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Simple Summary:  Low expression of programmed death-ligand 1 (PD-L1), epidermal growth 

factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLCs) are refractory, and only few 

therapeutic options exist. This study aims to clarify the molecular basis of this special subtype of 

NSCLC and identify potential therapeutic targets. We performed integrating data from multiple 

sources including transcriptome, methylome, and clinical outcome to uncover the effect of 

epigenetic changes acting this special subtype lung cancer. We elucidated both aberrant methylation 

and associated aberrant gene expression and the emerging methylation-transcription patterns were 

classified as HypoUp, HypoDown, HyperUp, or HyperDown. We found that the aberrant 

methylation-transcription patterns significantly affect the overall survival time of the patients. We 

used protein–drug interaction data and molecular docking analysis to identify potential therapeutic 

candidates. This study uncovered the distinct methylation-transcription characteristics of this 

special subtype lung cancer, and provided an adaptable way to identify potential therapeutic 

targets. 

Abstract: Immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have demonstrated 

remarkable treatment efficacy in advanced non-small cell lung cancer (NSCLC). However, low 

expression of programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR) wild-

type NSCLCs are refractory, and only few therapeutic options exist. Currently, combination therapy 

with ICIs is frequently used in order to enhance the treatment response rates. Yet, this regimen is 

still associated with poor treatment outcome. Therefore, identification of potential therapeutic 

targets for this subgroup of NSCLC is strongly desired. Here, we report the distinct methylation 

signatures of this special subgroup. Moreover, several druggable targets and relevant drugs for 

targeted therapy were incidentally identified. We found hypermethylated differentially methylated 

regions (DMRs) in three regions (TSS200, TSS1500, and gene body) are significantly higher than 

hypomethylated ones. Downregulated methylated genes were found to be involved in negative 

regulation of immune response and T cell-mediated immunity. Moreover, expression of four 

methylated genes (PLCXD3 (Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 

3), BAIAP2L2 (BAR/IMD Domain Containing Adaptor Protein 2 Like 2), NPR3 (Natriuretic Peptide 

Receptor 3), SNX10 (Sorting Nexin 10)) can influence patients’ prognosis. Subsequently, based on 

DrugBank data, NetworkAnalyst 3.0 was used for protein–drug interaction analysis of up-regulated 

differentially methylated genes. Protein products of nine genes were identified as potential 
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druggable targets, of which the tumorigenic potential of XDH (Xanthine Dehydrogenase), ATIC (5-

Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase), CA9 

(Carbonic Anhydrase 9), SLC7A11 (Solute Carrier Family 7 Member 11), and GAPDH 

(Glyceraldehyde-3-Phosphate Dehydrogenase) have been demonstrated in previous studies. Next, 

molecular docking and molecular dynamics simulation were performed to verify the structural 

basis of the therapeutic targets. It is noteworthy that the identified pemetrexed targeting ATIC has 

been recently approved for first-line use in combination with anti-PD1 inhibitors against lung 

cancer, irrespective of PD-L1 expression. In future work, a pivotal clinical study will be initiated to 

further validate our findings. 

Keywords: DNA methylation; EGFR mutation-negative; low PD-L1 expression; immune 

checkpoint inhibitors; combination strategies 

 

1. Background 

Although tyrosine kinase inhibitors (TKI) have shown remarkable benefits against lung cancer, 

they are not effective for epidermal growth factor receptor (EGFR) mutation-negative patients. More 

recently, the introduced immune checkpoint inhibitors (ICIs) therapy has shown marked clinical 

responses, especially effective towards these cases [1–4]. In the KEYNOTE 024 phase III trial, 

pembrolizumab, an anti-programmed death 1 (PD1) antibody, showed better therapeutic effect than 

standard chemotherapy against EGFR wild type lung cancers overexpressing programmed death-

ligand 1 (PD-L1) [5]. In addition to findings of the KEYNOTE 024 trial, results of the KEYNOTE 42 

trial [6] which included any PD-L1 positive non-small cell lung cancer (NSCLC) patients led to the 

approval of pembrolizumab as the first-line single agent for the treatment of metastatic NSCLC. 

Indeed, immunotherapy is the first-line treatment of advanced stage NSCLC patients harboring 

EGFR/ALK (ALK receptor tyrosine kinase) wild type with PD-L1 expression ≥ 50%, and is the second-

line treatment when PD-L1 expression ranges between 1 and 50%. However, some patients, including 

cases with low PD-L1 expression, often do not benefit from this treatment. Thus, regimens combining 

PD-1/PD-L1 blockade with other approaches, including chemotherapy, have been created with the 

aim of enhancing response rates. In the KEYNOTE 021 study, combining chemotherapy with 

pembrolizumab increased overall response rate by about 57% relative to chemotherapy alone (13%) 

in cases exhibiting low PD-L1 levels. However, combined treatment exhibited modest improvement 

on overall survival (OS) and was associated with more treatment-related adverse effects in grade 3 

and 4 [7–9]. Other approved combination regimens involve inhibitors of vascular endothelial growth 

factor (VEGF) [10] and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [11,12]. Experimental 

combination regimens include lymphocyte-activation gene 3 (LAG-3) [13,14] and T-cell 

immunoglobulin mucin 3 (TIM-3) [15,16]. However, establishing the best combination regimen for 

EGFR wild type lung cancers with low PD-L1 expression remains daunting. In addition, both 

carcinogenic mechanisms and molecular basis of this special subtype of NSCLC are still elusive. 

Epigenetic modification ensures the maintenance and inheritance of gene expression programs 

through cell division. It includes DNA methylation, which occurs predominantly at CpG 

dinucleotides in mammals [17,18]. Previous studies have proven that DNA methylation readers and 

writers are vital components of the adaptive immune response [19–23]. DNA methylation is also 

implicated in T-cell exhaustion, and blocking epigenetic processes may promote T cell rejuvenation, 

thus supporting the anti-tumor effects of checkpoint blockade [24]. In NSCLC, epigenomics has been 

shown to influence clinical effects of anti-PD-1 therapy [25]. Aberrant DNA methylation has been 

shown to enhance resistance to immunotherapy in lung cancer [26]. However, few studies have 

investigated DNA methylation changes in EGFR wild type lung cancers with low PD-L1 expression. 

In this study, based on the multiple platforms utilized within the Cancer Genome Atlas (TCGA), 

we performed integrating data from multiple sources including transcriptome, methylome, and 

clinical outcome to uncover the effect of epigenetic changes acting in the development and 
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progression of EGFR wild type lung cancers with low PD-L1 expression. Notably, to minimize noise 

from unrelated methylations and gene expression, methylation sites and associated genes were 

treated as single units. We elucidated both aberrant methylation and associated aberrant gene 

expression and the emerging methylation/expression patterns were classified as HypoUp, 

HypoDown, HyperUp, or HyperDown. The results also indicated that aberrant methylation-

transcription patterns significantly affect the overall survival time of the patients since a risk 

assessment model including four differentially methylated and expressed genes (DMEGs; PLCXD3 

(Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 3), BAIAP2L2 (BAR/IMD 

Domain Containing Adaptor Protein 2 Like 2), NPR3 (Natriuretic Peptide Receptor 3), SNX10 

(Sorting Nexin 10)) successfully categorized patients into high- and low-risk classes. Furthermore, 

FDA-approved drugs targeting up-regulated differentially methylated genes were explored using 

protein–drug interaction data from DrugBank database. The binding mode of target-drug complex 

was verified through molecular docking analysis and molecular dynamics simulation at a molecular 

level, deserving further investigation to validate. 

2. Materials and Methods 

2.1. Sample Datasets and Data Preprocessing 

Publicly available NSCLC and adjacent non-cancer tissue gene expression (RNA-SeqV2) and 

methylation data (Illumina Infinium HumanMethylation450 BeadChip; Illumina, San Diego, CA, 

USA), and corresponding clinical data were downloaded from TCGA on 2 March 2020. These data 

comprised of 108 normal samples and 133 EGFR wild type lung cancer samples with low PD-L1 

expression, of which 75 normal samples and 115 above-mentioned tumor samples contained both 

gene expression and DNA methylation data. The mutation annotation format files of 132 tumor 

samples (one was missing) were also downloaded, and clinical sample characteristics are detailed in 

Table S1. The bottom 25% samples, with regards to PD-L1 expression, were considered PD-L1 low 

expression. The NSCLC expression dataset and methylation data as well as the corresponding clinical 

information in Gene Expression Omnibus (GEO) were included to validate our results (GSE31210). 

2.2. Immune Profile Analysis 

Tumor-infiltrating lymphocytes including B, and dendritic cells, neutrophils, CD8+ T, 

macrophages, CD4+ T, was analyzed among “EGFR Wild Type/Low PD-L1 expression” NSCLC and 

normal samples using tumor immune estimation resource (TIMER; 

https://cistrome.shinyapps.io/timer). The expression scores of micro-environmental factors (tumor, 

immune, and stromal purity) were obtained using the ESTIMATE (Estimation of STromal and 

Immune cells in MAlignant Tumor tissues using Expression data) algorithm [27]. 

2.3. Analysis of DNA Methylation Data 

The Illumina HumanMethylation450 BeadChip array is comprised of 485,577 probes covering 

99% (n = 21,231) of the RefSeq gene. For each probe, the raw methylation intensity was expressed as 

a β value [28]. Differentially methylated CpG sites (DMS) were identified using the R package limma 

by comparing CpG site data in normal samples relative to EGFR wild type lung cancer samples with 

low PD-L1 expression. p values were converted to false discovery rate (FDR) using the Benjamini and 

Hochberg (BH) method. FDR < 0.01 and absolute delta β-value > 0.2 were set as cutoff thresholds for 

DMS identification. CpG sites associated with genes were obtained from an annotation file provided 

by Illumina (https://www.illumina.com/). Average β-values of genes within different gene regions 

(TSS1500, TSS200, 5′-UTR, first exon, gene body, 3′-UTR, and intergenic region) were calculated based 

on correspondences [29]. Differentially methylated regions (DMRs) were calculated from the 

integrated methylation data using the R package limma using the following criteria: 

hypermethylated DMRs with FDR < 0.01 and delta β-value > 0.2; hypomethylated DMRs with FDR < 

0.01 and delta β-values < −0.2. Differentially methylated genes (DMGs) were characterized by genes 

located in DMRs. 
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2.4. Gene Expression Data Analysis 

Differentially expressed genes in normal vs. “EGFR Wild Type/Low PD-L1 expression” NSCLC 

TCGA datasets were identified using the R package limma and p values converted to FDR using the 

BH method. Differentially expressed genes (DEGs), were identified by log2 transformation of TCGA 

gene expression data and the following criteria: upregulated genes had FDR > 0.01 and log2FC > 1; 

downregulated genes had FDR > 0.01 and log2FC < −1 in tumor samples relative to non-cancer tissue. 

2.5. Analysis of DMGs and DEGs in Different Regions 

To uncover relationships between methylation and expression profiles, DMGs and DEGs 

intersections were analyzed to identify DMEGs. The DMEGs fell into 4 groups (Table 1). 

Table 1. Differentially methylated and expressed genes (DMEGs) grouping standard. 

Groups Methylation Cut-Off Expression Cut-Off 

HypoUp FDR < 0.01 and delta β-value < −0.2 FDR < 0.01 and log2FC > 1 

HypoDown FDR < 0.01 and delta β-value < −0.2 FDR < 0.01 and log2FC < −1 

HyperUp FDR < 0.01 and delta β-value > 0.2 FDR < 0.01 and log2FC > 1 

HyperDown FDR < 0.01 and delta β-value > 0.2 FDR < 0.01 and log2FC < −1 

2.6. Functional Enrichment Analysis 

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis of DMGs, DEGs was done using the R package clusterProfiler. Gene enrichment analysis for 

DMEGs was carried out by Metascape (http://metascape.org), a web tool for gene annotation [30]. 

2.7. Evaluation of Expression and Methylation Biomarkers 

Principal Component Analysis (PCA) of the DMSs in DMEGs was used to distinguish between 

tumor and non-tumor samples. The R package randomForest was used to classify samples based on 

DMEGs expression profiles and DMSs methylation profiles and validated using the leave-one-out 

cross-validation (LOOCV) approach. The results were then visualized using receiver operating 

characteristic (ROC) curve and area under the curve (AUC) analyses. 

2.8. Construction of DMEGs-Based Prognostic Signature 

Prognostic data were created on the expression matrix of DMEGs and matched survival data. 

The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed 

for identifying DMEGs with prognostic value by R package glmnet. 

2.9. Identification of Potential Drug Targets 

NetworkAnalyst3.0 (http://www.networkanalyst.ca/), a web-based tool for analyzing and 

interpreting system-level gene expression data, was used to carry out protein–drug interactions 

analysis on the Up-expressed and Down-expressed DMEGs. Protein and drug target information was 

obtained from DrugBank (Version 5.0). 

2.10. Homologous Modeling 

To evaluate the binding energy and interaction patterns between drug candidate and their 

targets, AutodockVina 1.1.2, a silico protein–ligand docking software was employed [31]. As the 

absence of a complete crystal structure of SLC7A11, its theoretical structure was obtained from 

homology modeling by Swiss-Model server, using the crystal structure of large neutral amino acids 

transporter small subunit 1 (PDB ID: 6irt.1.B) as the template. Molecular dynamics simulation was 

carried out by GROMACS 5.0.6 [32]. Ramachandran plots were used to assess stereo-chemical quality 

[33]. The parameters were set to default. 
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2.11. Molecular Docking 

The 3D structures of all candidate drug compounds were drawn by ChemBioDraw Ultra 17.0 

and then subjected to energy optimization by the MMFF94 force field. The 3D structure of XDH (PDB 

ID: 2e1q), ATIC (PDB ID: 1pl0), CA9 (PDB ID: 5fl6), GAPDH (PDB ID: 3gpd) were downloaded from 

the PDB (http://www.rcsb.org/pdb/home/home.do), and 3D structure of SLC7A11 was obtained from 

homologous modeling. Before docking analysis, all protein and molecular files were converted into 

PDBQT format using AutodockTools 1.5.6. Molecular docking analysis were carried out by Autodock 

Vina 1.1.2. The docking parameter ‘exhaustiveness’ was set to ‘20’, and other parameters were set to 

default. The conformation with the highest score was selected to further analyze using Free Maestro 

11.9. Pymol software 2.3 was applied for model visualization and MOE software 2019 was used for 

drawing the 2D depictions [34]. 

3. Results 

3.1. DMGs in “EGFR Wild Type/Low PD-L1 Expression” NSCLC 

To identify differential methylation in “EGFR Wild Type/Low PD-L1 expression” NSCLC, DNA 

methylation data from 115 tumor samples and 75 corresponding non-tumor tissues was extracted for 

comparative analysis. This analysis focused on the transcription start sites TSS200, TSS1500, and the 

gene body, and identified 3250 DMRs (FDR < 0.01, |delta β-values| > 0.2) that were annotated to 1586 

genes (Figure 1A–C). The DMRs were then divided into 593 hypermethylated DMRs and 339 

hypomethylated DMRs in the TSS200 region, 747 hypermethylated DMRs and 618 hypomethylated 

DMRs in the TSS1500 region, and 651 hypermethylated DMRs and 302 hypomethylated DMRs in 

gene body (Figure 1D or Figure 1F). Altogether, there were significantly more hypermethylated 

DMRs than hypomethylated ones. Of the 3 gene regions, TSS1500 was associated with the majority 

of DMGs (Figure 1E). Of the 1586 DMGs harboring DMRs, 53 genes were present in all 3 regions, 236 

genes were present in at least 2 regions, and 1297 were present in one region (Figure 1E). To assess 

DMGs function, we performed GO functional enrichment and KEGG pathway analyses. The DMGs 

fell into 20 KEGG pathways (top-10 are shown on Figure 1G), while 185 were annotated to GO 

biological process (BP) (Figure 1H), 36 to GO term cellular component (CC) (Figure 1I), and 39 to GO 

term molecular functions (MF) (Figure 1J). Together, this showed that the DMGs are involved in 

important pathways, biological processes and cellular component, including ECM (extracellular 

matrix)-receptor interaction, extracellular matrix, receptor complex, transcriptional activator activity, 

and RNA polymerase II transcription regulatory region sequence-specific DNA binding (Figure 1G–

J). 
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Figure 1. Differentially methylated genes (DMGs) in “Epidermal growth factor receptor (EGFR) Wild 

Type/Low PD-L1 expression” non-small cell lung cancer (NSCLC). (A–C) Volcano plots showing the 

distribution of DMGs in TSS200, TSS1500 and gene body regions, respectively. (D) Histogram 

showing the amount of DMGs in gene body (n = 573), TSS1500 (n = 825) and TSS200 (n = 530) regions. 

(E) Venn map of DMGs in three different regions. (F) Histogram showing the percentage of 

hypermethylated and hypomethylated DMGs in three different regions. (G) Top 10 Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment pathways of DMGs in three regions. (H) 

Top 10 Gene Ontology (GO) Biological Process (BP) terms of DMGs in three regions. (I) GO cellular 

component (CC) terms of DMGs in three regions. (J) GO molecular functions (MF) terms of DMGs in 

three regions. The size of the dots represents the number of genes enriched in the pathway, and the 

colors correspond to different false discovery rate (FDR) values. 
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3.2. Immune Profile Analysis 

To characterize the immune cell profile of EGFR wild type lung cancer samples with low PD-L1 

expression, we analyzed the expression of 6 immune cells: B cell, CD4+ T cell, CD8+ T cell, 

neutrophils, macrophage and dendritic cells, using TIMER and found all immune cell types to be 

significantly lower in “low PD-L1 expression” NSCLC relative to controls (Figure 2A), suggesting 

immunosuppression in double-negative NSCLC. Validation of immune status using ESTIMATE 

revealed that ImmuneScore, StromalScore, and ESTIMATEScore were significantly lower in “low PD-

L1 expression” NSCLC samples relative to controls (Figure 2B). Assessment of immune checkpoint 

gene expression showed that most checkpoint genes are significantly downmodulated in “EGFR 

Wild Type/Low PD-L1 expression” NSCLC (Figure 2C), including CD274 (CD274 molecule; also 

known as PD-L1), HAVCR2 (Hepatitis A Virus Cellular Receptor 2; also known as TIM3), PDCD1 

(Programmed Cell Death 1; also known as PD1), and PDCD1LG2 (Programmed Cell Death 1 Ligand 

2). CTLA4 (p = 0.077) and LAG3 (p = 0.066) showed a borderline significance. 

 

Figure 2. Immune signature scores in “EGFR Wild Type/Low PD-L1 expression” NSCLC. (A) The 

expression scores of immune-associated cells included in the TIMER algorithm. (B) The expression 

scores of genes included in the ESTIMATE algorithm for determination of stromal and immune gene 
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signatures. (C) Differential expression of immune checkpoint molecules. Asterisks indicate significant 

differences (Wilcox test). * p < 0.05, ** p  <  0.01, *** p  <  0.001, **** p  <  0.0001, ns means no significant. 

3.3. Differentially Expressed Genes (DEGs) in “EGFR Wild Type/Low PD-L1 Expression” NSCLC 

To identify DEGs in “EGFR Wild Type/Low PD-L1 expression” NSCLC, gene expression data 

from 133 “EGFR Wild Type/Low PD-L1 expression” NSCLC samples and 108 normal samples were 

extracted and comparative analysis done using limma package on R. This analysis uncovered 3178 

DEGs (FDR < 0.01, |log2FC| > 1). Of these, 1037 were upregulated and 2141 downregulated in “EGFR 

Wild Type/Low PD-L1 expression” NSCLCs (Figure 3A). Next, unsupervised hierarchical clustering 

analysis of the DEGs clearly distinguished “EGFR Wild Type/Low PD-L1 expression” NSCLCs 

samples from controls (Figure 3B). Enrichment functional analysis of DEGs using the R package 

ClusterProfiler revealed upregulated DEGs to be enriched in 6 functional pathways involved in 

NSCLC-related biological processes, including cell cycle, biosynthesis of amino acids, carbon 

metabolism, P53 signaling pathway, Fanconi anemia pathway, and DNA replication (Figure 3C). 

Downregulated DEGs were enriched in 86 pathways, mainly Th1 and Th2 cell differentiation and 

other pathways that are closely related to tumor development (Figure 3D). 

 

Figure 3. Differentially expressed genes (DEGs) in “EGFR Wild Type/Low PD-L1 expression” 

NSCLC. (A) Volcano plot showing the distribution of DEGs. (B) Heat map and hierarchical clustering 

analysis of DEG. (C) Significantly enriched KEGG categories show differentially up-regulated genes. 

(D) Significantly enriched KEGG categories show differentially down-regulated genes. The size of the 

dots represents the number of genes enriched in the pathway, and the colors correspond to different 

FDR values. The lines represent the intersection of genes between pathways. 
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3.4. Differentially Methylated and Expressed Genes (DMEGs) in “EGFR Wild Type/Low PD-L1 

Expression” NSCLC 

To characterize the relationship between gene methylation and expression, we analyzed DMGs 

and DEGs intersection in TSS200, TSS1500, and gene body regions (Figure 4A–C). This analysis 

identified 249 differentially methylated and expressed genes (DMEGs) that fell into 4 classes: 

HypoUp (delta β-value < −0.2 and log2FC > 1), Hypodown (delta β-value > 0.2 and log2FC > 1), 

HyperUp (delta β-value > 0.2 and log2FC > 1) and HyperDown (delta β-value > 0.2 and log2FC < −1) 

(Figure 4D–F, Tables S2–S4). Of these, 209 DMEGs occurred in 1 region, 32 in 2 regions, and 8 in all 3 

regions (Figure S1). The HyperDown group was most common, occupying 57.58%, 42.24% and 

43.48% of the 3 regions, respectively (Figure 4D–F), followed by the HypoDown group that occupied 

most positions of TSS1500 and gene body regions. 

 

Figure 4. Differentially methylated and expressed genes (DMEGs) in “EGFR Wild Type/Low PD-L1 

expression” NSCLC. (A–C) Venn map showing the DMEGs between DMGs and DEGs in TSS200, 

TSS1500, and gene body regions. (D–F) Histogram showing the number of four regulation patterns 

between methylation and expression of “EGFR Wild Type/Low PD-L1 expression” NSCLC in three 

regions. 

3.5. DMEGs Analysis 

Our coupled analysis identified 249 DMEGs containing 297 DMSs distributed across TSS200, 

TSS500 and the gene body. The 297 DMSs occur throughout the genome except the sex chromosomes. 

To evaluate DNA methylation and gene expression differences between “EGFR Wild Type/Low PD-

L1 expression” NSCLC samples and non-tumor samples, we constructed 249-DMEGs and 297-DMSs-

based random forest classifiers, followed by PCA and ROC analyses. This analysis confirmed that all 

samples were correctly classified (Figure 5A,B). The ROC curve revealed that the 249-DMEGs 

classifier had an AUC value of 0.989 (p = < 0.0001, Figure 5C), while the 297-DMSs classifier had an 

AUC value of 0.968 (p = < 0.0001, Figure 5D). Confirming the existence of differential methylation and 

expression in “EGFR Wild Type/Low PD-L1 expression” NSCLC samples relative to controls. To 

explore the potential role of DMEGs in the occurrence and development of “EGFR Wild Type/Low 
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PD-L1 expression” NSCLC, we divided the identified DMEGs into upregulated (78 DMEGs) and 

downregulated (171 DMEGs) groups. Metascape, the free gene annotation web tool, was employed 

to conduct pathway enrichment analysis. It was showed that upregulated DMEGs were mainly 

enriched in development-related signaling pathways such as skin development, morphogenesis of 

an epithelium, embryonic skeletal system morphogenesis, structural molecule activity, and 

dorsal/ventral axis specification (Figure 6A). Similarly, downregulated DMEGs were also enriched 

in several development-related pathways, such as blood vessel morphogenesis, embryonic 

morphogenesis, endothelium development, regulation of erythrocyte differentiation, and 

mesenchyme development (Figure 6B). It was worth noting that downregulated DMEGs were also 

highly enriched in immune-related pathways, including leukocyte activation involved in immune 

response, granulocyte migration, T cell mediated immunity, graft-versus-host disease, suggesting 

that downregulated DMEGs were involved in regulating immune responses of “EGFR Wild 

Type/Low PD-L1 expression” NSCLC, and even the formation of tumor immune microenvironment 

(Figure 6B). Collectively, the identified DMEGs are involved in the biological processes of the 

development and progression of “EGFR Wild Type/Low PD-L1 expression” NSCLC. 

 

Figure 5. Prediction of “EGFR Wild Type/Low PD-L1 expression” NSCLC by DNA methylation and 

gene expression pattern. (A,B) Principal component analysis (PCA) analysis for “EGFR Wild 

Type/Low PD-L1 expression” NSCLC and normal samples by the 249-DMEGs and 297-DMSs 

predictors, respectively. (C,D) Receiver operating characteristics (ROC) displaying the classification 

accuracy of 249-DMEGs predictor and 297-DMSs predictors, respectively. 
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Figure 6. Pathway enrichment analysis of the upregulated and downregulated DMEGs. (A) The 

pathway enrichment results of upregulated DMEGs. (B) The pathway enrichment results of 

downregulated DMEGs. Each node represents an enriched term. The node size is proportional to the 

total number of genes in each gene set. The proportion of shared genes between genomes is indicated 

by the line thickness between nodes. 

3.6. Construction and Evaluation of DMEGs-Based Prognostic Signature 

To evaluate the prognostic power of the DMEGs in “EGFR Wild Type/Low PD-L1 expression” 

NSCLC, we constructed a DMEG-based prognostic model using LASSO regression. In this analysis 

of gene expression and survival data of 249 DMEGs, 200 rounds of random sampling, 80% of samples 

being taken each time, were performed. Next, results of each sampling were subjected to LASSO 

regression analysis, triple cross-validation to summarize dimensionality reduction results of each 

round, and counting of the number of occurrences of each probe in 100 rounds. Finally, 4 candidate 

DMEGs (PLCXD3, BAIAP2L2, NPR3 and SNX10), with frequencies ≥10 rounds, were selected and 

used to develop the prognostic model (Figure 7A,B). KM analysis revealed that all 3 genes 

(BAIAP2L2, NPR3, SNX10), except PLCXD3, accurately split the training set into 2 groups—high- 

and low-risk (Figure 7B, Table 2). The RiskScore formula used was as follows: 
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Figure 7. Identification of 4-DMEG risk signature for survival by Least Absolute Shrinkage and 

Selection Operator (LASSO) regression analysis. (A) Number of occurrences of each probe in 100 

rounds of random sampling. (B) Kaplan-Meier (KM) analysis of 4 candidate DMEGs with frequencies 

≥10 rounds. 

Table 2. 4-DMEGs based signature. 

Symbol Coef HR p Value Low 95% CI High 95% CI 

BAIAP2L2 0.022 1.023 0.000 1.011 1.035 

NPR3 0.011 1.011 0.042 1.000 1.023 

PLCXD3 −0.102 0.903 0.222 0.768 1.063 

SNX10 0.017 1.017 0.013 1.004 1.031 

RiskScore4 = 0.022 × expBAIAP2L2 + 0.011 × expNPR3 − 0.102 × expPLCXD3 + 0.017 × expSNX10 

RiskScore distribution, survival status, and expression profile of the 4 prognostic DMEGs 

signatures in the training cohort are shown on Figure 8A. This analysis revealed that samples with a 

high RiskScore have significantly lower OS relative to those with a low RiskScore. Elevated levels of 

BAIAP2L2, NPR3, and SNX10, were associated with high risk, highlighting them as risk factors. 

While elevated PLCXD3 levels correlated with low risk, suggesting it is a protective factor. ROC 

analysis of RiskScore for prognostic classification, using the R package timeROC, revealed that our 

prognostic model has a high area under the AUC line, with the AUCs for predicting 1-, 3-, and 5-year 

OS being 0.67, 0.66, 0.68, respectively (Figure 8B). Finally, Zscore analysis of RiskScore was used to 

categorize samples with scores > 0 into the high-risk group and those with < 0 into the low-risk group. 

Then, 56 samples were classified into high-risk group and 77 samples into low-risk group. KM 

analysis revealed significant survival differences in the 2 groups (log rank p = 0.0017, HR = 1.78) 

(Figure 8C). 



Cancers 2020, 12, 2496 13 of 24 

 

 

Figure 8. The relationship between RiskScore and patient outcome in the training cohort (from the 

Cancer Genome Atlas (TCGA)). (A) Each patient’s RiskScore, survival time, and status, and the 

expression of 4 DMEGs. The horizontal axis represents the samples, and the vertical axis represents 

RiskScores, OS (overall survival), and immune-related gene expression, respectively. (B) 1-, 3-, and 5-

years ROC analysis of prognosis classification for RiskScore. (C) KM survival analysis of patients with 

high RiskScore vs. low RiskScore. 

To assess the predictive value of this 4-DMEG-based signature, the RiskScore formula was 

applied to external validation set (GSE31210) and analysis was performed as in the training set. 

SNX10 was identified as risk factor and PLCXD3 as a protective factor (Figure S2A). AUCs for 

predicting 1-, 3-, and 5-year OS in the validation cohort were 0.51, 0.65, and 0.67, respectively (Figure 

S2B). 101 samples were classified as high-risk and 125 samples as low-risk. KM analysis revealed 

significant survival differences between high- and low-risk groups (log rank p = 0.037, HR = 1.48) 

(Figure S2C). 

3.7. Multiple DMEGs are Potential Druggable Targets 

To explore whether there are any available drugs targeting DMEGs, NetworkAnalyst 3.0 was 

employed for protein–drug interaction analysis of up-regulated DMEGs using data from DrugBank. 

Protein products of 9 DMEGs were identified as drug interacting (Table 3). The majority of these, 

including XDH (Xanthine Dehydrogenase) [35,36], ATIC (5-Aminoimidazole-4-Carboxamide 

Ribonucleotide Formyltransferase/IMP Cyclohydrolase) [37], CA9 (Carbonic Anhydrase 9) [38], 

SLC7A11 (Solute Carrier Family 7 Member 11) [39], and GAPDH (Glyceraldehyde-3-Phosphate 

Dehydrogenase) [40] are implicated in tumorigenesis. XDH, which encodes for xanthine 

dehydrogenase, has been reported to be highly expressed in a lung adenocarcinoma (LUAD) subtype 
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associated with poor survival [36]. In our analysis, XDH was hypomethylated in TSS200 and gene 

body, and was associated with up-regulated gene expression. We identified 9 candidate drugs 

targeting XDH. XDH inhibitors may be purine analogs e.g., allopurinol and oxypurinol, or non-

purine agents, e.g., topiroxostat. The antitumor effects of allopurinol in NSCLC cell lines have been 

recently described, as well as a 6-gene signature for allopurinol-sensitive and allopurinol-resistant 

NSCLC cell lines [36]. Eniluracil, an orally active dihydropyrimidine dehydrogenase (DPD) inhibitor 

that enhances activity of chemotaxic agents, also emerged as a drug for XDH. Eniluracil has been 

shown to improve 5-fluorouracil (5-FU) efficacy by minimizing its side effects and/or making it orally 

available [41]. ATIC encodes a bifunctional protein that catalyzes the final 2 steps of de novo purine 

biosynthesis and has been reported to interact with ALK [37]. In this study, ATIC was 

hypomethylated in gene body and was associated with up-regulated gene expression. Of the 7 drugs 

found to target ATIC, pemetrexed is commonly used in NSCLC chemotherapy [42]. CA9 specifies a 

zinc-containing glycoprotein and has been implicated in tumorigenesis [38]. In the present study, it 

was identified to be hypermethylated in gene body but was related with up-regulated gene 

expression. Of the 6 drugs targeting CA9, benzthiazide [43], hydroflumethiazide [44], WX-G250 [45], 

and ellagic acid [46] have shown antitumor properties. SLC7A11 encodes the light chain subunit of 

cystine/glutamate antiporter system xc—and is involved in glutamine metabolism. This gene has 

been shown to modulate glucose and glutamine dependency in cancer cells [47]. In this analysis, 

SLC7A11 was hypomethylated in gene body and was related with up-regulated gene expression. Of 

the 5 drugs targeting SLC7A11, riluzole, a noncompetitive metabotropic glutamate receptor 1 

(mGluR1) antagonist, and sulfasalazine, a cystine/glutamate antiporter system xc-inhibitor used to 

treat inflammatory bowel disease and arthritis, have antitumor properties [48–50]. Most recently, 

GAPDH has been identified as a potential prognostic biomarker or drug target of LUAD in a 

comprehensive proteomics analysis conducted by Jun-Yu Xu et al. [40]. In our study, GAPDH was 

hypomethylated in gene body and was associated with up-regulated gene expression, and also found 

as a drug interacting target. Of the 4 drugs targeting GAPDH, thionicotinamide-adenine-dinucleotide 

[51] have shown potent cytotoxicity against cancer cells. 

Table 3. Nine DMEGs targeted by available drugs. 

RefGene Region Relation to Island Pattern Drugs Drug Example 

XDH TSS200 OpenSea HypoUp 9 Allopurinol, Eniluracil 
 Body OpenSea HypoUp 9 Allopurinol, Eniluracil 

ATIC Body S_Shore HypoUp 7 Pemetrexed 

CA9 Body Island HyperUp 6 Benzthiazide, Hydroflumethiazide, Ellagic Acid 

SLC7A11 Body OpenSea HypoUp 5 Riluzole, Sulfasalazine 

GAPDH Body S_Shore HypoUp 4 Thionicotinamide-Adenine-Dinucleotide 

PPIF Body S_Shore HypoUp 4 Cyclosporine, L-Proline 

AKR1B10 Body OpenSea HypoUp 3 Tolrestat 

MMP11 Body S_Shore HypoUp 2 Marimastat 

GMDS Body Island HyperUp 2 
Guanosine-5′-Diphosphate-Rhamnose, 

Guanosine-5′-Diphosphate 

3.8. Validation of Affinity of the Candidate Drugs by Molecular Docking Analysis 

To elucidate the binding mode of the candidate drugs for their targets, molecular docking 

analysis was performed. First, 3D model of SLC7A11 protein structure was predicted by the template-

based homology modeling approach with SWISS-MODEL server. Consequently, large neutral amino 

acids transporter small subunit 1 (PDB ID: 6irt.1.B) was identified as ideal template for modeling as 

it indicated high sequence similarity (48.63%) (Figure 9A) [52]. Ramachandran plot analysis showed 

that 92.26% of the residues were present in the allowed area, demonstrating the accuracy of the 

predicted SLC7A11 structure (Figure 9B). The quality of the protein structure was further refined 

using molecular dynamics simulations method, and the stability of the protein model was estimated 

by root-mean-square deviation (RMSD) method. As shown in Figure 9C, the RMSD profile displayed 

the result of molecular dynamics of SLC7A11 model, identifying the final structure of SLC7A11 

tended to be stable. The binding modes of targets and their drug candidates were analyzed by 
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Autodock Vina v.1.1.2, and the binding energy for each target-drug interaction was generated 

(Figures 10 and S3, Table 4). Results demonstrated that each drug candidate bound to its protein 

target primarily through strong electrostatic and hydrogen-bonding interactions. Furthermore, the 

active site of each target was occupied successfully by the candidate drugs. The binding energy for 

ATIC-Pemetrexed complex is −9.1 kcal/mol, and for GAPDH-Thionicotinamide-Adenine-

Dinucleotide complex is −9.6 kcal/mol, indicating highly stable binding (Table 4). 

 

Figure 9. Homologous modeling of SLC7A11 protein structure. (A) 3D structure of SLC7A11. (B) 

Ramachandran plot analysis. (C) The root-mean-square deviation (RMSD) profile for time period of 

100 ns. 
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Figure 10. Binding mode of screened drugs to their targets by molecular docking. (A) Binding mode 

of XDH-Allopurinol complex. (B) Binding mode of ATIC-Pemetrexed complex. (C) Binding mode of 

CA9-Benzthiazide complex. (D) Binding mode of SLC7A11-Riluzole complex. (E) Binding mode of 

GAPDH-(Thionicotinamide-Adenine-Dinucleotide) complex. (i), Cartoon representation, overlay of 

the crystal structures of small molecule compounds and their targets were illustrated by Molecule of 

the Month feature. (ii), 2D interactions of compounds and their targets. (iii) 3D structures of binding 

interface were showed by PyMOL software. 
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Table 4. Binding Energy for targets with their drugs. 

Target Drug Binding Energy (kcal/mol) 

XDH Allopurinol −6.0 

XDH Eniluracil −5.8 

CA9 Benzthiazide −7.0 

CA9 Ellagic-Acid −7.1 

CA9 Hydroflumethiazide −6.2 

ATIC Pemetrexed −9.1 

GAPDH 
Thionicotinamide-Adenine-

Dinucleotide 
−9.6 

SLC7A11 Sulfasalazine −9.8 

SLC7A11 Riluzole −7.2 

4. Discussion 

Patients with “EGFR Wild Type/Low PD-L1 expression” lung cancer lack a first-line single drug 

therapy as they hardly respond to TKIs and immune checkpoint inhibitors. Although response can 

be improved by combining anti PD-1 antibody therapy with conventional therapies, limitation of 

available drugs made it still a significant challenge for clinical practice to establish a fine balance 

between toxicity and therapeutic benefit [53]. Thus, novel therapies with less harmful side effects and 

better efficacy in combination are needed. 

In this study, we performed an epigenome-genes association study of 133 patients from TCGA, 

which was validated in independent cohorts of patients with “EGFR Wild Type/Low PD-L1 

expression” NSCLC from GEO. Compared with normal controls, “EGFR Wild Type/Low PD-L1 

expression” NSCLC patients showed poor lymphocyte infiltration and downregulation of immune 

checkpoint proteins, meeting the criteria for classification as “cold” tumors [54,55]. Previous evidence 

has been found that DNA hypermethylation is related to immunity and immune response to ICIs 

[25,56]. Notably, the gene enrichment analysis for downregulated DMEGs involved in negatively 

regulating immune system process and T cell mediated immunity pathway, indicating DNA 

methylation also may act as a key role in maintaining the “cold” immune microenvironment. 

Epigenetic changes have been associated with various cancers and DNA hypermethylation in 

CpG islands of tumor suppressor genes has been shown to inactivate them, thereby promoting cancer 

[57,58]. Similarly, we found that hypermethylated DMRs in 3 regions (TSS200, TSS1500, and gene 

body) are significantly higher than hypomethylated ones. Furthermore, 15 tumor suppressor genes 

belonging to the HyperDown group were identified, of which CDO1 (Cysteine Dioxygenase Type 1) 

[59,60], IRF8 (Interferon Regulatory Factor 8) [61], STAT5A (Signal Transducer And Activator Of 

Transcription 5A) [62], CFTR (CF Transmembrane Conductance Regulator) [63], ADAMTS8 (ADAM 

Metallopeptidase With Thrombospondin Type 1 Motif 8) [64], WIF1 (WNT Inhibitory Factor 1) [65], 

GATA5 (GATA Binding Protein 5) [66], FOXA2 (FOXA2) [67], SHISA3 (Shisa Family Member 3) [68], 

AXIN2 (Axin 2) [69], DIRAS3 (DIRAS family GTPase 3) [70], IRX1 (Iroquois Homeobox 1) [71], and 

ITGA5 (Integrin Subunit Alpha 5) [72] are confirmed by previous studies to be silenced via 

hypermethylation in lung cancer (Tables S1–S3). Although the tumor suppressor CAMK2N1 

(Calcium/Calmodulin Dependent Protein Kinase II Inhibitor 1) has not been associated with lung 

cancer yet, its hypermethylation has been shown to promote tumorigenesis in other cancers [73]. 

These indicated that relative to other lung cancer types, “EGFR Wild Type/Low PD-L1 expression” 

NSCLC experiences more diversified epigenetic silencing of tumor suppressors, which made its 

carcinogenic mechanisms more complicated. 
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To evaluate the influence of genomic epigenetic changes on prognosis, we evaluated the 

prognostic power of DMEGs in “EGFR Wild Type/Low PD-L1 expression” NSCLC and a 4 DMEGs-

based (PLCXD3, BAIAP2L2, NPR3, SNX10) prognostic model were identified using a LASSO 

regression analysis model. The biological roles of these four genes in “EGFR Wild Type/Low PD-L1 

expression” NSCLCs have not been thoroughly investigated. PLCXD3 encodes a phospholipase that 

hydrolyzes phospholipids into fatty acids [74]. Its function in lung cancer is not clear yet. In our study, 

expression of PLCXD3 was negatively correlated with risk, indicating it can be identified as a 

protective factor. BAIAP2L2 (BAI1-associated protein 2-like 2) belongs to an I-BAR family and plays 

an important role in regulating membrane protrusions. Lei Xu et al. found BAIAP2L2 was 

upregulated in lung adenocarcinoma and acted as an oncogene in the development of lung cancer 

[75]. In line with their findings, expression of BAIAP2L2 was identified positively correlated with 

risk and negatively associated with OS. NPR3 (natriuretic peptide receptor 3) has been reported as 

one of the prognostic markers for colorectal cancer (CRC), for which upregulation signified poor 

survival [76]. In the present study, expression of NPR3 was positively correlated with risk and 

negatively associated with OS. SNX10 (sorting nexin 10) belongs to SNX family and contains a PX-

domain. Several studies have revealed that SNX10 functioned as a tumor suppressor gene in 

progression of CRC [77,78]. Surprisingly, in our study, expression of SNX10 was positively correlated 

with risk and negatively associated with OS. This prognostic model effectively categorized training 

set samples into high- and low-risk classes and high area under the AUC effectively predicts 1-, 3-, 

and 5-year OS. KM analysis also revealed significant OS differences between the high- and low-risk. 

Taken together, these observations indicate that aberrant methylation significantly influences the 

pathogenesis of “EGFR Wild Type/Low PD-L1 expression” NSCLC, which was reflected in clinical 

prognosis. 

Drug repurposing is a strategy for identifying new uses for approved or investigational drugs, 

which can significantly reduce the cost and time to bring a new treatment to patients [79,80]. We used 

DMEGs protein–drug interaction data to identify potential therapeutic candidates from DrugBank 

database. Remarkably, our analysis identified the drug target GAPDH, which has just been identified 

as a potential prognostic biomarker or drug target of LUAD in a comprehensive proteomics analysis 

on LUAD patients [40]. Besides, we identified pemetrexed, the only drug currently approved by the 

FDA for first-line use in combination with anti-PD1 antibodies against lung cancer regardless of PD-

L1 expression [7–9], which indicated that our finding drugs may enrich the library of candidates for 

combination strategies based on immune checkpoint inhibitors. Riluzole, an SLC7A11 inhibitor used 

to manage ALS (Amyotrophic lateral sclerosis), and sulfasalazine, which is used to treat IBD 

(inflammatory bowel disease) and arthritis were also identified as potential candidates. Although not 

clinically used against cancer, both have been reported to have anticancer properties. Benzthiazide 

and hydroflumethiazide are used as diuretics in clinical practice and ellagic acid is also present in 

fruits, including strawberries and blueberries. Importantly, these candidates are known to be low 

toxicity. In this study, the binding modes of candidate drugs with the targets were further elucidated 

through docking analysis, offering a rational molecular explanation. Besides, the other treatment 

target rely on epigenetic signature elucidated which can be erasable by epigenetic drugs to enhance 

cold tumor response to immunotherapy [25]. Such drugs, including DNA demethylating agents 

[81,82] and deacetylase inhibitors, are in clinical use against some leukemias and lymphomas. Clinical 

trials of this class of drugs in combination with immune checkpoint inhibitors in lung cancer 

treatment are also ongoing [83]. 

5. Conclusions 

In summary, the present study uncovered the distinct methylation-transcription characteristics 

of “EGFR Wild Type/Low PD-L1 expression” NSCLC, and provided an adaptable way to identify 

potential therapeutic targets, which may enrich the library of candidates for combination strategies 

based on immune checkpoint inhibitors against this intractable lung cancer subtype. 
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