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Simple Summary: Standardized reading schemes, the use of indicators derived from medical images
and the use of deep learning-based algorithms become very popular in medical imaging. In this
retrospective study, we evaluated the performance of an automatic deep-learning-based algorithm for
computer-assisted diagnosis in the field of oncological whole-body bone imaging in nuclear medicine.
In addition to prostate cancer, representing a tumor entity evaluated thoroughly using the examined
methodology (Bone Scan Imaging (BSI) methodology), a modification of the BSI based standard
rating scheme facilitate the use of the methodology for other tumor entities (e.g., breast cancer, lung
cancer, hepatocellular carcinoma). Diagnostics in clinical routine can benefit from the examined
methodology, mainly due to its sensitivity and the high negative predictive value. Non-pathological
bone scans may be easily identified. This may lead to a reduced working load in nuclear medicine
departments and may result in an improved and more standardized workflow.

Abstract: The bone scan index (BSI), initially introduced for metastatic prostate cancer, quantifies
the osseous tumor load from planar bone scans. Following the basic idea of radiomics, this method
incorporates specific deep-learning techniques (artificial neural network) in its development to
provide automatic calculation, feature extraction, and diagnostic support. As its performance in
tumor entities, not including prostate cancer, remains unclear, our aim was to obtain more data about
this aspect. The results of BSI evaluation of bone scans from 951 consecutive patients with different
tumors were retrospectively compared to clinical reports (bone metastases, yes/no). Statistical analysis
included entity-specific receiver operating characteristics to determine optimized BSI cut-off values.
In addition to prostate cancer (cut-off = 0.27%, sensitivity (SN) = 87%, specificity (SP) = 99%), the
algorithm used provided comparable results for breast cancer (cut-off 0.18%, SN = 83%, SP = 87%) and
colorectal cancer (cut-off = 0.10%, SN = 100%, SP = 90%). Worse performance was observed for lung
cancer (cut-off = 0.06%, SN = 63%, SP = 70%) and renal cell carcinoma (cut-off = 0.30%, SN = 75%,
SP = 84%). The algorithm did not perform satisfactorily in melanoma (SN = 60%). For most entities,
a high negative predictive value (NPV ≥ 87.5%, melanoma 80%) was determined, whereas positive
predictive value (PPV) was clinically not applicable. Automatically determined BSI showed good
sensitivity and specificity in prostate cancer and various other entities. Particularly, the high NPV
encourages applying BSI as a tool for computer-aided diagnostic in various tumor entities.
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1. Background

Whole-body bone imaging with 99mTc-labeled bisphosphonates is an established diagnostic
procedure in the staging and follow-up of skeletal metastases from various tumor entities [1–6]. Strictly
planar whole-body imaging has an intermediate sensitivity in the detection of metastatic bone lesions
(sensitivity (SN) = 86.5%) compared to whole-body computed tomography (CT), (SN = 72.9%), magnetic
resonance imaging (MRI), (SN = 90.6%), and positron emission tomography (PET), (SN = 89.7%) [7].
Planar bone scan is inferior in terms of specificity (SP = 79.9%) compared to a combination with
ancillary single-photon emission computed tomography (SPECT), (SP = 92.8%), PET (SP = 96.8%),
MRI (SP = 95.4%), or CT (SP = 94.8%) [7]. SPECT, including additional low-dose CT (SPECT/(CT)), e.g.,
performed for attenuation correction and anatomical correlation, can further improve the specificity
and negative predictive value (NPV) in detecting bone metastases [2,6,8]. Planar bone scan is still the
standard of care due to its availability, lower cost, and ability to assess the whole body [9].

The evaluation of bone scans is observer-dependent and shows significant inter-observer
variability [10]. Two decades ago, the bone scan index (BSI) was introduced in patients with
prostate cancer to quantify the percentage of metastatic skeletal mass from planar bone scans [11,12].
Following the general trend of using radiomics-based evaluation strategies for feature extraction
and diagnostics [13,14], the methodology was implemented for automatic estimation of BSI based
on deep-learning techniques using an artificial neural network (ANN) [15–17]. The ANN features a
conventional multilayer architecture consisting of an input layer (45 nodes), one hidden layer (20 nodes),
and an output layer, which is used for image segmentation, detection of areas of increased uptake,
and classifying these areas as malignant or benign [15]. The ANN, primarily trained and tested for
bone scans in patients with metastatic prostate cancer (training database: 1211 scans), was used to
diminish interobserver-based effects [15]. BSI was validated as a prognostic indicator, e.g., in high-risk
prostate cancer patients [18]. In contrast, due to false-positive ratings of areas of increased uptake,
the BSI methodology is limited in the staging of patients with newly diagnosed prostate cancer [19].
BSI was evaluated thoroughly in prostate cancer, and some data on its performance in breast and
lung cancer [20–25] are also available. Further validations of the methodology, e.g., for further tumor
entities, are lacking.

The aim of this study was to validate the performance of BSI, automatically calculated by an ANN
trained with bone scans from metastatic prostate cancer patients, in the detection of osseous metastatic
disease from bone scans in different tumor entities. Additionally, we examined the potential for
improving BSI methodology in clinical application by using entity-specific cut-off values to distinguish
between the absence and presence of bone metastases.

2. Methods

2.1. Patients

The data of 4702 patients referred to our department (Department of Radiology and Nuclear
Medicine, University Hospital Magdeburg, Magdeburg, Germany) with a clinical indication for a
bone scan between January 2009 and December 2017 were retrospectively screened for analysis.
Standardized eligibility criteria were defined as follows to guarantee a comparable data quality for
the validation procedure. Patients with suspicion of benign disorders (n = 1067), e.g., loosening of
joint prosthesis or rheumatic affection, were excluded from further analysis. Only the first whole-body
scan of each patient during the observed period was included in the analysis (n = 2740). Some data
were excluded due to methodological constraints, e.g., an incomplete whole-body scan or signs of
extravasation (n = 24). Final count statistics had to exceed 1.0 million counts in the geometric mean
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image, calculated from anterior and posterior projections (n = 733 examinations excluded), to ensure
the good reliability of the BSI [26]. SPECT/(CT) was performed additionally (n = 1032) for localization
of suspect tracer accumulation. Corresponding clinical reports presented the condensed information
from planar imaging and SPECT/(CT). As a result, for these patients, the classification could have been
biased by findings from SPECT/(CT). Patients with SPECT/(CT) data were excluded from primary
evaluation because BSI evaluation is based on planar images only (effect from SPECT/(CT); Table S1).
Finally, we analyzed a total of 951 bone scans (Figure 1).

Figure 1. Patient selection for analysis. Note: * excluded from analysis due to an insufficient count
statistic (<1 million counts in geometric mean images) to comply with methodological constraints
of the BSI algorithm, CT = Computer Tomography, BSI = Bone Scan Index, SPECT = Single Photon
Emission Tomography.

The remaining scans were classified according to the primary tumor entity (Table 1). In case of
multiple known malignancies (n = 11), the current entity triggering the imaging procedure was used
for grouping.

All data analyzed were collected as part of routine diagnosis. The retrospective study was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the
local Ethics Committee of the Otto-von-Guericke-University (Medical Faculty and University Hospital
Magdeburg), Registration Number: R05/20 (15 July 2020).
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Table 1. BSI values determined in different tumor entities for patients found to have no bone metastases
(M0) or having bone metastases (M1) according to clinical report.

Tumor
n Age (Years) Diagnosis M0 Diagnosis M1

p-Value †
n BSI (%) n BSI (%)

Overall (m/f) Mean ± SD Mean (Median;
Range)

Mean (Median;
Range)

Breast 406 (12/394) 59.5 ± 13.6 348 0.15 (0.0; 0.0–12.24) 58 4.99 (3.57; 0.0–25.18) <0.0001
Prostate 149 (149/0) 69.9 ± 7.7 72 0.09 (0.0; 0.0–3.48) 77 8.43 (3.68; 0.0–42.35) <0.0001

Lung 104 (72/32) 66.5 ± 10.5 88 0.34 (0.0; 0.0–5.56) 16 1.35 (0.08; 0.0–17.35) <0.0001
HCC 54 (47/7) 67.3 ± 6.6 44 0.17 (0.0; 0.0–5.67) 10 1.40 (0.71; 0.0–6.04) 0.0002 #

RCC 37 (24/13) 64.0 ± 10.5 25 0.37 (0.0; 0.0–6.17) 12 3.24 (0.83; 0.0–6.04) <0.0001 #

UCC 26 (24/2) 72.3 ± 10.6 17 0.48 (0.0; 0.0–3.93) 9 2.83 (2.04; 0.0–13.90) <0.0001 #

CRC 16 (13/3) 63.1 ± 12.7 10 0.04 (0.0; 0.0–2.00) 6 2.19 (0.86; 0.10–7.60) <0.0001 #

Melanoma 15 (11/4) 65.4 ± 9.5 10 0.07 (0.0; 0.0–8.49) 5 2.86 (0.15; 0.0–11.90) 0.13
Other * 143 (81/62) not analyzed

M0 = no metastatic involvement of the skeleton according to clinical report, M1 = presence of bone metastasis
according to clinical report, BSI = bone scan index, m = male patients, f = female patients, UCC = urothelial cell
carcinoma, HCC = hepatocellular carcinoma, RCC = renal cell carcinoma, CRC = colorectal cancer, SD = standard
deviation. † Wilcoxon’s rank sum test (Mann–Whitney–Wilcoxon test). * Not analyzed due to high heterogeneity:
this category includes thyroid cancer (n = 16), cholangiocellular carcinoma (n = 13), gastric cancer (n = 11), esophageal
cancer (n = 8), pancreatic cancer (n = 5), neuroendocrine tumors (n = 7), head/neck cancer (n = 16), sarcoma (n = 14),
cancer of unknown primary (n = 9), gynecologic tumors apart from breast cancer (n = 4), testicular cancer (n = 4),
blood or lymphatic cancer (n = 8), mesothelioma (n = 1), urachal cancer (n = 1), or clinical constellation suggesting
a malignant disorder (pathologic fractures, bone pain, hypercalcemia, etc., n = 26). # post-hoc empirical power
analysis: HCC 0.71, RCC 0.64, UCC 0.62, CRC 0.67.

2.2. Imaging Protocol

Bone scintigraphy was performed by using 99mTc-2,3-dicarboxypropane-1,1-diphosphonate
(99mTc-DPD, TECEOS®, IBA Molecular, CIS Bio GmbH, Berlin, Germany). The administrated activity
was 646 ± 77 MBq. In adipose patients, the injected dose was increased to 11–13 MBq/kg body weight
in accordance with the corresponding guidelines [27].

Whole-body planar imaging was performed using one of three scintillation gamma camera
systems: (1) two dual-head SPECT gamma cameras of identical design (scanner #1 and #2, model:
E.cam, Siemens Medical Solutions Inc., Hoffman Estates, IL, USA) and (2) a dual-head SPECT/(CT)
(scanner #3, Discovery NM/CT 670, General Electric, Haifa, Israel). Each camera was equipped with
a manufacturer-specific, low-energy, high-resolution (LEHR) collimator. All gamma cameras were
monitored by dedicated image quality management procedures. Imaging was performed with a
matrix size of 1024 × 256 (pixel size of 2.40 × 2.40 mm (E.cam systems, Siemens Medical Solutions
Inc., Hoffman Estates, IL, USA) and 2.21 × 2.21 mm (NM/CT 670)) and a scan speed of 16 cm/min. The
energy window was set to 140.5 keV ± 10%. Whole-body imaging was performed using the automatic
body contouring system of the gamma camera systems to minimize the detector to patient distance.

In the cases of a two-/three-phase protocol applied for different clinical indications, whole-body
images from the late phase (mineralization phase) were used for BSI analysis. Images were acquired in
concordance to clinical standard 2.5 to 4 h after injection.

2.3. BSI Evaluation

BSI was calculated automatically by dedicated software (EXINI bone, Version 2.1.2, Exini
Diagnostics AB, Lund, Sweden). The software automatically segments the anterior and posterior
projection of the bone scan by dividing the skeleton into groups (e.g., skull, sternum, cervical spine,
thoracic spine, lumbar spine, and pelvis). The bladder was segmented automatically, and counts inside
the bladder were excluded from further analysis. Paired bones were distinguished in each planar
image into right and left sides (e.g., clavicles, scapulae, ribs, proximal humeri, and femora). Areas of
increased tracer accumulation, Alesions

i , were highlighted using a region-specific threshold that has
to be exceeded in at least 13 contiguous pixels [15]. The threshold values were primarily estimated
from training data (bone scans in patients with metastatic prostate cancer) [15]. The integrated ANN
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calculated the probability of malignancy of the detected areas of increased uptake (Figures 2 and 3).
The ratio between projected area of malignant lesions and corresponding area of bone groups, Abone

i ,
were weighted by a factor wI representing the portion of bone in a group regarding total bone mass.
This ratio is based on the standard anatomy defined by the International Commission on Radiological
Protection [28].

BSI =
∑

i

wi ×
Alesions

i

Abone
i

. (1)

where BSI represents the total osseous tumor burden (Equation (1)) [11]. Clinical reports defined the
reference standard to correlate calculated BSI values regarding absence (M0) and presence (M1) of
bone metastases.

Figure 2. (A,B) Bone scan of a female patient with breast cancer and (C,D) results from atlas-based
segmentation. Pathologic lesions were automatically segmented (labeled in blue) and correctly rated to
be benign (BSI = 0.0%); (A,C: anterior projection; B,D: posterior projection).
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Figure 3. (A,B) Bone scan of a male patient with colorectal cancer and (C,D) results from atlas-based
segmentation. Three lesions were correctly identified as osseous metastases (lumbar spine and left
rib, red labeled). The malignant character is in accordance with the medical report (BSI = 0.54%).
Additional benign lesions were labeled in blue; (A,C: anterior projection; B,D: posterior projection).

2.4. Statistics

The R software package (version 3.4.4, The R Foundation for Statistical Computing, Vienna,
Austria) was used for all statistical evaluation [29]. Descriptive parameters are expressed as median
and range or, in the case of normal distribution, as mean ± standard deviation (SD).

Differences in the BSI values for patients with and without bone metastases were tested for
significance by an independent two-samples Wilcoxon’s rank sum test. Receiver operating characteristic
(ROC) curves [30] were used to estimate optimal BSI cut-off, distinguishing between bone scans with
suspicion of malignancy (detectable metastases) and scans without suspicion of malignancy. Cut-off

values were calculated by maximizing the corresponding Youden’s index for each tumor entity.
Corresponding sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
and area under the curve (AUC) were determined for each type of cancer. For breast and prostate cancer,
we performed a sub-analysis to identify a potential effect from the used gamma camera model (E.cam
systems vs. NM/CT 670) on performance of the BSI methodology. Differences between ROC curves
were analyzed using the DeLong test as a non-parametric approach comparing the corresponding
AUCs [31]. The visualization of ROC curves and calculation of AUC values were performed by
using the supplementary R software packages ROCR [32] and pROC [33]. Statistical significance was
assumed at a p-value < 0.05 for two-sided testing.
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3. Results

3.1. Estimation of BSI

For nearly all examined cancer types, BSI was significantly higher in patients with expert-confirmed
M1 state compared to the corresponding M0 cohort (Table 1). BSI was highly sensitive (>80%) in
detecting metastatic disease (Table 2), with the exception of lung cancer (SN = 62.5%) and melanoma
(SN = 60%). Specificity was lower for all tumor entities. ROC curves were generated for all examined
cancer types (Figure 4) and BSI cut-offs were calculated (Table 3). The best results in terms of highest
AUC were obtained for the BSI in colorectal cancer (AUC = 0.983), prostate cancer (AUC = 0.937), and
breast cancer (AUC = 0.890). Hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) also
showed AUC > 0.800, with AUC values of 0.834 and 0.813, respectively.

Table 2. Performance of the BSI as a diagnostic test for bone metastases. Descriptive statistical
parameters refer to the decision-making when zero/non-zero BSI is used to distinguish between M0
and M1. A BSI larger than zero indicates osseous involvement according to its actual definition.

Tumor SN SP PPV NPV

Breast 86.2% 75.3% 36.8% 97.0%
Prostate 92.2% 68.1% 75.5% 89.1%

Lung 62.5% 68.2% 26.3% 90.9%
HCC 80.0% 72.7% 40.0% 94.1%
RCC 83.3% 64.0% 52.6% 88.9%
UCC 88.9% 58.8% 53.3% 90.9%
CRC 100% 70.0% 66.7% 100%

Melanoma 60.0% 80.0% 60.0% 80.0%

SN, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value.

Figure 4. ROC curves: (A) tumor entities with osteotropic potential: prostate cancer, breast cancer,
lung cancer, and kidney cancer, and (B) HCC, CRC, UCC, and melanoma. ROC, receiver operator
characteristics; RCC, renal cell carcinoma; HCC, hepatocellular carcinoma; CRC, colorectal cancer;
UCC, urothelial cell carcinoma.
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Table 3. BSI thresholds estimated from receiver operating characteristic (ROC) analysis for each
examined tumor entity to distinguish between M0 and M1 situations.

Tumor n AUC BSI Cut-Off SN SP PPV NPV

Breast 406 0.890 0.18% 82.8% 87.4% 52.2% 96.8%
Prostate 149 0.937 0.27% 87.0% 98.6% 98.5% 87.7%

Lung 104 0.663 0.06% 62.5% 70.5% 27.8% 91.2%
HCC 54 0.834 0.13% 80.0% 84.1% 53.3% 94.9%
RCC 37 0.813 0.30% 75.0% 84.0% 69.2% 87.5%
UCC 26 0.797 0.39% 88.9% 76.5% 66.7% 92.9%
CRC 16 0.983 0.10% 100% 90.0% 85.7% 100%

Melanoma 15 0.720 0.15% 60.0% 80.0% 60.0% 80.0%

AUC, area under the curve.

3.2. Effect of Gamma Camera Type on ROC Curve

The data for prostate and breast cancer were used to analyze the impact of the gamma camera
model. A scanner-specific ROC analysis was conducted for these specific sub-cohorts. The respective
values of the AUC were calculated as 0.923 (scanners #1 and #2) and 0.984 (scanner #3) in patients with
prostate cancer, and 0.877 (scanners #1 and #2) and 0.968 (scanner #3) in breast cancer patients. Given
these values, a significant effect of the gamma camera model on BSI was detected (Figure 5, prostate
cancer, p = 0.016; breast cancer, p = 0.048). The BSI cut-off estimated for scanners #1 and #2 is higher in
both tumor entities compared to the cut-off values estimated for scanner #3 (prostate cancer: 0.27% vs.
0.13%; breast cancer: 0.48% vs. 0.18%).

Figure 5. ROC curves for (A) breast cancer and (B) prostate cancer, illustrating the scanner-specific
influence on BSI methodology. The plotted marker (points, stars) reflect the respective best BSI cut-off

value for each scanner model.

4. Discussion

In the current study, we tested a deep-learning-based BSI methodology for automatic feature
extraction and diagnostics from bone scans in various cancer entities. In addition to the standard
application in prostate cancer patients, established in clinical routine, we analyzed different tumor
entities (e.g., breast cancer and lung cancer) to estimate the test performance using the standard setup
of the algorithm. We improved the test performance in detecting metastatic disease by modifying
the BSI methodology using entity-specific cut-off values for discriminating M0/M1 states. In parallel,
we evaluated the effect of different gamma camera systems on the optimal BSI cut-off value. Data
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from the two largest sub-cohorts (patients with prostate and breast cancer) were used for this
methodological analysis.

The high sensitivity and specificity in detection of bone lesions in patients with prostate cancer,
known from the literature, were reproduced [15,19]. Using the standard setup (BSI cut-off = 0),
we observed a high sensitivity in patients with prostate cancer, breast cancer, CRC, HCC, RCC,
and UCC. This approach was further improved using entity-specific optimized BSI cut-off values
(>0%). The specificity in prostate cancer increased (68 to 98.6%) at the cost of a moderate reduction in
sensitivity (92 to 87%). Using optimized BSI cut-off values, we observed increased performance in
other tumor entities (CRC, HCC, and UCC) up to a certain extent, comparable to results for prostate
cancer patients [19,34]. The positive predictive value was partially poor (breast cancer 52%, lung cancer
26%, and HCC 53%), demonstrating that the method is still not readily applicable for the individual
confirmation of metastatic disease in these entities. Only in prostate cancer did the relatively low
PPV of a BSI > 0 increase (76% to 99%) when applying a cut-off derived from ROC analysis. The BSI
showed a high NPV in most examined tumor entities (except melanoma). The NPV remained almost
unaffected on a high level after ROC optimization.

A positive BSI in the M0 sub-cohorts is the result of a false-positive classification of benign areas
of increased uptake (i.e., degenerative changes, growth metabolism, costal fractures, or inflammation)
as malignant even though the algorithm is supposed to reject them. Many scans therefore had a
positive definite BSI due to a solitary area of increased uptake, even though there was no obviously
suspicious uptake according to the physician’s statement. This effect was already analyzed by Petersen
et al. [34], who used BSI cut-off values of 0% and 1% to improve automated M0/M1 differentiation in
prostate cancer patients and compare the results to expert opinion. Using a BSI cut-off of 0%, sensitivity
(96%) and mean BSI in M0/M1 cohorts were comparable to our results, but specificity (38%) and PPV
(21%) were lower. In contrast, applying a BSI cut-off of 1%, which is higher than our optimized BSI
cut-off value, increased specificity (98%) at the expense of an unacceptably low sensitivity (58%) for
the recognition of metastatic disease. Our ROC-based calculation of entity-specific cut-off values may
balance clinical needs.

Sadik et al. [15] reported a comparable sensitivity of 90% and specificity of 89% using a different
database of patients with prostate or breast cancer using BSI > 0 as the indicator for metastatic disease.
Koizumi et al. [24] examined a different implementation of the examined ANN algorithm using a
specific database for Japanese patients. The reported sensitivities were 86%, 82%, and 88% for prostate,
breast, and lung cancer patients, respectively. In our study, we roughly reproduced the published
results [15,19,24] in terms of sensitivity in prostate (93%) and breast cancer (86%), but we observed
a lower sensitivity in lung cancer (69%). The reference data of the tool used by Koizumi et al. [24]
(BONENAVI tool, version 2, Fujifilm RI Pharma Co. Ltd., Tokyo, Japan), used for training the specific
network, also included bone scans from patients with lung cancer [22,33,35], whereas the software
version (EXINI bone V2.1) used here does not. We hypothesized that the higher sensitivity of the
alternative software tool is related to the deviating training database with respect to the specific tumor
biology of lung cancer (e.g., osteolytic character of metastases). Isoda et al. [21] demonstrated an
effect of the tumor entity on the identification of a malignant lesion, i.e., bone metastases from breast
and lung cancer had lower computer-rated probability for malignancy compared to prostate cancer.
A further explanation, mainly for the poor result in lung cancer, may be the high fraction of lytic lesions,
which have a known low malignancy score [21].

The potential bias from the different gamma camera models was assessed by analyzing data from
breast and prostate cancer, representing the most frequent cancer entities in our cohort. Comparing
ROC curves, we observed significant differences between AUCs and cut-off values. For further
examined tumor entities, the evaluation was not applicable due to the limited number of patients in
the sub-cohorts. We hypothesize that scanner-individualized (model-specific) training of the ANN and
cut-off values can further improve the diagnostic performance of the BSI. A deeper investigation is
necessary to substantiate this statement.
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The software’s algorithm of the examined tool was trained for a database of bone scans performed
in patients (n = 1211) with prostate cancer using 99mTc-methylene diphosphonate (99mTc-MDP).
In contrast, in our study, imaging was performed with another similar radiopharmaceutical
99mTc-2,3-dicarboxypropane-1,1-diphosphonate. We did not expect this difference to have any
significant effect due to comparable pharmacokinetics and accumulation patterns reported by studies
conducted during the approval process of the corresponding pharmaceuticals [36–38].

A further limitation influencing the performance of the BSI methodology was the kinetics of the
tracer. A prolonged time span between administration of the radiopharmaceutical and imaging is
known to result in a significantly higher BSI [23,39]. Significant changes in BSI were observed when
uptake time was extended from three to four hours post-injection [39]. Since all evaluated bone scans
were performed in the context of clinical routine, the uptake time was chosen within the limits of
the respective guidelines. No specific optimization of the uptake time was conducted. Established
guidelines for clinical routine diagnostics allow considerable flexibility concerning the uptake time
(between 2.5 and 4 h post-injection) [27]. Therefore, a variation in the BSI from the wider range of
uptake time has to be postulated. An optimized workflow, e.g., optimized uptake time, will improve
the methodology. The actual setup represented uncertainty in clinical application.

As ground truth, we used the clinical report from the bone scan in our study. In addition to the
individual results from bone scans, the medical report regularly includes further medical information
(e.g., from medical history or supplementary imaging). For that reason, an information bias (automated
BSI vs. clinical reader with additional clinical information) has to be discussed. The effect was always
considered when examining the influence of an additional SPECT or SPECT/(CT) on the clinical
decision [9]. This was demonstrated by a sub-analysis based on the cohort with a bone scan and
SPECT/(CT) not used for the primary analysis (see Supplementary Material, Table S1). To circumvent
this bias, we strictly excluded all bone scans with subsequent SPECT(/CT) from analysis of planar data.
The remaining disagreement in information (sole bone scan vs. clinical information, including further
imaging, e.g., CT) may also account for discrepancies in rating consistency between the ANN algorithm
and the physician. Therefore, the current automatic approach cannot overcome this methodological
limitation using a retrospective study setup. Additionally, we hypothesized that further (entity-specific)
training of the available ANN for the detection of metastases from other tumor entities would improve
BSI performance. Current results should motivate the dedicated training of algorithms with scanner-,
collimator-, and tumor-entity-specific databases. The sub-cohorts of our study were not optimized for
the specific analysis (e.g., limited by the numbers of cases).

Finally, the BSI is correlated with prognosis and likelihood of response to various therapies in
patients with metastatic prostate cancer [40–43]. The extension of BSI to other tumor entities may open
novel opportunities in feature extraction using deep learning technology for observer-independent
response prediction and individual prognostication. Although other imaging modalities, in particular
PET, were proven to be superior to regular planar bone scans [1,7], lower costs, faster acquisition,
and greater availability are reasons why planar bone scan preserves its importance in whole-body
skeletal examination. Therefore, this imaging modality still needs to be further improved, e.g., by using
automated quantification tools integrating multiparametric data.

5. Conclusions

In this retrospective study, we evaluated the performance of an automatic deep-learning-based
algorithm for computer-assisted diagnostics in the field of oncological whole-body bone imaging.
In addition to prostate carcinoma, representing a tumor entity evaluated thoroughly using the BSI
methodology, entity-specific BSI cut-off values facilitate the use of the BSI methodology for other tumor
entities (e.g., breast, lung, HCC). Diagnostics in clinical routine can benefit from BSI methodology,
mainly due to its sensitivity and the high NPV supporting the identification of non-pathological
bone scan.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2654/s1,
Table S1: Effect of the information bias from physician’s report (e.g., from added SPECT/(CT)) on performance of
BSI for different tumor entities.
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ANN artificial neural network
AUC area under the curve
BSI bone scan index
CRC colorectal cancer
CT computed tomography
DPD 2,3-dicarboxypropane-1,1-diphosphonate
HCC hepatocellular carcinoma
keV kiloelectron volts
MBq Megabecquerel
MDP methylene diphosphonate, medronic acid
NPV negative predictive value
PET positron emission tomography
PPV positive predictive value
RCC renal cell carcinoma
ROC receiver operating characteristic
SN sensitivity
SP specificity
SPECT single photon emission computed tomography
UCC urothelial cell carcinoma
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