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Simple Summary: Radioresistance remains a critical issue in treating oral cancer patients. This study
was thus aimed to identify a potential drug target for enhancing the therapeutic effectiveness of
irradiation and uncover a possible mechanism for radioresistance in oral cancer. Here we show
that FOXDI, a gene encoding forkhead box d1 (Foxdl), is significantly upregulated in primary
tumors compared to normal tissues and serves as a poor prognostic marker in oral cancer patients
receiving radiotherapy. FOXD]1 repression by a gene knockdown experiment dramatically enhanced
the cytotoxic efficacy of irradiation probably via activating the p53-related DNA repairing pathways
and reinforcing the T cell-mediated immune responses in oral cancer cells. Our findings demonstrate
that FOXD1 may play a pivotal role in conferring radioresistance, which might provide a new strategy
to combat the irradiation-insensitive oral cancer cells via therapeutically targeting FOXD1 activity.

Abstract: Radiotherapy is commonly used to treat oral cancer patients in the current clinics; however,
a subpopulation of patients shows poor radiosensitivity. Therefore, the aim of this study is to identify
a biomarker or druggable target to enhance the effectiveness of radiotherapy on oral cancer patients.
By performing an in silico analysis against public databases, we found that the upregulation of FOXD1,
a gene encoding forkhead box d1 (Foxdl), is extensively detected in primary tumors compared
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to normal tissues and associated with a poor outcome in oral cancer patients receiving irradiation
treatment. Moreover, our data showed that the level of FOXD1 transcript is causally relevant to
the effective dosage of irradiation in a panel of oral cancer cell lines. The FOXD1 knockdown
(FOXD1-KD) dramatically suppressed the colony-forming ability of oral cancer cells after irradiation
treatment. Differentially expressed genes analysis showed that G3BP2, a negative regulator of p53,
is predominantly repressed after FOXD1-KD and transcriptionally regulated by Foxd1, as judged
by a luciferase-based promoter assay in oral cancer cells. Gene set enrichment analysis significantly
predicted the inhibition of E2F-related signaling pathway but the activation of the interferons (IFNs)
and p53-associated cellular functions, which were further validated by luciferase reporter assays in
the FOXD1-KD oral cancer cells. Robustly, our data showed that FOXD1-KD fosters the expression of
TXNIP, a downstream effector of IFN signaling and activator of p53, in oral cancer cells. These findings
suggest that FOXD1 targeting might potentiate the anti-cancer effectiveness of radiotherapy and
promote immune surveillance on oral cancer.
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1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common (>90%) of all oral cancers [1]. In 2017,
according to the Oral Cancer Foundation estimation, 49,750 Americans were diagnosed with oral
and oropharyngeal cancer and 9750 individuals died from this cancer. Among those cancer patients,
the 5 year survival rate was about 57% and disease-free survival rate was 58%. Risk factors, such as
betel nut chewing, alcohol consumption, and tobacco smoking have been considered for oral cancer [2].
According to the National Comprehensive Cancer Network (NCCN) guidelines, the treatment options
are varied based on different stages, including surgery, radiotherapy, chemotherapy, and target therapy
(e.g., cetuximab, bevacizumab) [3]. External beam radiotherapy (EBRT) is generally employed in three
situations, such as adjuvant to primary surgery to enhance loco-regional control for advanced cases or
cases with unfavorable pathological features, primary treatment for medically inoperable cases and
salvage or palliative treatment for the persistent or recurrent disease [4]. Modern radiotherapy is most
frequently used to treat advanced head and neck cancer. However, there were no clinical studies to
address the useful biomarker for predicting the effectiveness of radiotherapy, which could offer an
indication for a therapeutic recommendation [5].

The forkhead box (FOX) family consists of various tissue and cell type-specific transcription
regulators with a conserved winged-helix DNA-binding domain (DBD) or forkhead domain [6].
FOX family members are comprised of a common DBD adjacent to distinct transactivation and
repression domains [7]. FOX family members are thought to be important regulators in physiological
development during embryogenesis [7-9]. In addition, FOX transcription factors have been shown to
associate with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of
initiation and thought to be a potential therapeutic strategy to combat cancer and putative biomarkers
for specific cancers [6,10]. The FOXD subfamily includes FOXD1, FOXD2, FOXD3 and FOXD4 and
functions as a critical regulator in normal cell development and disease progression [11-18]. Moreover,
the FOXD subfamily has also been found to play a role as an important regulator for tumorigenesis and
cancer progression [19-24], e.g., therapeutic resistance and cancer metastasis, and serves as a prognostic
biomarker in several types of cancer [25-27]. In oral squamous cell carcinoma, the upregulation of
FOXM1 has been shown to correlate with tumor growth [28], and FOXP3-mediated immune modulation
appeared to potentiate the anti-tumor effectiveness of regulatory T cell-based immunotherapy [29].
In addition, FOXD1 upregulation has been shown to promote therapeutic resistance in breast cancer [24];
however, its role in conferring therapeutic resistance, e.g., radioresistance, in OSCC remains unknown.
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Although previous reports have shown that FOXD subtypes (FOXDs) play a critical role in the
mechanism for tumorigenesis and cancer progression, their roles in regulating oral cancer development
and conferring the radiation resistance of oral cancer remain largely unknown. The aim of this
study was thus focused on dissecting the transcriptional profiling of FOXDs in normal tissues and
primary tumors and evaluating their clinical relevance in oral cancer. Our data demonstrate that the
upregulation of FOXD1 compared to other FOXDs is extensively detected in primary tumors and
significantly correlated with a poorer clinical outcome in oral cancer patients. Our results further
show that that FOXD1 upregulation correlates with a poor responsiveness of oral cancer patients to
radiotherapy and desensitizes oral cancer cells to irradiation treatment probably via elevating the G3BP2
and E2F-related pathways and suppressing the signaling cascades related to the TXNIP-associated
interferon responsiveness and p53 activity. This study is the first to document the oncogenic role of
FOXD1 in oral cancer.

2. Results

2.1. FOXD1 Upregulation Is Dominant for Primary Tumors Compared to Normal Tissues Derived from
Patients with Oral Cancer

We firstly dissected the transcriptional profile of genes encoding forkhead box d (Foxd) protein
family in normal tissues and primary tumors derived from The Cancer Genome Atlas (TCGA) head
and neck cancer patients (Figure 1A). The data showed that the mRNA levels of FOXD1, FOXD2,
FOXD3 and FOXD4 in primary tumors are significantly (p < 0.001) higher than that of normal tissues
(Figure 1B). Moreover, except FOXD3, we found that FOXD1, FOXD2 and FOXD4 are more significantly
(p < 0.01) upregulated in primary tumor tissue compared to normal adjacent tissues derived from
TCGA head and neck cancer patients (Figure 1C). We further analyzed the transcriptional profile of
FOXD1, FOXD2 and FOXD4 in the anatomic subdivision of TCGA head and neck cancer (Figure S1A)
and found that the expression of FOXD?2 in the hypopharynx and FOXD4 in the tonsil is relatively
higher than other tissues, such as the oral cavity (Figure S1B). However, the mRNA levels of FOXD1
among the anatomic subdivision of head and neck cancer tissues appeared to show no difference
(Figure S1B). Robustly, FOXD1, but not FOXD2, FOXD3 and FOXD4, was significantly (p < 0.01)
upregulated in primary tumors compared to normal adjacent tissues derived from oral cancer patients
deposited in the GSE42743 dataset (Figure 1D). Similar views were also found in the paired normal
adjacent tissue and primary tumor derived from TCGA oral cancer subjects (Figure S1C).
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Figure 1. FOXD1 is upregulated in primary tumors compared to normal tissues derived from head
and neck cancer and oral cancer patients. (A) The heatmap for the transcriptional profiling of genes
encoding FOXD1, FOXD2, FOXD3 and FOXD#4 using the TCGA head and neck cancer database.
(B) Boxplot for the mRNA levels of FOXD1, FOXD2, FOXD3 and FOXD4 in normal tissues and primary
tumors derived from TCGA head and neck cancer database. The statistical differences were analyzed
by student t-test. (C and D) The mRNA levels of FOXD1, FOXD2, FOXD3 and FOXD4 in the normal
adjacent tissues (NAT) and primary tumors from the TCGA head and neck cancer patients (C) and
GSE42743 oral cancer patients (D). The statistical significances were evaluated by paired ¢-test.

2.2. FOXD1 Upregulation Predicts a Poor Prognosis in Oral Cancer Patients

We next evaluated the prognostic significance of FOXD1, FOXD2, FOXD3 and FOXD4 in TCGA
head and neck cancer patients. Kaplan—Meier analysis revealed that FOXD1, as compared to FOXD2,
FOXD3 and FOXD4, upregulation more significantly (p = 0.008) predicts a poor overall survival rate in
TCGA head and neck cancer patients (Figure 2A). Moreover, under the condition of overall survival
probability, the Cox regression test using univariate and multivariate modes revealed that FOXD1
serves as an independent risk factor in comparison with other clinical parameters for predicting the
prognosis of head and neck cancer patients (Figure 2B). Although the mRNA levels of FOXD1 showed
no differences between the groups of age (<0 vs. >60), gender (female vs. male) and pathologic staging
(T1/2 vs. T3/4; NO vs. N1; stage I/Il vs. 1I/IV), FOXD1 expression was relatively higher in primary
tumors derived from head and neck cancer patients without smoking history or oral squamous cell
carcinoma (OSCC) subdivision (Figure 2C). Importantly, a higher mRNA level of FOXD1 was detected
in patients who died from OSCC compared to patients who died from other causes and who were
alive at the end of follow-up (Figure 2D).
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Figure 2. FOXDI1 serves as a poor prognostic marker in OSCC patients. (A) Kaplan—-Meier analysis
for FOXD1, FOXD2, FOXD3 and FOXD4 transcripts in TCGA head and neck cancer patients under
the condition of overall survival probability. (B) Cox regression test using univariate and multivariate
modes against the indicated variables, including age, gender, pathologic T stage (pT), pN, stage,
radiation therapy (RT), smoking history, sub-division and FOXD1 mRNA levels, under the condition of
overall survival probability. CI denotes confidence interval. (C) Dot plot for FOXD1 mRNA levels
in primary tumors derived from TCGA head and neck cancer patients divided by various clinical
parameters. The statistical differences were analyzed by student t-test. (D) Boxplot for the mRNA levels
of FOXD1 in primary tumors derived from GSE42743 oral cancer patients with different follow-up
results. The statistical significance was analyzed by one-way ANOVA using Tukey’s test.

2.3. FOXD1 Repression Enhances the Therapeutic Responsiveness of Oral Cancer to Radiotherapy

Since radiotherapy is commonly used to treat oral cancer patients, we next dissected the correlation
between FOXD1 expression and irradiation responsiveness in oral cancer. By using TCGA head and
neck cancer database, we found that FOXD1 expression significantly (p = 0.036) correlates with a
shorter time to new tumor event in patients receiving radiotherapy (Figure 3A). A similar view was
also found in GSE42743 OSCC patients receiving post-operative radiotherapy (Figure 3B). Moreover,
our data showed that the endogenous protein and mRNA levels of FOXDI are causally associated with
the cell viability and colony-forming ability detected after 24 h post-treatment with irradiation at 8 Gy
in oral cancer cell lines HSC2, HSC3, HS5C4 and SAS (Figure 3C-E and Figure S2A,B). To understand
if FOXD1 repression could enhance the radiosensitivity, we next performed FOXDI knockdown
experiments in HSC4 cells. Robustly, FOXD1 knockdown by its two independent shRNA clones
(Figure 3F) significantly (p < 0.01) suppressed the colony-forming ability of HSC4 cells pretreated with
irradiation at 4 or 8 Gy (Figure 3G,H) as well as cell viability (Figure S3).
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Figure 3. FOXD1 upregulation predicts a poor response to radiotherapy in oral cancer. (A,B) Scatchard
plot for FOXD1 expression versus time to new tumor event in TCGA head and neck cancer patients (A)
and FOXD1 expression versus overall survival time in GSE42743 oral cancer patients (B) after radiation
therapy. The Pearson correlation test was used to evaluate the statistical significance. (C) The protein
levels detected by Western blot analyses (upper) and the mRNA levels detected by RT-PCR (middle)
Q-PCR (lower) of FOXD1 and GAPDH in a panel of oral cancer cell lines HSC-2, HSC-3, HSC-4 and
SAS. (D) Cell viability of the indicated oral cancer cell lines at 24 h post-exposure to 8 Gy irradiation.
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(E) Scatchard plot for the correlation between FOXD1 expression and cell viability at 24 h post-exposure
to 8 Gy irradiation in the detected oral cancer cell lines. (F) The protein levels detected by Western blot
analyses (upper) and the mRNA levels detected by RT-PCR (middle) Q-PCR (lower) of FOXD1 and
GAPDH in parental (PT) HSC4 cells and HSC4 cells transfected with non-silencing (NS) control shRNA
or 2 independent FOXD1 shRNAs. In C and F, GAPDH used as an internal control of the designated
experiments. (G,H) Crystal violet staining for the cell colonies of HSC4 cell variants at 2 weeks
post-exposure to the designated dose of irradiation (G) and the histograms for the results obtained
from three independent experiments of colony-forming assay (H). In C, F and H, the error bars denote
the data from three independent experiment presented as mean + SEM. Non-parametric Friedman test
was used to estimate the statistical significances. * p value < 0.05, ** p value < 0.01, *** p value < 0.001.

2.4. FOXD1 Repression Results in the Downregulation of G3BP2-Related Pathway in Oral Cancer

To delineate a possible mechanism for the FOXD1-associated radioresistance in oral cancer, we next
analyzed the mRNA levels of annotated genes on Illumina microarray after FOXD1 knockdown in
A375 and MeWo melanoma cells by using GSE111766 dataset (Figure 4A). The obtained fold changes
of these annotated genes in the FOXD1-silencing cells compared to control cells were further used to
perform differentially expressed genes (DEG) and gene set enrichment analysis (GSEA) experiments
(Figure 4B,C and Tables S1 and S2). DEG experiments revealed that G3BP2 expression is predominantly
downregulated after FOXD1 knockdown in both detected cell lines (Figure 4B). We next validated
this finding in the HSC4 cells and found that FOXD1 knockdown dramatically reduces the protein
and mRNA levels in HSC4 cells (Figure 4D). Similar to FOXD1, the mRNA levels of G3BP2 in HSC4
cells were higher than other oral cancer cell lines (Figure S4). Since the Foxdl protein acts as a
transcription factor, we thus performed luciferase-based promoter activity assay to examine if G3BP2
expression is transcriptionally regulated by Foxd1. By using in silico analysis, we found that G3BP2
promoter region (—740 to —734) contains Foxd1 DNA-binding sequences GTAAACA (Figure 4E).
Luciferase-based promoter activity assays were performed in HSC4 cells by transfecting an expression
vector containing Gaussia luciferase gene adjacent to the G3BP2 promoter (—1301 to +141) harboring
wild-type or mutated (GTAAACA to GTCCCCA, Figure 4E) Foxd1l DNA-binding sequences. The data
demonstrated that luciferase activity by transfecting the vector-containing wild-type, not mutant,
Foxd1 DNA-binding sequences is dramatically reduced in the FOXD1-silencing cells compared to
parental and non-silencing control cells (Figure 4F). Moreover, we found that the gene expression
of FOXD1 and G3BP2 is positively correlated in primary tumors derived from GSE42734 OSCC
patients (Figure 4G). These findings indicate that G3BP2 is one of downstream target genes for Foxd1
transcription factor.
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Figure 4. FOXD1 knockdown induces the downregulation of G3BP2 expression in oral cancer
cells. (A) The flow-chart of processing and analyzing the microarray data from GSE111766 dataset.
(B,C) Scatchard plot for the fold change (FC) of FOXD1 mRNA levels in A375 and MeWo cells (B) and
the normalized enrichment score (NES) of GSEA experiments. In B, the genes with log,FC > 1.0 or
< —1.0 in A375 and MeWo cells after FOXD1 knockdown are labeled as red and blue dots, respectively.
In C, the significantly (nominal (NOM) p < 0.05 and false discovery rate (FDR) p < 0.05) upregulated
(red dots) and downregulated (blue dots) gene sets in the A375 and MeWo cells after FOXD1 knockdown.
(D) The protein levels detected by Western blot analyses (upper) and the mRNA levels detected by
RT-PCR (middle) and Q-PCR (lower) of G3BP2 and GAPDH in parental (PT) HSC4 cells and HSC4
cells transfected with non-silencing (NS) control sShARNA or FOXD1 shRNA. GAPDH was used as an
internal control of the designated experiments. (E,F) The constructs of Gaussia luciferase gene adjacent
to the G3BP2 promoter harboring wild-type or mutated Foxd1 DNA-binding sequences (D) and the
histograms for the results of luciferase-based promoter activity assay in HSC4 cell variants. In D and
F, the non-parametric Friedman test was used to estimate the statistical significances. (G) Scatchard
plot for the expression of FOXD1 and G3BP2 in the primary tumors from GSE42734 oral cancer
patients. Spearman correlation test was used to evaluate the statistical significance. * p value < 0.05,
** p value < 0.01, *** p value < 0.001.

2.5. FOXD1 Repression Promotes Interferon Responsiveness and p53-Related DNA Repairing Pathway in
Oral Cancer

GSEA results show that the gene sets perturbed upon interferon-alpha (IFN-c) or IFN-y stimulation
are positively correlated with the altered gene expression after FOXD1 knockdown in A375 cells
(Figure 5A). To validate if the IFN-x and IFN-y-related signaling pathways are activated after
FOXD1 knockdown in oral cancer cells, we performed luciferase-based promoter activity assays
using commercialized luciferase-containing vectors used for determining the activities of IFN-« and
IFN-y-related signaling pathways in HSC4 cells (Figure 5B,C). The data showed that luciferase activities
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are significantly (p < 0.01) increased after FOXD1 knockdown (Figure 5B,C), indicating a negative
correlation between FOXD1 expression and interferon actions in oral cancer. Since interferons play
a critical role in triggering T cell-mediated tumor-killing effect, we were interested in dissecting the
expression of PD-L1 which is able to suppress T cell function via interacting with its receptor PD-1 in
oral cancer. By using GSE42734 dataset, we found that the mRNA levels of FOXD1 and PD-L1-coding
gene CD274 are positively correlated in primary tumors derived from oral cancer patients (Figure 5D).
Robustly, FOXD1 knockdown resulted in the repression of PD-L1 gene in HSC4 cells (Figure 5E).
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of TXNIP-associated interferon responses and p53 activation in oral cancer cells. (A) The enrichment
score (ES) derived from the correlation among the IFN-«/y-response gene sets and the queried
Pearson’s correlation coefficient (r) is plotted (green curve). FDR denotes the false discovery rate.
(B,C) The constructs of firefly luciferase gene adjacent to the IFN-stimulated response element (ISRE)
and IFN-gamma activation site (GAS) response element (upper inserts) and the histograms for the
results of luciferase-based promoter activity assays in HSC4 cell variants. (D) Scatchard plot for the
expression of FOXD1 and PD-L1 gene (CD274) in the primary tumors from GSE42734 oral cancer
patients. (E) The mRNA levels of PD-L1 detected by RT-PCR (upper) and Q-PCR (lower) in parental
(PT) HSC4 cells and HSC4 cells transfected with non-silencing (NS) control sShRNA or FOXD1 shRNA.
(F) The enrichment score (ES) derived from the correlation among the E2F target/p53 pathway gene sets
and the queried Pearson’s correlation coefficient (r) is plotted (green curve). (G) Western blot analyses
for phosphorylated Rb, total Rb and GAPDH protein in HSC4 cell variants. GAPDH was used as an
internal control of protein loading. (H) The constructs of firefly luciferase gene adjacent to the 10-4
cyclin E promoter (upper insert) and the histograms for the results of luciferase-based promoter activity
assays in HSC4 cell variants. (I) The illustration for that TXNIP gene is included in the upregulated
genes after FOXD1 knockdown, IFN-a/y-response gene sets and p53 pathway gene set. (J) The mRNA
levels of TXNIP detected by RT-PCR (upper) Q-PCR (lower) in parental (PT) HSC4 cells and HSC4
cells transfected with non-silencing (NS) control shRNA or FOXD1 shRNA. (K) Scatchard plot for the
expression of FOXD1 and TXNIP in the primary tumors from GSE42734 oral cancer patients. In D
and K, Spearman correlation test was used to evaluate the statistical significance. In B, C, E, H and
J, non-parametric Friedman test was used to estimate the statistical significances. * p value < 0.05,
** p value < 0.01, *** p value < 0.001.

In addition, GSEA simulation also predicted the inactivation of the E2F-related signaling axis
but the activation of p53-associated pathway in response to FOXD1 knockdown (Figure 5F). FOXD1
knockdown in HSC4 cells led to the reduction of phosphorylated Rb (Figure 5G), which is incapable of
inhibiting E2F activity. Luciferase-based promoter activity assay confirmed that E2F is suppressed
in HSC4 cells after FOXD1 knockdown (Figure 5H). Intriguingly, we found that TXNIP, a gene that
encodes thioredoxin-interacting protein, is a consensus gene in the upregulated genes after FOXD1
knockdown in the melanoma cells (Figure 4B) and the gene sets of IFN-a/y responses and p53 pathway
(Figure 5I). Moreover, FOXD1 knockdown appeared to elevate the expression of TXNIP in HSC4 cells
(Figure 5]). In oral cancer tissues derived from the GSE42734 dataset, we found that the expression of
FOXD1 and TXNIP is significantly (p = 0.029) inversed (Figure 5K).

3. Discussion

Recent reports indicated that FOXD1 plays a oncogenic effect in several types of cancer [30-36]
and likely associates with the mechanism for radioresistance [37]. In this study, our data showed that
FOXD1 is capable of directly regulating the expression of G3BP2, which is capable of inhibiting p53
activity through a direct binding, which may further promote p53 nuclear export via increasing
P53 sumoylation [38] and serves as a poor prognostic marker in prostate cancer patients [39].
Tumor suppressor p53 acts as a critical regulator for DNA damage response and controls the G1
checkpoint of cell cycle via interacting with Rb-E2F pathway [40]. The inactive mutation of p53 was
also detected in lung cancer with radioresistance [41]. In addition, our results reveal that FOXD1
upregulation is accompanied with an enhanced activity of E2F, probably due to the dissociation
with hyper-phosphorylated Rb protein, which has been shown to promote cell cycle progression and
desensitize oral cancer cells to irradiation [42]. Here, we firstly document that FOXD1 upregulation
probably associates with the mechanism for radioresistance in oral cancer, probably via activating
G3BP2 and E2F-related pathways and negatively regulating the p53-related cellular functions (Figure 6).
Therefore, the therapeutic targeting of FOXD1 might be a new strategy to potentiate the efficacy of
irradiation in treating oral cancer.
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Figure 6. A possible mechanism for the FOXD1-promoted radioresistance in oral cancer cells. FOXD1

forces cell cycle progression through the induction of E2F activation and G3BP2 expression which
subsequently inhibits the p53-mediated DNA repair and suppresses T cell-mediated cell death via
elevating the expression of PD-L1 in radioresistant oral cancer cells. On the other hand, FOXD1
alleviates the function of interferon (IFN)-responsive pathways on promoting the TXNIP-mediated p53
activation and enhancing T cell-mediated cell death in radioresistant oral cancer cells.

Radiation therapy has been shown to enhance the anti-tumor capacity of adaptive immunity by
augmenting a type I interferon (IFN)-dependent innate immune sensing of tumors [43]. Based on this
immunomodulatory effect of radiation therapy, several clinical trials were performed to evaluate the
anti-cancer effectiveness of combining irradiation with IFNs [44—46]. Similarly, our results demonstrate
that FOXD1 knockdown enhances the radiosensitivity of oral cancer cells via activating the IFN-« and
IFN-y-responsive pathways. In addition, the immunostimulatory effects of radiation therapy, such as
improved immune cell recruitment and enhanced susceptibility to T cell-mediated cell death, were also
reported previously [47]. Here, we found that FOXD1 knockdown is concurrently accompanied with a
reduced expression of PD-L1, a critical suppressor for T cell function through the binding with PD-1,
in oral cancer cells with poorer radiosensitivity. These findings suggest that FOXD1 repression may
not only promote the therapeutic efficacy of irradiation but also potentiate the T cell-mediated adaptive
immunity in combating oral cancer.

In contrast, TXNIP, a member of the tumor suppressor family, has been shown to increase p53
stability and activity, thereby sensitizing breast cancer cells to apoptotic stimulation [48]. On the other
hand, a recent report showed that an increased level of TXNIP probably results from the activation
of the JAK-STAT pathway and is associated with a favorable prognosis in patients with renal cell
carcinoma [49]. In this study, our data showed that FOXD1 knockdown dramatically enhances the
expression of TXNIP and the IFN-a/y responsiveness, which is determined by the interaction of the
JAK/STAT1 signaling axis with IFN-stimulated response element (ISRE) and IFN-gamma activation
site (GAS) response element within the upstream promoter of the luciferase gene in oral cancer
cells. Based on these findings, we thought that FOXD1 upregulation confers radioresistance by
downregulating the JAK-STAT pathway-mediated TXNIP expression, which may ultimately decrease
and inactivate p53 in oral cancer (Figure 6).

4. Materials and Methods

4.1. Data Collection and Processing from TCGA and GEO Databases

The clinical data and overall survival (OS) time for TCGA head and neck cancer patients were
collected from the UCSC Xena website (UCSC Xena. Available online: http://xena.ucsc.edu/welcome-
to-ucsc-xena/). The molecular data obtained by RNAseq (polyA p Illumina HiSeq, CA, USA) analysis
of the TCGA head and neck cancer cohort were also downloaded from the UCSC Xena website.
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Microarray results with accession numbers GSE42743, which was performed by Holsinger C et. al.
from Stanford University School of Medicine to compare differences of gene expression between oral
cancer samples and adjacent normal mucosa, and GSE111766, which was established by Larribere
L et. al. from DKFZ Research Center in Germany to dissect the alteration of gene expression after
FOXD1 knockdown in melanoma cell lines, and the related clinical data were obtained from the Gene
Expression Omnibus (GEO) database on the NCBI website. The raw intensities of mRNA levels
derived from GSE42743 dataset were normalized by robust multichip analysis using GeneSpring
GX11 (Agilent Technologies, CA, USA). The mRNA expression levels were normalized by the median
of the detected samples and presented as log, values. The fold changes of gene expression after
FOXD1 knockdown in A375 [FOXD1 knockdown #1 (GSM3039523, GSM3039524, GSM3039525) versus
control (GSM3039516, GSM3039517, GSM3039518) and MeWo (FOXD1 knockdown #1 (GSM3039519,
GSM3039520) versus control (GSM3039514, GSM3039515) were obtained by using GEO2R software
and presented as log, values.

4.2. Cell Culture Condition

Oral cancer cell lines HSC-2, HSC-3, HSC-4 and SAS were obtained from the Japanese Collection
of Research Bioresources (JCRB) Cell Bank and were cultivated in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% non-essential amino acids (NEAA)
at 37 °C in a humidified atmosphere containing 7% CO2. 293T cells were obtained from the American
Type Culture Collection (ATCC) and cultivated in DMEM containing 10% FBS and incubated at 37 °C
with 5% CO2. The cell lines used in this study were routinely subjected to short tandem repeat (STR)
analysis, morphologic and growth characteristics and mycoplasma detection.

4.3. Radiation Exposure and Cell Viability Analysis

Cells were exposed to 6 MV X-rays using a linear accelerator (Digital M Mevatron Accelerator,
Siemens Medical Systems, CA, USA) at a dose rate of 8 Gy/min. To ensure electronic equilibrium,
a tissue-equivalent bolus (2 cm) was placed on the top of the plastic tissue-culture flasks. To obtain
full backscatter, tissue-equivalent material (10 cm) was placed under the flasks. After the exposure to
the designated irradiation doses, cells were centrifuged and resuspended in PBS. For the cell viability
assay, equal volumes of cell suspension and Trypan blue solution (0.4% in PBS) were mixed in order to
stain the dead cells that were then placed on a hemocytometer and counted under a microscope.

4.4. Colony Formation Assay

After radiation exposure, cells (2000/well) were seeded on polystyrene 6-well plates and cultivated
for 2 weeks. Cells were then fixed with 80% ethanol and stained with 1% crystal violet. After several
washes, 30% acetic acid was used to solubilize the remaining crystal violet. The optical density of
solubilized crystal violet was then measured by a photometer using 595 nm wavelength.

4.5. Lentivirus-Driven shRNA Infection

All shRNA plasmids with a puromycin selection marker were purchased from the National RNAi
Core Facility Platform in Taiwan. Lentiviral particles were produced by cotransfecting the shRNA
plasmid with the pMDG and pA8.91 vectors into 293T cells using a calcium phosphate transfection kit
(Invitrogen). Post-transfection for 48-72 h, the media were harvested as viral stocks. Cells grown with
50% confluence on 6-well plates were replenished with fresh media containing 5 pg/mL polybrene
(SantaCruz, Dallas, TX, USA) prior to the infection with a lentiviral particle-driven control or target
gene shRNA at 2-10 multiplicity of infection (MOI) overnight. To select cells that stably express
the control or target gene shRNA, cells were further incubated with puromycin (10 ug/mL) for 24 h.
To confirm the knockdown efficiency, cell lysates from the puromycin-resistant cells were subsequently
subjected to RT-PCR analysis.
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4.6. Reverse Transcription PCR (RT-PCR) and Quantitative PCR (Q-PCR)

A TRIzol extraction kit (Invitrogen) was employed to extract total RNA from the detected cells.
Aliquots (5 pg) of total RNA were converted to cDNA by M-MLV reverse transcriptase (Invitrogen)
and then amplified by PCR with Tag-polymerase (Protech) using paired primers (for FOXDI,
forward-CTATGACCCTGAGCACTGAGATGTC and reverse-GCAGGATGTCATCGTCGTCCTC;
for G3BP2, forward-CTGAAGAGCTGAAACCACAAGTGG and reverse-CGGTTGTCAGAGTCATT
CTGTTCC; for PD-L1, forward-GCTGCACTTCAGATCACAGATGTG and reverse-GTGTTGATTCTC
AGTGTGCTGGTC; for TXNIP, forward-GAGGTGTGTGAAGTTACTCGTGTC and reverse-GACA
TCCACCAGATCCACTACTTC; for GAPDH, forward-AGGTCGGAGTCAACGGATTTG and reverse-
GTGATGGCATGGACTGTGGTC). Q-PCR was performed by using Power SYBR™ Green PCR Master
Mix (Thermo Fisher). The obtained mRNA level of the detected gene was further normalized to the
mRNA level of GAPDH. The 2-24t method was used to calculate the fold changes.

4.7. Western Blotting Assay

Aliquots of total protein (20-100 nug) were loaded into each well of an SDS gel, separated by
electrophoresis and then transferred to PVDF membranes. Prior to the incubation with primary
antibodies against Foxd1 (Santa Cruz), G3BP2 (Abcam), total/phosphorylated Rb (Cell Signaling)
and GAPDH (AbFrontier) overnight at 4 °C, the membranes were incubated with blocking buffer
(5% skim milk in TBS containing 0.1% Tween-20) for 2 h at room temperature. After several washes,
the membranes were further incubated with a peroxidase-labeled secondary antibody for another
1 h at room temperature. Immunoreactive bands were finally visualized by using an enhanced
chemiluminescence system (Amersham Biosciences, Tokyo, Japan). Uncut blots can be found at
Figure S5.

4.8. Site-Directed Mutagenesis and Luciferase Reporter Assay

PCR for site-directed mutagenesis against Foxdl DNA-binding site within G3BP2 promoter
was performed with paired primers, forward-TTGCACACTAAACTCACCTACATTGGGGACTTA
ACCCATCCTAGGTTTTAAGC and reverse-GCTTAAAACCTAGGATGGGTTAAGTCCCCAATGTA
GGTGAGTTTAGTGTGCAA, using a pfu polymerase kit (Stratagene, La Jolla, CA, USA). The PCR
products were treated with Dpnl endonuclease (New England BioLabs, Hitchin, Hertfordshire, UK) to
digest the methylated parental DNA template.

Luciferase reporter vectors containing IFN-stimulated response element (ISRE) and IFN-gamma
activation site (GAS) response element were purchased from Promega. Luciferase reporter vector
containing E2F response elements within the promoter region was purchased from Addgene. Gaussia
luciferase reporter vector containing G3BP2 promoter was purchased from Gene Copoeia. Cells grown
with 70% confluence on in 6-well plates were cotransfected with luciferase reporter and Renilla
luciferase expression vectors. Post-transfection for 24 h, a Dual-Glo®® Luciferase Assay System
(Promega) was employed to measure the cellular luciferase activities. The assay procedure was
performed by a protocol according to the manufactural guideline. The level of Gaussia and firefly
luminescence was normalized to that of Renilla luminescence.

4.9. Statistical Analysis

SPSS 17.0 software (Informer Technologies, Roseau, Dominica) was used to analyse statistical
significance. The paired t-test was utilized to compare Gach gene expression in the cancer tissues
and corresponding normal tissues. Pearson’s and non-parametric Spearman’s correlation tests were
performed to estimate the association among mRNA levels of FOXD1, G3BP2, PL-D1 and TXNIP in
the detected primary tumors. Evaluation of survival probabilities was determined by Kaplan-Meier
analysis and log-rank test. Student t-test, paired t-test and one-way ANOVA with Tukey’s test
were used to estimate the statistical significance of the detected gene expression in clinical samples.
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The non-parametric Friedman test was used to analyze the non-parametric data. p values < 0.05 in all
analyses were considered statistically significant.

5. Conclusions

Our results demonstrate that FOXD1 is highly expressed by primary tumors compared to the
adjacent normal tissues and serves as a poor prognostic marker in oral cancer patients receiving
irradiation therapy. The targeting of FOXD1 might be a good strategy to enhance the radiosensitivity of
oral cancer cells via downregulating G3BP2-related pathways and upregulating the TXNIP-associated
cellular functions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2690/s1,
Figure S1: The transcriptional profile of FOXD1, FOXD2 and FOXD4 in the anatomic subdivision of TCGA head
and neck cancer, Figure 52: The colony-forming ability of HSC2, HSC3, HSC4 and SAS oral cancer cells after
irradiation exposure at the designated doses, Figure S3: FOXD1 knockdown sensitizes HSC4 cells to irradiation
treatment, Figure S4: The measurement of G3BP2 mRNA levels in oral cancer cell lines, Figure S5: Uncut blots
for Figure 3C,F, Figures 4D and 5G, Table S1: The list of upregulated and downregulated genes after FOXD1
knockdown in A375 and MeWo cells, Table S2: The list of candidate pathways from GSEA experiment.
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