Supplementary Materials: Cancer-Specific Immune **Prognostic Signature in Solid Tumors and Its Relation to Immune Checkpoint Therapies**

Figure S1. ssGSEA of scRNA-seq data of tumor samples from four solid tumor histologies (breast, colon, glioblastoma, and head and neck tumors) identifies three or two dominant immune-functionassociated cell clusters. One of these clusters is enriched for monocytes, macrophages, dendritic cells (MoMaDC), another cluster is enriched for NK-, T-cells, and another is enriched for B-cell functions. For head and neck tumors and glioblastomas, B-cell enrichments does not form a distinct cluster but forms a unified cluster along with NK- and T-cells. (a) Analysis of a breast cancer scRNA-seq data set identifies nine cell clusters from unsupervised t-SNE clustering. (b) These clusters were assigned to three distinct sets of immune functions using ssGSEA, as seen from the heat map (one related to monocytes, macrophages, TLR and dendritic cells; one related to B-cell functions; and the other related to NK- and T-cell functions). (c) The stacked bar plot shows that cell clusters 1, 3, and 4 are enriched for functions related to monocytes, macrophages, and dendritic cells; the cell cluster 6 is enriched for B cell functions; and cell cluster 7 is enriched for NK- and T- related functions. (d) Analysis of a GBM scRNA-seq data set identifies 10 cell clusters from unsupervised t-SNE clustering. (e) These clusters were assigned to two distinct sets of immune functions using ssGSEA, as seen from the heat map (one related to monocytes, macrophages, TLR, dendritic cells and the other related to NK-, T- and B-cell functions). (f) The stacked bar plot shows that cell clusters 0, 1, 3, and 5 are enriched for functions related to monocytes, macrophages and dendritic cell and that cell clusters 2, 4, 6, 7, 8, and 9 are enriched for NK-, T- and B-cell related functions. (g) Analysis of a GBM scRNA-seq data set identifies 19 cell clusters from unsupervised t-SNE clustering. (h) These clusters were assigned to two distinct sets of immune functions using ssGSEA, as seen from the heat map (one related to monocytes, macrophages, TLR and dendritic cells and the other related to NK-, T- and B-cell functions). (i) The stacked bar plot shows that cell clusters 0, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 are enriched for functions related to monocytes, macrophages and dendritic cells and that cell clusters 1 and 3 are enriched for functions related to NK-, T- and B-cells. (j) Analysis of a colon cancer scRNA-seq data set

Supplementary Figures

ering. (k) These clusters were assigned to

identifies eight cell clusters from unsupervised t-SNE clustering. (k) These clusters were assigned to four distinct sets of immune functions using ssGSEA, as seen from the heat map (one related to monocytes, macrophages, and dendritic cells; one related to B-cell functions; one related to NK- and T-cell functions; and one non-specific cluster). (l) The stacked bar plot shows that cell clusters 1, and 3 are enriched for functions related to monocytes, macrophages, and dendritic sets is enriched for NK- and T-cell functions; and cell cluster 7 is enriched for B-cell functions.

Figure S2. Kaplan-Meier analysis of cancer samples between the two sample clusters from the pancancer expression analysis of 155 immune signature genes (from Figure 3B) shows that in most cancer types (LGG, SKCM, LUAD, KIRC, KIRP, KICH, PRAD, PAAD, LIHC, THCA, and BLCA), cluster 1 (overexpression of bad prognosis genes) is significantly associated with poor disease-free survival.

S3 of S8

Figure S3. Kaplan-Meier analysis of disease-free survival of cancer samples stratified by high (>median, red line) or low (<median, blue line) immune scores specific for each of the 20 cancer types shows that high immune scores are significantly associated with better disease-free survival in all cancer types.

Figure S4. Immune score models for nonspecific cancer types could not predict response to checkpoint blockade therapy in bladder cancer (Mariathasan et al., 2018). (a–b) Immune score specific to SKCM (a) and KIRC (b) was not higher in tumors that responded (complete or partial response, CR/PR) compared to tumors that did not responded (standard or progressive disease, SD/PD) in anti-PDL1-treated bladder cancer patients. (c–d) Immune score specific to SKCM (c) and KIRC (d) could not predict objective response to anti-PDL1 treatment in bladder cancer patients. The AUC for predicting responsive tumors (CR/PR) versus non-responsive tumors (SD/PD) was close to that of random prediction (0.5).

Table S1.	. All genes	s associated	with	disease-free	survival	in 20	TCGA	cancer	types;	chosen	using
elastic net	and Kapl	an-Meier an	alysis								

Gene	Cancer	Coeff		
RPL31	GBM	0.010127		
RPS16	GBM	0.007807		
EIF3G	GBM	0.021535		
PLOD2	GBM	-0.02265		
FRAT2	GBM	0.220046		
MYD88	GBM	-0.02697		
TNFSF4	GBM	-0.10415		
VNN1	GBM	-0.01664		
SLC12A8	GBM	-0.03837		
SNX10	GBM	-0.06819		
CHI3L1	GBM	-0.03997		
BCL2A1	GBM	-0.24106		
CFLAR	GBM	-0.04284		
BANK1	LGG	-0.04219		
BCL7A	LGG	0.05836		
CAPG	LGG	-0.02874		
CASP3	LGG	-0.03997		
CEACAM1	LGG	-0.04833		
CHST15	LGG	0.03857		

EIF3H	LGG	0.018127
TMEM255A	LGG	-0.02755
FBXO6	LGG	-0.01493
GIMAP2	LGG	-0.00525
HESX1	LGG	-0.017
HSH2D	LGG	-0.02217
IL22RA1	LGG	-0.03903
NPL	LGG	-0.05264
PARP10	LGG	-0.00056
PSEN2	LGG	-0.00546
PSMB8	LGG	-0.00104
RAG1	LGG	-0.02385
RPL3	LGG	0.002712
RPL7	LGG	0.004706
SOCS1	LGG	-0.02082
SPATS2L	LGG	-0.02545
TNFAIP6	LGG	-0.01694
TNFRSF12A	LGG	-0.0436
TRIM6	LGG	-0.0133
BIRC5	SKCM	0.060904
CD7	SKCM	-0.15728
CDC6	SKCM	0.012193
CDCA2	SKCM	-0.05299
DDX58	SKCM	-0.44534
DDX60	SKCM	0.590045
DEPDC1	SKCM	-0.54929
DONSON	SKCM	0.113839
DTL	SKCM	-0.15809
ECT2	SKCM	-0.25612
GBP4	SKCM	0.056467
GINS2	SKCM	-0.69122
IFITM1	SKCM	0.229638
IL12A	SKCM	0.044932
IL12RB2	SKCM	-0.18564
IL18RAP	SKCM	0.552766
IRF1	SKCM	-0.01035
IRF7	SKCM	0.380559
KLRC1	SKCM	0.311587
KLRD1	SKCM	0.141009
LAP3	SKCM	0.013529
MKI67	SKCM	0.536968
PARP12	SKCM	0.131166
PYHIN1	SKCM	0.289861
RACGAP1	SKCM	-0.33746
SKA1	SKCM	-0.94405
STAT1	SKCM	0.061859
TLR2	SKCM	0.132438
TLR8	SKCM	0.115879
UBE2C	SKCM	0.036744
CDCA2	LUAD	-0.02714

DEPDC1B	LUAD	-0.11074		
DLGAP5	LUAD	-0.06315		
DTL	LUAD	-0.01635		
ECT2	LUAD	-0.08089		
KIF14	LUAD	-0.02378		
KIF20A	LUAD	-0.04956		
MAD2L1	LUAD	0.011961		
SHCBP1	LUAD	-0.00519		
SLC12A8	KIRC	-0.40187		
AURKA	KIRP	-0.0557		
AURKB	KIRP	-0.03724		
BUB1	KIRP	-0.01275		
CDC20	KIRP	-0.06612		
CDCA8	KIRP	-0.02403		
CDK1	KIRP	-0.00902		
CDKN3	KIRP	-0.00877		
CENPA	KIRP	-0.02973		
CENPF	KIRP	-0.03067		
DEPDC1	KIRP	-0.0431		
EIE3E	KIRP	-0.02167		
EIF3H	KIRP	-0.04278		
FOXM1	KIRP	-0.01895		
HIURP	KIRP	-0.04352		
HMMR	KIRP	-0.01766		
KIF11	KIRP	-0.00188		
KIF18B	KIRP	-0.04813		
KIF20A	KIRP	-0.01681		
MKI67	KIRP	-0.00906		
NCAPG2	KIRP	-0.00523		
NDC80	KIRP	-0.0141		
NUE2	KIRP	-0.0141		
PI K4	KIRP	-0.01939		
PTTC1	KIRP	-0.0045		
PPI 27	KIRI	-0.0045		
RPI 20	KIRI	-0.03836		
RIL30		-0.00085		
KFL55A SEDDINC1		-0.04144		
SERFINGI		0.190392		
SPC25	KIRP	-0.07121		
TOP2A	KIRP	-0.00297		
TPX2	KIRP	-0.00618		
TRIP13	KIRP	-0.01367		
UBE2C	KIRP	-0.03484		
CIS	LIHC	0.027476		
IRF2	LIHC	0.005467		
MBOAT7	LIHC	-0.01116		
MCM10	LIHC	-0.00126		
MK167	LIHC	-0.01374		
RACGAP1	LIHC	-0.01617		
RASGRP3	LIHC	0.001385		
REPS2	LIHC	0.096182		

RRP12	LIHC	-0.07219
STMN1	LIHC	-0.02358
BCL2	KICH	0.16179
EAF2	KICH	0.026256
BANK1	UVM	-0.50914
CDKN3	UVM	-0.34223
CENPA	UVM	-0.02007
RPL29	UVM	0.034258
RPS10	UVM	0.010025
RPS18	UVM	0.018559
RPS28	UVM	0.235403
RRM2	UVM	-0.00156
SEC11C	UVM	-0.5662
SPATS2	UVM	-0.01274
KIR3DL1	HNSC	0.061815
NFATC3	HNSC	0.051518
RASSF5	HNSC	0.047304
STAT3	HNSC	0.006566
STX3	HNSC	-0.04074
TAL1	HNSC	0.024819
TNFRSF12A	HNSC	-0.02452
CDR2	CESC	-0.06467
FAM129C	CESC	0.103777
FRK	CESC	0.031133
TCL1A	CESC	0.140501
TNFAIP6	CESC	-0.04312
VCAN	CESC	-0 13779
GUCY1B3	UCEC	-0 13335
SMPD3	UCEC	0.055162
MAD2L1	THCA	-0.01356
CD69	BRCA	0.123017
CTLA4	OV	0.042074
MZB1	OV	0.17865
SOCS1	OV	-0.06774
TNFRSF17	OV	0.009313
	PRAD	-0.0046
		-0.0040
ASCR1		-0.41033
BIRC5		-0.41035
CD28		-0.03420
CMNN		0.095152
GIVIININ MAD2L1		-0.15505
MAD2L1		-0.00822
FIIGI		-0.03482
SPOCK2	PKAD	0.000269
SIMNI	PRAD	-0.094
		-0.0485
CD44 CDKM2	γΑΑΟ Ραλρ	-0.32402
CEP55		-0.20091
ETS1	ΡΔΔΠ	-0.04040
61.71		-()./()()+

KIF20A	PAAD	-0.49693
TPX2	PAAD	-0.48558
TTK	PAAD	-0.46591
UBE2C	PAAD	-0.01529
RCAN3	COADREAD	0.016729
SOCS1	COADREAD	0.111016
SPP1	COADREAD	-0.06986
VEGFA	COADREAD	-0.0339
CDCA7	STAD	0.002116
E2F8	STAD	0.027942
MELK	STAD	0.02538
NCAPG2	STAD	0.011524
STON2	STAD	-0.09419
TNFSF4	STAD	-0.05426
SIRPG	BLCA	0.050077

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).