mammals, DNA modifications predominantly occur through cytosine methylation
(CH3) at guanine-cytosine dinucleotides (CpG) which cluster in CpG-dense regions called
CpG islands (CGI) [14]. A critical role of CpG DNAm is the regulation of gene expression
through transcriptional silencing, an essential mechanism for developmental processes, in-
cluding parent-of-origin imprinting, X-chromosome inactivation, and transposon silencing,
and cellular differentiation [14]. For each cell, DNAm is inherited through successive cell
cycles resulting in cell type patterns that extend through a specific lineage [15]. Cellular
identity is responsive to numerous spatiotemporal factors including environmental cues
(e.g., stimuli, signaling), cell cycle phase, and physical environment (e.g., oxygen avail-
ability, anchoring) [16]. Thus, while DNAm are stable epigenetic marks that establish a
cellular memory and control of phenotype, they are not static. Recent studies mapping
DNAm across cell types and populations has revealed cell-type specific patterns of variable
methylated regions (VMRs) with high inter-individual variation [17].

The loss of epigenetic control over cellular identity and physiological homeostasis is
an enabling hallmark of cancer. Oncogenic transformation is achieved through the coop-
eration of genetic and epigenetic reprogramming [18] to alter gene expression resulting
in widespread DNAm alterations, often called epimutations [19]. Methylation across a
variety of tumors show patterns of global hypomethylation as well as regions of focal
hypermethylation at normally unmethylated CGI, often in the promoters of tumor sup-
pressor and DNA mismatch repair genes [20]. EOC presents similar patterns but with
histotype specificity [21,22]. High-grade serous ovarian cancers (HGSOCs) exhibit few hy-
permethylation events, although BRCA1 hypermethylation has been observed in 11.5% [23].
Conversely, endometrioid ovarian cancer (ENOC) is characterized by frequent promoter
hypermethylation (CpG island methylation phenotype, CIMP) that is also common in uter-
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ine endometrioid tumors and parsimonious with the hypothesized endometriosis origin of
ENOC [24]. Clear cell ovarian cancer (CCOC) also distinguishes itself by displaying the
highest frequency (>70%) of hypermethylation [25]. It is important to note that differences
in tumor DNAm may be associated with response to chemotherapy and prognosis. Several
studies have investigated DNAm in association with treatment response and prognosis,
and have been reviewed elsewhere [22].

Under normal conditions, DNAm acts as a critical barrier to cellular reprogramming
and tumor initiation [26]. In normal tissues, aberrant DNAm can occur as a result of
both somatic epimutations that arise and accumulate during the lifespan [27,28] and wide-
spread ‘constitutional’ epimutations that originate in the parental germline or during
early embryogenesis [29]. While most methylation is removed from the parental germline
during embryogenesis, experimental studies have demonstrated a significant level can
be retained across generations by resisting erasure [13,30] and through regulation of de
novo methylation by non-coding RNA (ncRNA) populations packaged in sperm and
oocytes [31].

During the lifespan, DNAm is continuously influenced by environmental exposures
and genetic sequence as well as interacting factors such as age and gender [32]. Genetic
variants are estimated to account for ~20% of the inter-individual variance in methyla-
tion though each CpG site varies in heritability and some (18%) have shown as high as
>99% genetic heritability [32]. Constitutional epimutations that occur in association with
genetic variants are considered secondary epimutations. Adding further complexity, CpG
heritability has been shown to vary over time where environmental factors contribute
more to methylation variance with increasing age. Genetic effects on DNAm are also
associated with transcriptional response such as activation of immune genes [33] meaning
meQTL vary depending on physiological states. Thus, the methylome of an individual
at any particular VMR is a function of a multitude of factors that are dynamic over the
lifespan and can cumulatively or specifically contribute to cancer (Figure 1). The heritable
components of the methylome (both epigenetic and genetic) could contribute to the familial
heritability of EOC.
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Figure 1. Dynamics of the methylome over the lifespan and the contribution to cancer. Within a
variably methylated region (VMR) for a particular cell, the methylome can be shaped by molecular
factors (inside circle) such as inherited methylation marks, developmental processes, cellular differ-
entiation, genetic sequence, and physiological states which are shown to be dependent on genetics as
well. Environmental factors also effect methylation where epimutations not only accumulate over
time but have larger effects on methylation with ageing. The cumulative effects of genetic, epigenetic,
and environmental exposures contribute to the development of cancer.
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In the following sections, we present a review of the epidemiological studies that
have explored DNAm and EOC susceptibility. These have been categorized by study
design and include: (1) familial and population-based studies targeting known cancer
susceptibility genes (CSGs), (2) epigenome-wide association studies (EWAS), (3) integrative
genomic-epigenomic approaches to study DNAm underlying genetic associations with
risk, and (4) environmental epigenetic studies evaluating DNA methylation as a mediator
of environmental risk.

3. DNA Methylation in Ovarian Cancer Susceptibility Genes

Both primary and secondary constitutional epimutations that contribute to cancer
susceptibility have been definitively described in CSGs for Lynch syndrome (MLH1, MSH2)
and Wilms Tumor (H19) [29], but other cancers are also emerging such as colorectal cancer
(MGMT) and breast cancer (BRCA1) [11]. Four studies have evaluated DNAm to identify
constitutional epimutations in known CSGs that contribute to EOC susceptibility: one case-
only study [34], two case-control studies [35,36], and one familial segregation study [37]
(Table 1). These studies limited cases to women without BRCA1 or BRCA2 sequence
mutations to enrich the study population for non-genetic mechanisms. Three studies
additionally limited cases to familial and/or early-onset EOC [34,36,37] while the other
did not have family history criterion [35]. From peripheral blood leukocytes (PBL), DNAm
in gene promoter regions was quantified via bisulfite sequencing technologies. Bisulfite
pyrosequencing has been the standard practice for hypermethylation detection in clinical
epigenetic studies and is generally followed by clonal or plasmid bisulfite sequencing for
validation and confirmation of allele-specific methylation [38].

All four studies evaluated BRCA1 and together suggest BRCA1 promoter hyperme-
thylation could be associated with EOC susceptibility as both constitutional primary and
secondary epimutations. In a familial segregation study of families with breast and ovarian
cancer, BRCA1 promoter hypermethylation was present in two out of 49 families, including
one proband with triple negative breast cancer and one with HGSOC [37]. DNA sequenc-
ing identified a 5′ UTR BRCA1 variant that segregated with BRCA1 hypermethylation
following a dominant inheritance pattern suggesting a secondary constitutive epimutation.
In another study, promoter hypermethylation of BRCA1 was observed in 8% (three in
39) of cases with EOC and 1% (six in 613) of cases with breast cancer but in none of 10
age-matched controls [34]. It was further demonstrated that BRCA1 hypermethylation was
confined to a single parental allele, present in all fractions of myeloid cell types (mesoderm)
as well as urine (endoderm), and did not correlate with local DNA sequence variants.
Together, these findings aligned with the definition of a primary constitutive epimutation
although correlated sequence variation may still underlie the hypermethylation observed.
This study also detected RAD51C promoter hypermethylation in one case of EOC.

Methylation of BRCA1 has been further implicated in a large-scale, two-stage study
totaling 1640 EOC cases and 3682 controls where promoter methylation was detected in
6.4% of EOC cases compared to 4.2% of controls, and was associated with increased risk of
EOC (OR = 1.83, 95% CI = 1.27–2.63) [35]. The study also included histotype-specific analy-
sis which has not been reported elsewhere, finding that increased prevalence of in BRCA1
promoter methylation was specific to HGSOC and not significantly higher in LGSOC or
non-serous histotypes. Sensitivity analyses showed that methylation frequency did not
differ by cancer stage, surgery (before vs. after), chemotherapy, or tissue storage time but
did decrease with age which was adjusted for in their comparisons. Additionally, tumor
BRCA1 promoter methylation was five-times more frequent in cases with PBL methylation
(18 in 29, 62%) than in cases without (seven in 58, 12%). A substantial proportion (54%, 13
in 24) of cases with PBL BRCA1 methylation also displayed methylation amongst other
organ tissues whereas none of the patients without PBL methylation showed this feature,
suggesting inheritance of the epimutation rather than somatic origin.
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Table 1. DNA methylation in known ovarian cancer susceptibility genes.

First Author,
Year, Country Study Design Sample Size a Case Criterion Platform

Methylation
Type, Thresholds

Prevalence
Comments

Gene(s) N (%)

Hansmann,
2012, Germany Case-only

641 Cases
(613 BC,
39 EOC)

Familial or early-
onseta BC or EOC

Chemotherapy
naïve

BRCA1/2 negative

Bisulfite
pyrosequencing

(4-7 CpG)
Bisulfite plasmid

sequencing
(27 CpG)

Hypermethylation
as 75th percentile +

3xIQR,
>6% for all genes

ATM
BRCA1
BRCA2
PTEN

RAD51C
TP53

0
All: 9 (1.4%)
EOC: 3 (8%)
BC: 6 (1%)

0
0

All: 3 (0.5%)
EOC: 1 (2.5%)
BC: 2 (0.3%)

0

10 age-matched controls
were tested for BRCA1
and none were
hypermethylated. Formal
statistical comparison was
not included.
Urine, saliva also profiled

Lonning, 2018,
Norway

Two-stage
case-control

Phase I:
934 Cases, 1698

Controls
(332 HGSOC, 298

LGSOC, 295
Nonserous)

Phase II:
607 Cases, 1984

Controls
(286 HGSOC, 151

LGSOC, 170
Nonserous)

Invasive EOC
Chemotherapy

naïve
BRCA1/2 negative

qPCR
Bisulfite

pyrosequencing
(NR)

Manually scored
positive/negative
methylation status

>Median

BRCA1

Controls: 70 (4.2%)
All EOC: 59 (6.4%)
OR=1.8 (1.27-2.63)
HGSOC: 32 (9.6%)
OR=2.9 (1.85-4.56)
LGSOC: 12 (4.0%)

OR=0.98
(0.54-1.79)

Nonserous: 15
(5.1%)

OR=1.23
(0.71-2.13)

932 post- and 784
pre-surgery
333 not tested for
BRCA1/2 in phase II
Age-matched controls
Age-adjusted logistic
regression
Tumors also profiled
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Table 1. Cont.

First Author,
Year, Country Study Design Sample Size a Case Criterion Platform

Methylation
Type, Thresholds

Prevalence
Comments

Gene(s) N (%)

Evans, 2018, Segregation 49 probands

Familial BC or
EOC

Manchester
score>34

BRCA1/2 negative

Bisulfite
pyrosequencing

(10 CpG)
Bisulfite plasmid

sequencing

Mean promoter
methylation (%) BRCA1

Proband: 2 (4%)
~50% methylated

Dominant
inheritance;

segregates with
c.−107A>T in the

BRCA1 5′ UTR

BRCA1 promoter
hypermethylation was
71.4% informative
Buccal mucosa, tumor,
hair samples also profiled

Tabano, 2020,
Italy Case-control 108 Cases, 60

Controls

Invasive or DCIS
BC or high-grade

non-mucinous
EOC

BRCA1/2 negative

MassARRAY®

EpiTYPER
(9 CpG BRCA1,

11 CpG RAD51C)

Hypermethylation
as >UCL 95% CI b,

>13.6% BRCA1
>12.1% RAD51C

BRCA1
RAD51C

0
Case mean: 4.4%

BC: 4.3%
EOC: 3.9%

Control mean:
4.3%

0
Case mean: 3.7%

BC: 3.7%
EOC: 3.5%

Control mean:
4.3%

NR = not reported; BC = breast cancer; EOC = epithelial ovarian cancer; BC = breast cancer; HGSOC = high-grade serous ovarian cancer; LGSOC = low-grade serous ovarian cancer; PBL = peripheral blood
leukocyte; qPCR = quantitative polymerase chain reaction; OR = odds ratio. a Histotype-specific sample size included when reported in study. b Age at diagnosis < 51 years. c 1000 bootstrap samples in controls
was performed to derive the one-sided 95% percentile bootstrap confidence interval of the controls’ mean.



Cancers 2021, 13, 108 7 of 17

In contradiction to these findings, a study of 108 patients with breast and/or ovarian
cancer and 60 controls found no subjects with promoter hypermethylation in BRCA1 [36].
The discrepancy in detection may be due to dissimilarities in study design since they did
not age-match controls that were significantly younger (median age 61 vs. 41 in cases and
controls, respectively) or limit to chemo naïve blood samples. They also employed different
methylation quantification technology and analytical methods which can both contribute
to differential detection.

In summary, the current literature demonstrates the prevalence of constitutional
epimutations in BRCA1 that may well contribute to EOC susceptibility. However addi-
tional large-scale, confirmatory studies are needed. Further studies with histotype-specific
analysis are particularly warranted given the observed specificity for HGSOC thus far.
Finally, it is important to note that it is unknown whether the promoter hypermethylation
originates in the early zygote or germline. A recent study evaluated BRCA1 promoter
methylation in mother–daughter pairs [39]. However, these data allow no conclusions to
be made on maternal transfer [40].

4. Epigenome-Wide Association Studies of DNA Methylation

Genome-wide DNAm has been examined in four case-control studies termed
epigenome-wide association studies (EWAS) (Table 2). Blood samples were retrospectively
collected and profiled using methylation microarrays with single CpG site probes [41] to
identify differentially methylated probes (DMPs). DMPs may be symptomatic—caused by
immune or other reactive response to the disease state—or etiologic differences that con-
tributed to disease development. It is not possible to distinguish between the two within
the retrospective design, making it difficult to discern the implications for EOC susceptibil-
ity. Nevertheless, EWAS have generated a significant compilation of EOC-associated PBL
epimutations as well as insight into important dynamics of blood-based DNAm and useful
analytical strategies.

The first EWAS in EOC compared 25,642 CpG probes between 113 pre-treatment cases
and 148 unaffected controls and detected 2714 DMPs [42]. With just the top 100 DMPs, EOC
cases could be accurately predicted (AUC = 0.80, 95% CI = 0.84–0.87). It also performed
well for post-treatment cases with active disease (AUC = 0.76, 95% CI = 0.72–0.81) and
poorly for those without active disease (AUC = 0.52, 95% CI = 0.48–0.55). Further analysis
showed that the DMPs largely overlapped with age-related DMPs and strongly correlated
with cell type distributions. Systematic differences in the leukocyte sub-populations were
later confirmed as the major contributor of the findings when the ~2700 DMPs were shown
to be highly correlated with leukocyte-tagging DMPs (spearman correlation = 0.75) and
only 17 DMPs were non-leukocyte DMPs [43,44]. Based on this evidence, subsequent
studies of PBL DNAm have used a series of analytical methods to mitigate confounding by
cell-type.

Two additional EWAS studies were performed in parallel using the same hospital-
based population but employing different analytical methods to mitigate confounding
by cell-type. One study analyzed the total available sample size of 336 EOC cases and
398 controls but limited analysis to ~14,000 probes that were not previously associated
with leukocyte cell-types (i.e., probe filtering) [45]. The other analyzed a subset of the
same population (242 cases/181 controls) that had complete blood count (CBC) measures
available for direct adjustment of cell-type distribution within logistic regression models.
Though the sample size was reduced, this approach allowed more (~22k) CpG probes to be
assessed [46].
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Table 2. Epigenome-wide association studies of DNA methylation in ovarian cancer.

First Author,
Year, Region

Study Design,
Population, Ancestry

Cases/
Controls

Histology, N (%) a Platform
(No. Cpg Tested)

Results Probe/Gene
Replicated

DMP AUC
(95% CI) b

Teschendorff, 2009,
UK

Retrospective,
Population-based,

European
235/148

Serous, 152 (57%)
Endometrioid, 37, (14%)

Mucinous, 30 (11%)
Clear Cell, 28 (11%)

Other, 19 (7%)

HumanMethylation27
(25,642) 2714

0.80
(0.74–0.87) c

0.76
(0.72–0.81) d

73/71

Fridley, 2014, USA Retrospective,
Hospital-based, European 336/338

Serous, 243 (72%)
Endometrioid, 63 (19%)

Mucinous, 8 (2%)
Clear Cell, 16 (5%)

Other, 6 (2%)

HumanMethylation27
HumanMethyla-

tion450
(13,816)

30 NE 6/6

Winham, 2014, USA Retrospective,
Hospital-based, European 242/181 e

Serous, 168 (70%)
Endometrioid, 45 (19%)

Mucinous, 7 (3%)
Clear Cell, 12 (5%)

Other, 10 (4%)

HumanMethylation27
HumanMethyla-

tion450
(22,278)

62 NE 61/59

Li, 2017, China
Retrospective,

Hospital-based, Han
Chinese

230/229

Serous, 109 (49%)
Endometrioid, 59 (26%)

Mucinous, 24 (11%)
Other, 32 (14%)

HumanMethylation450
(450k)

Overall:

6/5

40 0.77 (0.73–0.82)
Serous:

32 0.77 (0.71–0.83)
Endometrioid:

34 0.80 (0.74–0.86)
Mucinous:

11 0.73 (0.61–0.84)

TOTAL 801/715

Serous, 504 (52%)
Endometrioid, 267 (28%)

Mucinous, 69 (7%)
Clear Cell, 56 (6%)

Other, 67 (7%)

2846 82/71

DMP = Differentially methylated probe; NE = not estimated; AUC = area under the curve; CI = confidence interval. a Histology counts provided for n = 266 enrolled subjects in Teschendorff, 2009 but analysis
was limited to n = 235 cases. b AUC was estimated using the top 100 significant CpG probes for Teschendorff et al. and the top 6 CpG probes in Li et al. c AUC for pre-treatment cases with active disease (CA-125
serum > 30). d AUC for post-treatment cases with active disease (CA-125 serum > 30). e Subjects are a subset from Fridley, 2014 and are not counted in total sample size.
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While both methods aimed to accomplish the same goal—identification of DMPs
that were independent of cell-type differences—the results were strikingly disparate with
no overlap between findings. With the probe filtering method [45], 30 DMPs were de-
tected and pathway analysis implicated enrichment for the telomerase signaling pathway
(HDAC3, IL2RG, PIK3C2B, PIK3R1, and POT1) and paxillin signaling pathway (ARFIP2,
ITGB6, PIK3C2B, PIK3R1, and SRC). Other findings relevant to cancer biology included
hypomethylation in the gene body of HHIP (hedgehog-interacting protein) which has been
associated with tumor growth and angiogenesis [47], and promoter hypomethylation for
antiapoptotic CUL7 that inhibits p53 [48] and Caspase-8 [49]. With the CBC adjustment
method [46], 62 DMPs were identified with the most significant local to cancer-associated
genes SOCS2 and SEPT9, the latter of which has been previously implicated in ovarian tu-
morigenesis [50]. Notably, 61 (98%) of the CBC-adjusted DMPs overlapped with previously
reported unadjusted DMPs from Teschendorff et al. (2009), suggesting that the replicated
probes are either robust to cell-type distribution or that the CBC adjustment method was
not able to remove all confounding by cell-type. In the filtering method, only six (20%)
DMPs overlapped with prior unadjusted results. However, the complete lack of overlap
between filtered and CBC-adjusted probes in the sample clinical population suggests these
may be leukocyte-associated DMPs.

The study by Winham et al. [46] also performed novel regional-based testing for
a subset (n = 163) of samples profiled using a higher density array. CpG probes were
aggregated into 25,607 CpG islands to increase statistical power but this method also has
biological relevance since individual CpG methylation is less stable and usually the entire
promoter is either methylated or not [51]. Interestingly, highly ranked single DMP sites
were not significant at the regional-level based testing and vice versa. Rather, additional
regions were identified that corresponded with known CSGs including the CpG island in
the promoter of BNC2, a CSG identified through GWAS [52]. Another region identified
was in the promoter of XRCC2, a homologous recombination gene that has been indicated
in EOC susceptibility and other cancers [53].

Another EWAS study was recently conducted among Chinese women and differed
from prior studies by using a two-stage design [54]. The initial discovery stage compared
methylation across ~485,000 CpG probes in 24 EOC cases and 24 controls and validated
96 DMPs in an independent set of 205 EOC cases and 205 controls. In total, 40 validated
DMPs were identified which where enrichment for immune process genes (e.g., LYST,
CADM1, NFATC1). The significant probes did not show correlation with leukocytes.
However, they did correlate with platelet count and coagulation factors. Only 16 DMPs
were not associated with platelets or coagulation factors which included hypermethylation
of CADM1 and CADM2 and hypomethylation of LYST. CADM1 is known to be a tumor
suppressor gene for solid tumors [55] including EOC [56] and is frequently inactivated by
promoter hypermethylation [57]. Observed expression of CADM1 was lower in blood cells
of EOC cases possibly caused by promoter methylation. LYST is a lysosomal trafficking
regulator that promotes proliferation and inhibits apoptosis in multiple myeloma [58], and
also harbors driver mutations for rare bone tumors [59]. Notably, this is the only EWAS
study that has analyzed DNAm by EOC histotypes. In the histotype-specific analysis, most
DMPs were associated with serous and endometrioid EOC while 10 were associated with
mucinous EOC, in concordance with a distinct etiology for mucinous EOC [3]. DMPs that
were only significant in histotype-specific analysis included three serous (LYST, SUN1,
C9orf92), two endometrioid (SAMHD1, GLRX2), and one mucinous and endometrioid CpG
probe (CD177).

In total, EWAS studies have analyzed a total of 801 EOC cases and 715 controls and
identified 2846 DMPs (Table S1). We observed little replication across studies largely owing
to confounding by blood-level factors (cell type distribution, coagulation factors) but also
study heterogeneity. While most EOC cases were comprised of serous histology they
also included a wide range (28–51%) of non-serous ovarian cancers causing phenotypic
heterogeneity across studies. Although histotype-specific DMPs were only reported in one
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study, the findings indicate PBL DNAm may display unique epigenetic alterations that
occur during tumorigenesis [21]. EWAS studies also included adjustments for different
confounders such as demographic and known EOC risk factors (age, parity, age of first birth,
alcohol use, smoking, enrollment year/state) [45,46] and experimental factors (bisulfite
conversion efficiency, array batch) [42]. Despite these differences, 82 DMPs were replicated
in at least one other study comprising 71 replicated genes (Table S2). It is conceivable that
some of the cancer-associated probes could also include predisposition or risk-associated
DMPs. As we noted, several known tumor suppressor genes and oncogenes have been
identified across EWAS and represent candidate susceptibility genes.

5. Genetic Susceptibility Mediated by DNA Methylation

The functional connection between genetic and epigenetic variation is an integral
component of the genetic predisposition to cancer [60]. Numerous studies have mapped
genetic variation to CpG methylation levels (methylation quantitative trait loci, meQTL)
and shown these associations underlie DNAm variation and the inheritance of complex
traits and diseases [33,61]. Three studies have explored methylation-mediated relationships
between genetic variation and EOC risk using different integrative approaches.

Shen et al. [62] performed a candidate gene study and comprehensive analysis of tu-
mor DNAm, associated meQTL, and gene expression for HNF1B, a suspected susceptibility
gene from tumor methylation patterns. HNF1B was hypermethylated in approximately
50% of HGSOC tumors (n = 608) but not in any of the CCOC tumors profiled (n = 4).
Among SNPs within 150kb of HNF1B, nine SNPs were associated with increased risk for
HGSOC (rs7405776 OR = 1.13, 95% CI = 1.09−1.17, P = 3.1 × 10−10) but conversely were
associated with reduced risk for CCOC (rs11651755 OR = 0.77, 95% CI = 0.70−0.84, P = 1.6
× 10−8) (Table 3).

Four of the risk SNPs in the 5′ UTR of HNF1B were significantly correlated with
promoter CpG methylation in tumors, suggesting the aberrant DNAm observed in tu-
mors could be etiologic. Immunohistochemical (IHC) analysis further showed that the
HFN1B protein was expressed in most CCOC tumors where the HNF1B promoter was
not methylated whereas the majority of HGSOC did not express the HNF1B protein and
had frequent HNF1B promoter methylation. Together, these findings demonstrated that
risk-associated variation in HNF1B alters promoter methylation for HGSOC and CCOC
in opposing directions, suggesting it may have a tumor suppressor role in HGSOC and a
reverse, oncogenic role in CCOC.

Two genome-wide studies have evaluated PBL DNAm and genetic variation in EOC
but used different analytical frameworks [63,64]. One was an EWAS-based approach
that identified DMPs and then evaluated whether they correlated with risk SNPs [63].
For the EWAS, PBL CpG DNAm was profiled and compared between 214 cases and
214 controls and identified 1993 DMPs that were subsequently filtered to 185 DMPs with
meQTL. Twenty-eight of the meQTL were associated with risk and mediation analysis using
the causal inference test [65] revealed that 13 DMPs modulated associations of 17 SNPs.
Interestingly, prior EWAS studies [42,46] also detected DMPs at AIM2 and STAB1 which
could both conceivably affect immune system response and cancer development. AIM2
is a member of innate immune sensors that initiate inflammasomes and trigger secretion
of proinflammatory cytokines [66]. Although it has displayed both tumor suppression
and promotion roles across cancer types, its upregulation in ovarian cancers suggests it
could promote EOC progression [67,68]. STAB1 is a transmembrane receptor expressed
on macrophages and lymphatic endothelial cells that acts as an inhibitor of antitumor
immunity [69].
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Table 3. DNA methylation associated with genome-wide significant genetic risk loci.

Study Locus
Genetic Risk DNA Methylation

SNP a

(Gene) Histotype OR
(95% CI) p-Value CpG Site b Correlated

Expression Histotype c Case Status p-Value

Shen, 2013 17q12 rs7405776
(HNF1B) Serous 1.13

(1.09–1.17) 3.1 × 10−10 cg14487292 HNF1B Serous Hyper NE

rs11651755
(HNF1B) Clear cell 0.77

(0.70–0.84) 1.6 × 10−8 Clear cell Hypo NE

Yang. 2019 2q31.1 rs2072590
(HAGLR) Serous 1.20

(1.14–1.25) 3.8 × 10−14 cg25137403 HOXD4 Serous Hyper 9.1 × 10−14

rs711830
(HOXD3) Mucinous 1.30

(1.20–1.40) 7.5 × 10−12 Mucinous Hyper 9.7 × 10−9

rs2072590
(HAGLR) Endometrioid 1.13

(1.04–1.22) 2.4 × 10−3 Endometrioid Hyper 5.8 × 10−5

3q25 rs7651446
(TIPARP) All 1.44

(1.35–1.53) 1.5 × 10−28 cg26405475 SSR3 HG Serous Hypo 1.9 × 10−26

7p22.3 NA cg03634833 ADAP1 All Hypo 5.8 × 10−7

8q24.21 rs10088218
(LINC00824) Serous 0.76

(0.70–0.81) 8.0 × 10−15 cg08478672 NA All Hyper 3.8 × 10−7

9q34.2 rs635634 All 1.11
(1.07–1.16) 4.4 × 10−9 cg14653977 GBGT1 ABO All Hyper 2.0 × 10−9

10p12 rs1243180
(MLLT10) All 1.10

(1.06–1.13) 1.8 × 10−8 cg04231319 MLLT10 All Hypo 1.1 × 10−8

17q21.31 rs2960000
(PLEKHM1)

Serous 1.16
(1.12–1.20) 3.3 × 10−10 cg07067577

ARHGAP27MAPT
All Hypo 6.9 × 10−14

HG Serous Hypo 1.4 × 10−10

17q21.32 rs9303542
(SKAP1) All 1.12

(1.08–1.16) 6.0 × 10−11 cg19139618
SKAP1
HOXB3
HOXB8

All Hypo 7.1 × 10−7

19p13.11 rs2363956
(ANKLE1) Serous 1.16

(1.11–1.21) 3.8 × 10−11 cg21956434 ABHD8 HG Serous Hyper 5.7 × 10−20

All = All invasive EOC; Serous = High and low grade serous histotypes; Mucinous = Borderline/LMP and invasive mucinous histotypes; HG = High-grade. a First genome-wide significant SNP results reported
and referenced. Gene reported is closest gene. b Top CpG site reported when more than one significant CpG was associated with a locus. c Histotype-specific results included for loci with significant differential
associations for histotypes (by Cochran test).
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It is also notable that all meQTL that linked to the 13 DMPs were trans associations
where the SNP was located on a different chromosome than the DMP. This was also
true for the entirety of the 427 DMP-meQTL pairs identified. It is surprising that trans-
meQTL, rather than cis-meQTL, were strictly observed for DMPs since they are estimated
to account for a small portion of heritable PBL CpG (7% vs. 73%, respectively) [70].
Furthermore, VMRs within the genome have shown to be correlated in cis and trans forming
co-methylated networks with low genetic heritability and high cell type specificity [17].
Thus, the predominance of trans-meQTL is intriguing and it is provocative to postulate
whether it’s a reflection of differential blood cell distributions or some other underlying
biology.

The second genome-wide study used a GWAS-based approach that imputed and
compared genetically inherited PBL DNAm levels between 22,406 EOC cases and 40,941
controls [64]. In this innovative application, meQTL were used as genetic instruments to
estimate CpG methylation levels, effectively removing both symptomatic and confounding
differences in methylation that are present in typical EWAS. High density genetic and
PBL DNAm data from the Framingham Offspring Study [71] were used to build genetic
prediction models and risk associations for 62,938 CpG probes were estimated from 751,031
SNPs using GWAS summary statistics. A resulting 89 differentially methylated CpG were
significantly associated with EOC risk and included eight known genomic risk regions
where seven were correlated with local gene expression (Table 3). Additionally, one novel
risk region was identified where increased risk of EOC was associated with hypermethy-
lation of two CpG sites that were correlated with reduced expression of ADAP1 (7p22.3)
a GTPase-activating protein that functions as a scaffold in several signal transduction
pathways. Histotype-specific analysis showed that all DMPs were associated with HGSOC
and three loci (3q25, 17q21.31, and 19p13.11) had HGSOC-specific DMPs. The 2q31.1 locus
was the only region that was also significant for mucinous and endometrioid histotypes.

In comparison to prior EWAS study findings, the integrative GWAS-based approach
replicated (p < 0.10) EWAS associations with increased risk of EOC for hypomethylation of
cg19399532 at C1orf220 [42,46] and hypomethylation of cg21870884 at GPR25 [46]. C1orf220
is a long non-coding RNA that has exhibited upregulation in lung squamous cell carci-
noma [72] and was one of the 71 genes that was replicated across EWAS studies and did not
correlate with age. GPR25 is a G-protein coupled receptor that activates signaling cascades
as a response to extracellular stress and has been linked to heritable arterial stiffness [73].

Collectively, variation in DNAm has been mapped to nine GWAS risk loci using
integrative approaches for tumor and PBL DNAm (Table 3). Future studies mapping
meQTL in additional tissue and cell types will be an important undertaking to further
elucidate the known genetic susceptibility as well as identify additional risk loci. Currently,
meQTL mapping and imputation have been performed with in cis SNPs but it will be
intriguing to investigate the relationship of trans-meQTL with EOC risk using this approach.

6. Environmental Risk Mediated by DNA Methylation

In the prior section, the association between DNAm and EOC susceptibility was
evaluated within a framework focused on the mediation of genetic effects on phenotypic
variance, i.e., genetic (GWAS SNP)→ epigenetic (meQTL association)→ phenotype (EOC).
However, DNAm may also be a mediator of environmental exposures whereby DNAm
alterations can occur without DNA sequence alterations and these changes can influence
gene expression and hence EOC susceptibility, i.e., environmental exposure (risk factor)→
epigenetic (DMP)→ phenotype (EOC). Thus far, only one study has evaluated DNAm as a
mediator of an environmental risk factor for EOC.

In the study by Wu et al. [74], DNAm was evaluated as a causal mediator of the asso-
ciation between EOC risk and alcohol use which is an exposure known to alter DNAm [75].
Among 196 EOC cases and 202 controls previously analyzed in prior EWAS [45,46,63],
DNAm was evaluated in combination with alcohol consumption. Approximately 63% of
cases and 85% of controls reported alcohol use at study enrollment which was associated
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with a significant inverse association with EOC risk (OR = 0.34, p = 0.001). Alcohol use was
associated with reduced CpG methylation in both cases and controls for two DMPs on chro-
mosome 11 that were found to be significant mediators of the association between alcohol
consumption and reduced EOC risk: cg09358725 at LMO2 and cg11016563 at TRPC6. While
this study suggests alcohol use may associate with EOC status by regulating CpG-specific
DNAm patterns, effects on DNAm may be temporary and the identified DMPs may not be
stable. Though results should be interpreted cautiously, they are encouraging for additional
studies to validate these findings.

Studies are needed to assess DNAm as a mediator of other known EOC risk factors.
DNAm alterations have been associated with several previously reported EOC risk factors,
including sex hormone exposure [76], obesity [77], endometriosis [78], irregular menstrua-
tion in women with polycystic ovarian syndrome [79], as well as perceived stress, cortisol
output, and inflammation [80]. Integrating epigenetics into epidemiological investigations
of these exposures may help to elucidate etiological mechanisms of this disease. Further-
more, future studies should also consider whether DNAm may be a modifier of, or act
in combination with (i.e., interaction), both genetic and environmental risk factors for
EOC [81].

7. Conclusions

DNAm has been at the forefront of epigenetic research and has provided a paradigm
for the epigenetic inheritance of cancer susceptibility. The complexities of not only the
inheritance but the dynamics of DNAm across cell types and the lifespan have presented
challenges to the investigation and interpretation of epimutations. Nevertheless, a growing
collection of epidemiological studies with various designs have begun to elucidate the
role of DNAm in EOC susceptibility. While rare hypermethylation occurrences have been
observed, phenotypic variance associated with differences in DNAm secondary to genetic
variation appears to be a significant component of the heritability of EOC. Across EWAS
and integrative study designs, 25% (n = 10) of GWAS risk loci have been correlated with
DNAm changes. Notably, a novel genome-wide significant DNAm risk locus has also been
detected. As detailed maps of DNAm variation across populations and tissues, and in
linkage to methylation (meQTL), expression (eQTL), and transcriptional response (reQTL)
continue to be generated, further revelations of not only individual genetic–epigenetic loci
but potentially co-methylated networks are expected to follow.

While studies with genetic–epigenetic approaches are increasing, studies that integrate
DNAm with environmental exposure data are comparably lacking. More research is
needed to elucidate the relationship between epigenetics and environmental exposures
and how they contribute to the heritability of EOC. Truly comprehensive evaluations of
DNAm will require integration with both genetic and environmental factors. This multi-
dimensional data will carry a higher computational burden necessitating larger sample
sizes. To-date, EOC EWAS studies have been conducted in a significantly smaller number of
samples (<2000 subjects overall) compared to GWAS (>100,000 subjects). Imputation-based
methods for DNAm, such as those employed by Yang et al. [64], could be one approach
to boost power but will require more complex imputation algorithms that account for
environmental exposures and may not be available in reference datasets. Ideally, large-
scale DNAm profiling initiatives should be undertaken, preferably with the higher coverage
technologies that are now available.

Currently, microarrays offer coverage of over 850,000 CpG sites and targeted bisulfite
sequencing is another relatively low-cost option with even higher coverage, capturing
up to several million CpGs. Whole-genome bisulfite sequencing (WGBS) has typically
been cost-prohibitive for association studies, however, it continues to improve in terms of
efficiency and accuracy with lower input amounts and read-depths required, making it an
increasingly feasible option [82]. The application of WGBS will be imperative for a more
comprehensive assessment of DNAm since the coverage of cell-type-specific VMRs are not
well represented with a fixed content design [83] and it captures additional DNAm features
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such as allele-specific methylation [84]. Overall, as technology continues to advance
and costs decrease, future epigenetic studies will be able to evaluate larger numbers of
samples with improved feature capture, enabling further discovery that will enhance our
understanding of DNAm and its contribution to cancer susceptibility.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/1/108/s1, Table S1: All DMPs identified through EWAS in EOC, Table S2: Genes replicated
across EWAS in EOC.
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