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Abstract: Octreotide long-acting repeatable (LAR) is largely used to treat functional and/or metastatic
neuroendocrine neoplasms (NENs). Its effect in controlling carcinoid syndrome and partially reduce
tumour burden is attributable to the ability of octreotide to bind somatostatin receptors (SSTRs) on
the tumour and metastasis, regulating growth hormone secretion and cell growth. Notably, SSTRs
are also expressed, at different levels, on Tregs. Tregs, together with myeloid-derived suppressor cells
(MDSCs), are key components in the anti-tumour immunoregulation. This is the first prospective
study aimed to explore the impact of Octreotide (OCT) LAR on the immune system, with a particular
focus on Tregs and MDSC cells. Here, we show that circulating Tregs are elevated in NENs patients
compared to healthy donors and that treatment with OCT LAR significantly decrease the level of
total Tregs and of the three functional Tregs populations: nTregs, eTregs and non-Tregs. Furthermore,
OCT LAR treatment induces a functional impairment of the remaining circulating Tregs, significantly
decreasing the expression of PD1, CTLA4 and ENTPD1. A trend in circulating MDSC cells is reported
in patients treated with OCT LAR. The results reported here suggest that the effect of OCT LAR
on Tregs could tip the balance of the patients’ immune-system towards a durable anti-tumour
immunosurveillance with consequent long-term control of the NENs disease.
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1. Introduction

Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies derived from the
neuroendocrine cell compartment [1]. NENs incidence and prevalence are steadily increasing due
to the improvement of diagnostic and therapeutic tools; however, the large part of patients presents
with advanced and symptomatic disease [2]. While chemotherapy (platinum-based) is the mainstay
of treatment for neuroendocrine carcinomas (NECs), somatostatin analogs (SSAs: octreotide and
lanreotide) represent the backbone of the treatment for well-differentiated neuroendocrine tumours
(NETs). SSAs play a key role in controlling hormone-related symptoms (carcinoid syndrome) and
improving clinical benefit [3–5]. SSAs mainly act inhibiting tumour growth; this results in a good
disease control but in a weak tumour shrinkage effect. In fact, octreotide (OCT) long-acting release
(LAR) showed an objective response rate (ORR) of 3–10%, but the disease stabilization rates were up to
50–60% [6]. In addition, OCT LAR (30 mg intramuscular (im) every 28 days) significantly ameliorates
the time to tumour progression (TTP) when compared to placebo in either functioning (hormone
secreting) or non-functioning (non-secreting) metastatic well-differentiated midgut NETs [4,5], and
registered in the PROMID trial a stabilization rate of 60%.

The rationale for the diagnostic and therapeutic use of SSAs in NETs is based on the expression
of somatostatin receptors (SSTRs), particularly SSTR2 subtype, in tumour tissue. However, the
development of new SSAs and the emerging novel findings on SSTRs physiology has prompted new
investigations aimed at developing innovative diagnostic tools and, hopefully, therapeutic approaches.
Interestingly, SSTRs are expressed both in peripheral and tumour-infiltrating lymphocytes [7,8],
and their expression dynamically depends on the cell trafficking through and within lymphoid
structures [9–12]. In this context, the interactions between SSAs and immune system and the role
played by SSAs in the match between neuroendocrine tumours and immunological response are
largely unexplored.

The immune response is orchestrated through a complex interrelation between soluble mediators
(cytokines, chemokines, etc.) and effector/regulatory lymphocytes. The result is a dynamic balance
between activation and the inhibition of the immune response. Many modern drugs aimed to revitalize
the anti-tumour immunity [13] act on this balance. Notably, Tregs (regulatory T cells), MDSCs
(myeloid-derived suppressor cells) and TAMs (tumour-associated macrophages) are regulatory cells
participating in the regulation of immune responses, and their functional excess may contribute to
disease progression in some cancers [14–19]. Both MDSCs and Tregs expand systematically in the
peripheral blood (PB) of preclinical tumour models, and promote T-cell dysfunction that in turn favours
tumour progression [19].

Tregs were originally identified as CD4+CD25+ T cells, with crucial roles in maintaining self-
tolerance and thus preventing autoimmune disease. Three phenotypically and functionally distinct
subsets can be defined based on FOXP3 expression: CD45RA+ FOXP3low naïve or resting Treg (nTreg),
CD45RA- FOXP3 high effector or activated Treg (eTreg) and immunosuppressive CD4+ CD45RA-
FOXP3low cells [20–25]. Furthermore, Tregs express the immunocheckpoint receptors PD-1, CTLA4,
CXCR4, GITR and ENTPD1. Regulated compartmentation of PD-1 has been observed to discriminate
resting CD4 + CD25 + Treg from activated T cells [25–27].

MDSCs are immature, immunosuppressive, myeloid cells that increase in inflammatory diseases,
particularly tumours, and suppress anti-tumour immunity [16,28]. MDSCs produce inhibitory factors
(e.g., IL-10, arginase) that inhibit T cells and promote Tregs and detrimental M2 macrophages [17].
MDSC can be divided in (i) PMN (polymorphonucleated)-MDSC (CD11b+CD14-CD15+) and (ii)
M (monocytic)-MDSC (CD14+HLA-DR-/lowCD15-CD11b+), characterized by distinct suppressive
pathways of T cells functions [29]. MDSC immature progenitors, not yet identified in humans,
share the majority features with MDSC subsets, and are defined as early-stage MDSC (eMDSC) [29].
PMN-MDSCs are the predominant subset in human tumors [18].

Longitudinal evaluation of peripheral Tregs and MDSC cells has been reported as a
surrogate biomarker representing tumour microenvironment (TME). Both MDSCs and Tregs expand
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systematically in the peripheral blood (PB) of preclinical tumour models and promote T-cell dysfunction
that in turn favours tumour progression [19].

MDSCs and Tregs basal values were significantly higher in locally advanced rectal cancer (LARC)
patients treated with neoadjuvant chemo-radiotherapy, as compared to healthy donors (HD). Moreover,
LARC poor responder patients displayed a significant increase of Treg-PD-1 [30]. With the intent to
shed further insights into OCT LAR mechanism of action in NEN patients, the IMMUNeOCT study
was designed.

The IMMUNeOCT study is the first prospective, longitudinal study aiming to explore the impact
of OCT LAR on Tregs and MDSC population, as detected in the peripheral blood of OCT LAR-treated
G1/G2 NENs patients.

2. Materials and Methods

2.1. Study Design

This is a monocentric, interventional, prospective, single-arm study. Peripheral immune
phenotypes were analysed in fresh venous blood from healthy donor and from patients over treatment.
Patients samples have been collected at the first visit (V1), prior OCT LAR treatment initiation, and at
the second (V2), third (V3), fourth (V4) and fifth (V5) visit, at 15 days,1 month, 3 months and 6 months
post OCT LAR treatment initiation, respectively. The study design is shown in Figure 1.
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The study design was approved by the Ethic Committee of Istituto Nazionale Tumori, IRCSS
“Fondazione G. Pascale” of Naples, under protocol number 720/2017.The trial has been registered
in the European Union Drug Regulating Authorities Clinical Trials (EudraCT) Database, under the
number EudraCT2017-001613-83, and in the clinicaltrial.gov registry under the number NCT04129255.

2.2. Patients Population

Patients aged ≥ 18 years with histologically confirmed metastatic GEP-NET and functioning
lung-NET and candidate to receive treatment with SSAs were eligible. Between July 2017 and December
2018, 35 patients (pts) were enrolled in the IMMUNeOCT trial at the European Neuroendocrine Tumor
Society (ENETs) Centre of Excellence of Naples. Patients characteristics are described in Table 1.
All subjects enrolled in the study signed an informed consent form (ICF), were naïve to SSAs treatment,
and received OCT LAR intramuscular (im) injection every 28 days the as only medication for NETs
treatment. The drug was available as a single-use kit containing 30 mg of octreotide acetate for im
injection, and it was stored and protected from light at refrigerated temperatures between 2 ◦C and
8 ◦C, until the time of use.
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Table 1. Comparisons of patient characteristics and Tregs reduction over 6 months of somatostatin
analogs (SSAs) treatment.

Characteristics n (%) Tregs Reduction from T0 to T6M, Median [IQR] p

Age (Years)
Median 59
Range 33–81

Sex
Male 18 (51) 0.78 [0.48–1.23]

0.45Female 17 (49) 0.59 [0.29–0.78]

Primary tumour site
Lung 7 (20) 0.58 [0.48–1.09]

0.84GEP 28 (80) 0.62 [0.41–1.22]
Stomach 11 (31)
Pancreas 8 (23)

Ileus 5 (14)
Rectum 3 (9)

Mesenteric Nodes 1 (3)

Functional Status
Functioning 13 (37) 0.65 [0.49–1.30]

0.61Non-Functioning 22 (63) 0.58 [0.40–1.17]

Metastatic Sites
Liver 23 (66) 0.65 [0.4–1.03]

0.91Others 12 (34) 0.56 [0.31–1.38]

Metastatic sites n.
1 25 (71) 1.08 [0.28–1.5]

0.91
>1 10 (29) 0.6 [0.42–0.85]

NET Grade
G1 25 (71) 0.66 [0.42–1.23]

0.64G2 10 (29) 0.58 [0.29–0.78]

Gallium68 (Ga 68) Dotatoc was performed in all the patients and resulted in being positive for all
of them.

Drug administration and all the clinical activities were performed in accordance to good clinical
practice (GCP) compliance, with global and local regulatory requirements, protocol and internal SOPs.
All adverse events were recorded, starting from the signing of ICF until the follow-up phase, according
to Common Terminology Criteria for Adverse Event ver. 4.0 (CTCAE).

2.3. Healthy Donors

Healthy donors (HDs) were recruited among blood donors of the Immunohematology and
Transfusional Medicine Service at Istituto Nazionale Tumori, IRCSS “Fondazione G. Pascale”. HDs
signed an informed consent and screened for evidence of blood infection (HIV, HCV, HBV), renal and
hepatic failure.

2.4. End Points

Primary study endpoint was to evaluate the peripheral modifications in immune-regulatory cells
induced by OCT LAR injection administered every 28 days, in monotherapy from baseline until sixth
month of treatment in naïve patients. Secondary endpoint was to evaluate progression free survival
(PFS), defined as the time elapsed from first dose administration to the disease progression (PD),
evaluated according to RECIST criteria (version 1.1). The immune-response evaluation was performed
in peripheral blood samples collected at baseline, on day 14, on day 28, on day 84 and on day 168,
in association with the laboratory assessment of haematology, biochemistry and chromogranin-A.
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Tumour response rate was locally assessed by a triphasic computed tomography (CT) scan at week 12,
and then every 12 weeks from the first dose administration date.

2.5. Flow Cytometry

Flow cytometry was performed on peripheral blood (collected in EDTA K3 vacutainer tubes) for
Tregs evaluation, and on PBMC (human peripheral blood mononuclear cells) for MDSC, obtained
from the blood separated by density gradient centrifugation Ficoll® Paque protocol (Sigma-Aldrich,
Darmstadt, Germany, Europe). Cells were stained with antibodies for 30 min at 4 ◦C, and washed
with BD wash buffer (PBS/0.2% BSA/0.01% NaN3). Intracellular staining for FOXP3 and CTLA-4 was
performed, using a commercially available kit (BD Cytofix/Cytoperm; fixation and permeabilization
kit; BD Pharmingen) according to the manufacturer’s instructions. For the identification of Treg cells,
the following fluorochrome-labelled monoclonal antibodies (BD Bioscience, San Jose, CA, USA) were
used: Horizon-V450 anti-FOXP3(clone259D/C7), Pe anti-CD25(clone 2A3), PercP anti-CD152 (CTLA4)
(clone BNI3), Pe-Cy7 anti-CD127 (clone HIL-7R-M21), APC anti-CD279 (PD-1) (clone MIH4), PeCy5
anti-CD184 (clone 12G5), APC anti-CD39(clone TU66), Alexa Fluor647 anti-Helios (clone 22F6) and
APC-Cy7 anti-CD4(clone RPA-T4).

For MDSC subsets characterization, the following antibodies were used: FITC anti-Lineage (BD),
PE anti-CD11b (clone Mac-1), PER-CP anti-CD33 (clone P67.6), PeCy7 anti-HLA-DR (clone G46-6), APC
anti-CD15 (clone HI98), and APC-Cy7 anti-CD14(clone MϕP9) (BD Bioscience, San Jose, CA, USA).
Viability was analysed using LIVE/DEAD cell stain (Invitrogen, Carlsbad, CA, USA). A minimum of
100,000 events for each sample were collected, and data were analysed using FACSDiva™ 8.0 Software
(BD Bioscience).

Data were analysed using GraphPad Prism Software (GraphPad Software, Inc., La Jolla, CA, USA).

2.6. Statistical Analysis

Wilcoxon matched pairs signed rank test was used to assess statistical significance. The distribution
of the variables was tested with Kolmogorov–Smirnov test. Normally, distributed continuous variables
were expressed as mean ± standard deviation (SD), whereas continuous data with skewed distributions
were expressed as median (interquartile range (IQR)). Results were considered significant at * p ≤ 0.05,
** p ≤ 0.005 and *** p ≤ 0.0005.

3. Results

3.1. High Tregs Number in PB of NENs Patients

Tregs are defined as CD4+, CD25hi, CD127low and FOXP3+. Tregs’ multi-parametric gate-strategy
is shown in Figure 2. Tregs comprise dynamic subpopulations: effector Tregs (eTregs) identified as
FoxP3HI CD45RA−, naïve Tregs (nTregs) as Fox-P3intCD45RA+ and non-Tregs Fox-P3intCD45RA−.
While the effectors and naïve Tregs displayed specific suppressive function, the non-Treg mainly
secreted IL-2, IL17 and γ IFN, displaying a more inflammatory phenotype. Peripheral Tregs were
evaluated at T0 in 35 NEN patients and 23 healthy donors (HD). As shown in Figure 3, NEN patients
displayed higher number of Tregs at T0, as compared with healthy controls (1.12 ± 0.14 vs. 0.34 ± 0.05)
(p < 0.0005). All the subpopulation were equally affected in patients as compared to HD eTreg
(0.23 ± 0.04 vs. 0.04 ± 0.08) (p < 0.0005), nTreg (0.12 ± 0.02 vs. 0.07 ± 0.01) (p < 0.05) and non-Tregs
(0.71 ± 0.10 vs. 0.22 ± 0.03) (p < 0.0005).
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fluorescence-activated cell sorting (FACS) plots: (i) dead cells identified as positive Live/Dead Horizon
V450 and (ii) doublets cells were excluded; (iii) T lymphocytes were gated on the basis of their scatter
parameters and (iv) CD4+ T cells were identified and analysed for CD25 and CD127 surface expression:
(v) CD4+ T cells expressing high levels of CD25, negative or low expression of CD127, (vi) and FoxP3
positivity was considered as Treg cells (g–h) Treg subpopulation were identified according to Foxp3
level and CD45RA in eTregs (FoxP3hiCD45RA) (b), nTregs(FoxP3intCD45RA+) cells (c) and non-Treg
intCD45RA- cells (d).

Cancers 2020, 12, x 6 of 15 

 

. 

Figure 2. Multi-parametric Tregs and Tregs subtyping gate-strategy. (a) (i–vi) Representative 
fluorescence-activated cell sorting (FACS) plots: (i) dead cells identified as positive Live/Dead 
Horizon V450 and (ii) doublets cells were excluded; (iii) T lymphocytes were gated on the basis of 
their scatter parameters and (iv) CD4+ T cells were identified and analysed for CD25 and CD127 
surface expression: (v) CD4+ T cells expressing high levels of CD25, negative or low expression of 
CD127, (vi) and FoxP3 positivity was considered as Treg cells (g–h) Treg subpopulation were 
identified according to Foxp3 level and CD45RA in eTregs (FoxP3hiCD45RA) (b), 
nTregs(FoxP3intCD45RA+) cells (c) and non-Treg intCD45RA- cells (d). 

 
Figure 3. Tregs and Tregs subpopulation in patients and HDs at the baseline. Percentage of 
circulating Tregs, eTregs, nTregs, non-Tregs in patients and healthy donors, expressed as percentage 
of cells positives for the relative markers reported in Figure 2. * p < 0.05; *** p < 0.0005. Pts, patients; 
HDs, Healthy donors. 

  

Figure 3. Tregs and Tregs subpopulation in patients and HDs at the baseline. Percentage of circulating
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positives for the relative markers reported in Figure 2. * p < 0.05; *** p < 0.0005. Pts, patients; HDs,
Healthy donors.



Cancers 2020, 12, 2422 7 of 15

3.2. Tregs Decreased during Octreotide LAR Treatment

A longitudinal Tregs evaluation was conducted in 35 patients during the octreotide LAR treatment.
Tregs were significantly decreased by 55% after 1 month of treatment (1.12 ± 0.14 vs. 0.50 ± 0.08;
p < 0.0005), and by 71% after 6 months of treatment (1.12 ± 0.14 vs. 0.32 ± 0.08; p < 0.0005) (shown
in Figure 4a,b). There was not statistical difference between groups, as shown in Table 1. The three
functional Tregs subpopulations, naïve Tregs, active Tregs and non-Tregs, were concomitantly and
significantly reduced by 58% (0.12 ± 0.02 vs. 0.05 ± 0.01; p < 0.0005), 61% (0.23 ± 0.04 vs. 0.09 V 0.05;
p < 0.005) and 73% (0.71 ± 0.10 vs. 0.19 ± 0.04; p < 0.0005), respectively, after 6 months of octreotide
LAR treatment (shown in Figure 4c–e). The results of Tregs level at 3 months were consistent with the
gradual dynamic reduction shown over time.
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Figure 4. Reduction of Treg cells and Tregs subpopulation during Octreotide LAR treatment:
(a) Representative sample analysed by flow cytometry, showing the reduction of circulating Tregs
in a patient after 1 and 6 months of treatment. (b–e) Decrease of peripheral Tregs, naïve Tregs,
effector Tregs and non-Tregs after 1 month (T1M) and 6 months (T6M) of treatment with Octreotide
Lar. Tregs are expressed as percentage of T cells CD4+CD25+CD127lowFoxP3+ (b); naïve Tregs are
expressed as percentage of Tregs CD127lowFoxP3intCD45RA+ (c); effector Tregs are expressed as
percentage of CD127lowFoxP3hiCD45RA- Tregs (d); and non-Tregs are expressed as percentage of
CD4+CD25+CD127lowFoxP3intCD45RA-. * p < 0.05; ** p < 0.005; *** p < 0.0005.

With the intent to characterize Tregs’ functional status, the expression of immuno-checkpoint
and immuno-markers PD-1, CTLA4, CXCR4, ICOS, Helios and ENTPD1 was evaluated on
Tregs/Tregs subpopulations.

There was a significant decrease in the percentage of total Tregs, expressing PD-1 and ENTPD1
at 1 month and 6 months of treatment with OCT LAR. The total Tregs expressing PD-1 and ENTPD1
decreased by 44% (59.4 ± 6.6% vs. 33 ± 6%; p < 0.005) and 39% (69.9 ± 5.7% vs. 42.4 ± 6,7%; p < 0.005)
after 1 month of treatment, and by 52% (59.4 ± 6.6% vs. 28.7 ± 0.06%; p < 0.0005) and 33% (69.9 ± 5.7%
vs. 47.1 ± 0.07%; p < 0.05), after 6 months of OCT LAR treatment (shown in Figure 5a,b). This decrease
was paralleled by a significant decrease in PD1 and ENTPD1 expression in the three functional
subpopulation, nTregs, eTregs and non-Tregs, after both 1 month and 6 months of treatment (shown in
Figure 5a,b). Conversely, the expression of CTLA4 was specifically and significantly decreased only
in the eTregs population, the most suppressive population, with a reduction of 37% (48.6 ± 5.3% vs.
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30.7 ± 5.5%; p < 0.05) and 45% (48.6 ± 5.3% vs. 26.5 ± 0.06%; p < 0.005) after 1 month and 6 months of
treatment, respectively (shown in Figure 5c).
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Figure 5. PD-1, ENTPD1, CTLA4 expression on Tregs during OCT LAR treatment: Expression of PD-1
(a), ENTPD1 (b) and CTLA4 (c) in Tregs and Tregs subpopulation, before (T0), after 1 month (T1M) and
after 6 months (T6M) of OCT LAR treatment. * p < 0.05; ** p < 0.005; *** p < 0.0005.

CXCR4, ICOS and Helios expression were not significantly modified over treatment (data not shown).
OCT LAR treatment significantly reduces Tregs number and function in NEN patients, suggesting

a direct effect of OCT LAR on immune regulatory cells.

3.3. Peripheral MDSCs Subsets Evaluation

The MDSCs consist of immature myeloid cells and have a bewildering diversity of phenotypes.
The strategy gates used to evaluate the MDSC subsets are the standardized strategy used by

Bronte et al. [28], that had defined three important subsets of MDSCs, myeloid MDSC (M-MDSC),
with expression of CD14+HLADRlow, early MDSC (e-MDSC) as LIN-HLADR-/lowCD11b+CD33+ and
MDSC (PMN-MDSC) as CD15+CD11b+ SSCAhigh (shown in Figure 6). The median frequencies of the
three MDSC populations were higher in NENs patients, as compared to HDs M-MDSC (1.99 ± 0.38 vs.
0.27 ± 0.02) (p < 0.005), e-MDSC (0.41 ± 0.13 vs. 0.01 ± 0.001), PMN-MDSC (0.37 ± 0.12 vs. 0.02 ± 0)
(shown in Figure 7). The longitudinal study in patients revealed a trend in the decrease of peripheral
blood MDSCs.
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Figure 7. Evaluation of MDSCs subsets in patients and HDs at baseline: Percentage of circulating
early MDSC (e-MDSC), myeloid MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC) in
patients and healthy donors, expressed as percentage of cell positives for the relative markers reported
in Figure 6. ** p < 0.005. Pts, patients; HDs, Healthy donors; MDSC, myeloid-derived suppressor cells.

3.4. Clinico-Pathological Associations with Tregs and MDSCs Dynamics

With the intent to correlate the peripheral Tregs basal value and their OCT LAR induced
decrease with clinical pathological patients features, known clinical prognostic factors were analysed.
No significant correlation was detected between the peripheral Tregs basal value and their OCT LAR
induced decrease and metastasis site (hepatic vs. other sites) and number, Ki67 (Ki67 < 5 vs. Ki67 > 5),
grading of tumour (G1 vs. G2), size of the tumour and functional status (functional vs. non-functional),
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suggesting that, although Tregs decrease may represent the OCT LAR benefit, this is not enough to
impact on known prognostic factors.

There were no progressions during the observation period of 6 months. Two patients experienced
a partial response (PR), whereas most of the patients, 33 patients, had a stable disease (SD) after 6
months of treatment with SSAs. The overall response rate (ORR) was 6%.

4. Discussion

In this manuscript, the impact of OCT_LAR treatment was evaluated on Tregs and MDSC cells on
NEN patients. Peripheral Tregs cells were significantly higher in NEN patients as compared to healthy
donors, and the OCT LAR treatment decreased Tregs in term of percent and function.

The MDSCs and Tregs orchestrate a complex immunosuppressive network that works to ensure
self-tolerance, but that also suppresses the antitumor immunity, ultimately causing cancer development
and progression.

An increased level of circulating MDSCs and Tregs has been associated with advanced stage
and poor prognosis in different cancers [31–34]. However, little is known on the expression and
potential role of circulating MDSCs and Tregs in NENs. Vikman et al. demonstrated that the number
of circulating Tregs was significantly higher in patients with midgut carcinoids compared to healthy
population, and that the levels of circulating FOXP3+ cells were proportional to the tumour burden [35].
Here, we showed a significant 3.3-fold increase of Treg cells’ level in patients with GEP-NET and Lung
NET in comparison to HDs. A significant increase was revealed for the three subpopulations of Tregs
analysed; however, the highly suppressive eTregs subpopulation mostly increased, as compared to
nTregs and non-Tregs.

A trend of increase was shown in circulating MDSCs cells in patients compared to HDs, but it
was significant only for the M-MDSCs subpopulation. In our study, we did not notice a correlation
between the level of Tregs at the baseline and tumour burden and/or tumour site, this may be due to
the fact that in this study were included patients with mid gut tumours, but also with NETs in other GI
sites and Lung NETs.

Several reports have described a correlation between a decrease in circulating Tregs numbers and
better outcome during anti-cancer treatment [36–38]. However, there was no experience on the effect
of SSAs on the immune system. In this study, we showed a significant reduction in Tregs and Tregs
subpopulation, eTregs, nTregs and non-Tregs, in metastatic GEP-NET and lung-NETpatients during
treatment with OCT LAR. As expected, PFS and ORR are not significantly correlated to Tregs decrease.
However, it should be considered that the treatment with SSAs in Lung and GEP-NET is frequently
associated to long PFS and low response rates [4–6]; for this reason, the timepoint of six months might
have been too early to evaluate any time-to-outcome. No toxicity and no severe adverse events are
recorded during the six months of treatment.

A decrease in the Treg PD-1 and ENTPD1 expression was also reported, showing that OCT LAR
not only reduces the level of the peripheral Tregs, but also induces a functional impairment of the
Tregs subpopulations.

PD-1-PD-L1 axis is crucial to promote nTregs conversion into eTregs, to regulate the eTregs stability
in peripheral tissue, and to enhance and maintain the immunosuppressive function of eTregs on
effector T cells (Teff) [39]. Thus, the PD-1 depletion on circulating Tregs will suppress eTregs expansion
and function, ultimately releasing the immunosuppressive brake on Teff cells.

ENTPD1 (CD39) is the main ectonucleotidase expressed in human Tregs. However, ENTPD1
expression on Tregs is variable among healthy people, whereas it seems to be increased in patients
with cancer [40].

Via the ENTPD1/CD39-CD73-adenosine pathway, Tregs inhibit Teff proliferation, NK cells
cytotoxic activity and cytokine production [41,42]. In addition, the adenosine produced through the
ENTPD1-CD73-adenosine pathway drives monocytes differentiation towards an aberrant differentiation
in DCs secreting pro-tumorigenic factors [43]. Lastly, CD39 mediates ATP depletion, ATP is an important
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inhibitor of tumour cells proliferation and a key chemo-attractant of antigen-presenting cells at the
tumour site; consequently, its depression leads to an increased proliferation in tumour cells and a
decreased anti-tumour immune response [40,44]. Altogether, these results suggest that ENTPD1/CD39
on Tregs has a key immunosuppressive role that ultimately promote tumour growth. Tregs CD39
null lost immunosuppressive function and failed to inhibit Teff cells [40,45]. Therefore, the OCT LAR
induced reduction of Tregs ENTPD1 positive, which we reported in our study, results in less functional
Tregs, and may restore the Teff and NK cells anti-tumour response, as well as allow the accumulation
of ATP at the tumour site that will trigger the recruitment of DCs, monocytes and macrophages at the
tumour site.

In this study, we also showed that six months of OCT LAR treatment significantly reduces the
percentage of eTregs expressing CTLA-4. CTLA-4 is expressed by eTregs constitutively, and it is
specifically essential for eTregs immunosuppressive function [21]. Consequently, we can hypothesize
that the OCT LAR-induced loss of CTLA-4 eventually results in a functional breakdown of the eTregs.

The somatostatin receptors SSTR (2, 3, 1 and 4) are expressed on the T lymphocytes [8], and seem
to have an immunoregulatory function [7,8,46]. Although there are still some contradictory results
in literature on the role of SSAs in the modulation of the immune system, the majority of the results
seem to point out that somatostatin and/or somatostatin analogs enhance T cells cytotoxic activation,
through the adhesion of T cells to fibronectin, collagen type IV, laminin, and β1 integrins [12,47].
In addition, somatostatin and SSAs promote T cells differentiation into lymphokine-activated killer
cells, enhance the cytolytic lymphokine-activated killer activity induced by IL-2, through the inhibition
of adenylate cyclase and activation of protein kinase C [48], and induce the secretion of IL-2, IL-4, IL-10,
and interferon-γ in T helper cells [49].

We can therefore postulate that the effects on circulating Tregs, observed in this study, are due to a
direct effect of OCT LAR on Tcells SSTRs. However, SSAs’ direct effect on Tregs may act along with an
effect on NETs cells, and on their relative profile of cytokine and chemokine secretion.

A trend in MDSC decrease during OCT LAR treatment was also observed in this study. We can
speculate that the MDSC reduction is secondary to the Tregs inhibition that causes a reduction in
cytokines production (e.g., IL10 and IL35), consequently inhibiting the accumulation and function of
MDSC (shown in Figure 8). We are currently testing this hypothesis, evaluating cytokines’ levels in
SSAs treated patients’ blood and the functional phenotype of the circulating MDSC in the same group
of patients.

Cancers 2020, 12, x 12 of 15 

 

LAR as an ideal partner for combined therapy in NENs, as well as provide the rationale of using 
OCT LAR as long-term maintenance therapy, even after progression. 

 
Figure 8. Proposed OCT LAR mechanism of action on immune cells. T0, Time 0—before Octreotide 
treatment; OCT, Octreotide. 

5. Conclusions 

The here reported double effect of OCT LAR of reducing circulating Tregs level and impairing 
their functional profile, together with the well-known anti-tumour growth effect, could be 
responsible for tipping the balance between the host immune system and the NENs disease towards 
a long-lasting anti-tumour immunosurveillance, ultimately resulting in a long-term control of the 
NENs disease. This new balance promoted by OCT LAR might augment the efficacy of a 
concomitant immunotherapy or targeted therapy in NENs treatment, suggesting a new potential 
role of OCT LAR, also beyond disease progression, in a combined therapies scheme. 

Author Contributions: S.T. conceived the study idea. C.v.A., S.S. and S.T. designed the study and wrote the 
study protocol. G.R. and M.N. collected the data and performed the data analysis. C.v.A, O.C., A.D.S. and A.O. 
organized the patients database for the clinical aspects. A.P. assessed the response to the treatment as for 
RECIST 1.1. C.v.A. and G.R. wrote the main manuscript. C.v.A. completed the literature search. C.v.A., M.N., 
S.S. and S.T. contributed to the interpretation of the results. A.O., M.N., F.T., G.B., F.I., S.S. and S.T. edited the 
manuscript, and all authors have read and agreed to the published version of the manuscript. 

Funding: Part of the costs of the IMMUNeOCT study were covered by Novartis Farma (Origgio, VA, Italy), 
whereas no drug was supplied by Novartis Farma which had also no role in study design, data collection and 
analysis, decision to publish, or preparation of the manuscript. 

Acknowledgments: We thank Paola Del Prete, UOC Internazionalizzazione della Ricerca for her close 
collaboration, and Alessandra Trocino, librarian at the Library of Istituto Nazionale Tumori Fondazione “G 
Pascale”, Naples, Italy and Roberta D’Assante, Department of traslational medical Science, Federico II 
University of Naples, for their excellent bibliographic service and assistance. 

Conflicts of Interest: Author S.T. has received speaker honoraria and a research grant from Novartis Farma 
(Origgio, VA, Italy). All other authors declare that they have no conflicts to declare. 

References 

1. Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing but NET: A Review of Neuroendocrine 
Tumors and Carcinomas. Neoplasia 2017, 19, 991–1002, doi:10.1016/j.neo.2017.09.002. 

2. Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, 
Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA 
Oncol. 2017, 3, 1335–1342, doi:10.1001/jamaoncol.2017.0589. 

Figure 8. Proposed OCT LAR mechanism of action on immune cells. T0, Time 0—before Octreotide
treatment; OCT, Octreotide.

Immunologic therapy is the new frontier of anti-cancer treatment, and immune checkpoint
inhibitors have rapidly enriched the therapeutic scenario of many cancers (melanoma, NSCLC,
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lymphomas, renal cancer, etc.) PD-1/PD-L1 and CTLA4/B7 axes are crucial under normal conditions to
protect normal cells from T cells recognition (self-tolerance and exhaustion). In fact, the engagement of
PD-L1 and/or B7 (expressed by normal cells) delivers a potent inhibitory signal in T cells. These signals
contribute, along with the cellular regulatory counterpart (Tregs and MDSCs), to the “fine tuning” of
the immune response. However, numerous types of cancers upregulate PD-L1 and/or B7 proteins
to “escape” T-cell mediated recognition and elimination. The observations that NETs express both
PD-L1 and B7 protein and that they are infiltrated by CD3+ T cells [50,51] prompted the design of
phase II/III clinical studies aiming to assess the efficacy of immune checkpoint inhibitors (durvalumab,
pembrolizumab, PDR001, tremelimumab, etc.) in this clinical setting. A complete dissertation of the
trials is beyond the scope of this work. However, definitive results are still not published. Considering
our data, the assessment of Tregs and MDSCs, particularly in patients undergoing to SSAs, could add
value to the predictive power of such trials.

The limitation of our study is that Tregs in the tumour microenvironment have not been evaluated,
so we can only speculate that the changes obtained in circulating Tregs parallel the changes in
tumour-associated Tregs.

Confirmation of this parallelism in future studies, would be a key finding leading to the recognition
of OCT LAR as a positive modulator in the anti-tumour response. This will support OCT LAR as an
ideal partner for combined therapy in NENs, as well as provide the rationale of using OCT LAR as
long-term maintenance therapy, even after progression.

5. Conclusions

The here reported double effect of OCT LAR of reducing circulating Tregs level and impairing
their functional profile, together with the well-known anti-tumour growth effect, could be responsible
for tipping the balance between the host immune system and the NENs disease towards a long-lasting
anti-tumour immunosurveillance, ultimately resulting in a long-term control of the NENs disease.
This new balance promoted by OCT LAR might augment the efficacy of a concomitant immunotherapy
or targeted therapy in NENs treatment, suggesting a new potential role of OCT LAR, also beyond
disease progression, in a combined therapies scheme.
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