

Article

ownregulated on Human NK

TIM-3 Expression is Downregulated on Human NK Cells in Response to Cancer Targets in Synergy with Activation

Tram N. Dao, Sagar Utturkar, Nadia Atallah Lanman and Sandro Matosevic

Supplementary Materials:

Figure S1: Gating strategy for stratification of TIM-3⁺ NK cells by flow cytometry.

Receptors	MFIcontrol	MFI _{2.5}	MFI10	AMFI2.5	ΔMFI ₁₀
PD-1	893.16667	899.3333	891	6.166667	-2.16667
NKG2A	17796.667	27916.83	19110.33	10120.17	1313.667
TIM-3	4369.1111	1442.889	1748.889	-2926.22	-2620.22
LAG-3	2470.5	2545.167	2254	74.66667	-216.5
CD158b	112621.33	132151.8	123002	19530.5	10380.67
CEACAM-1	1450.3333	1729.667	1749	279.3333	298.6667

Table S1. ΔMFI for NK cell inhibitory receptors upon co-culture with U87MG cells.

Figure S2. Visual representation of Δ MFI for NK cell inhibitory receptors upon co-culture with U87MG cells. Δ MFI was calculated by subtracting from the control MFI (NK only) (n = 6–9 independent samples).

(A)

(B)

Figure S3. Individual donor trends in expression of TIM-3 on NK cells in response to cancer cells (mean ± SEM). Percentage (*left panels*) and MFI (*right panels*) of TIM-3 on human peripheral blood NK cells in response to **(A)** Prostate cancer (PC3) (n = 3 donors) and **(B)** primary human glioblastoma (GBM43) cells (n = 3) after 4-hour co-culture at E:T ratios of 2.5:1 and 10:1. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure S4. DNAM-1 expression on human NK cells in response to GBM cells. DNAM-1 percentage (left) and MFI (right) on NK cells upon co-culture with GBM43 cells at E:T 2.5:1 (n = 3 independent samples). No change in DNAM-1 expression was observed. All stimulation conditions were consistent and as described in Materials and Methods.

Figure S5. TIM-3 expression on human NK cells by individual donor. (A) Differences between OpTmizerTM (n = 10 donors) and RPMI media (n = 7); (B) Differences between RPMI media compositions (n = 3); (C) Differences between supplement compositions (n = 3). All stimulation conditions were consistent and as described in Materials and Methods.

Figure S6. TIM-3 expression on resting human NK cells in response to GBM cells. TIM-3 percentage (left) and MFI (right) on resting NK cells upon co-culture with GBM43 cells at E:T 2.5:1 (n = 3 independent samples). NK cells were rested in culture media with no OpTmizerTM supplement or stimulation by cytokines for 24 hours prior to stimulation with GBM43 cells. All stimulation conditions were as described in Materials and Methods.

•

Figure S7. TIM-3 expression on NK cells by individual donor. (**A**) Differences against RPMI 1640 (n = 3 donors). (**B**) Differences against FBS (n = 3). (**C**) Differences against human AB serum (n = 3). All stimulation conditions were consistent and as described in *Materials and Methods*.

Figure S8. Cytotoxicity of NK cells against GBM43 cells in different media for individual donors. The killing assay was carried out over 4h incubation and detected via flow cytometric 7-ADD/CFSE staining as described in *Materials and Methods* (n = 3 donors).

Figure S9. Effect of blockade of TIM-3 on the cytotoxicity of resting NK cells against GBM43 cells. The killing assay was carried out over 4h incubation and detected via flow cytometric 7-ADD/CFSE staining as described in *Materials and Methods*. NK cells were rested in medium with no supplementation or cytokines for 24 hours prior to being used in the killing assay (n = 3 independent samples).

Figure S10. Effect of blockade of TIM-3 on the cytotoxicity of RPMIf-expanded NK cells against GBM43 cells for individual donors. The killing assay was carried out over 4h incubation and detected via flow cytometric 7-ADD/CFSE staining as described in *Materials and Methods* (n = 3 donors).

Figure S11. Effect of blockade of TIM-3 on the degranulation capacity of OpTmizerTM-NK cells against GBM43 cells. The co-culture assay was carried out over 4h incubation and detected via flow cytometric staining of CD107a as described in *Materials and Methods* (n = 6 independent samples).

Table S2. Correlation of TIM-3 (*HAVCR2*) expression and NK cell presence in GBM based on bioinformatics analysis of TCGA patient data.

Figure S12. Volcano plot showing differentially expressed genes in $HAVCR2^+$ GBM patient datasets. Top up-regulated and down-regulated genes are shown following stratification of GBM patient data based on high vs. low HAVCR2 expression (N = 176). Bioinformatics analysis is described in the Materials and Methods section.

GSE11057_NAIVE_CD4_VS_PBMC_CD4_TCELL_DN

GSE7852_THYMUS_VS_FAT_TREG_DN GSE27786_NKCELL_VS_NKTCELL_UP

GSE3982_BASOPHIL_VS_TH2_UP

GSE14415_NATURAL_TREG_VS_TCONV_DN

GSE6259_DEC205_POS_DC_VS_BCELL_UP

GSE18893_TCONV_VS_TREG_24H_TNF_STIM_UP

GSE339_EX_VIVO_VS_IN_CULTURE_CD4POS_DC_DN

GSE2770_TGFB_AND_IL4_VS_IL4_TREATED_ACT_CD4_TCELL_

GSE5542_IFNG_VS_IFNA_TREATED_EPITHELIAL_CELLS_24H_ GSE3203_UNTREATED_VS_IFNB_TREATED_LN_BCELL_DN GSE36888_UNTREATED_VS_IL2_TREATED_TCELL_2H_UP

GSE37532_VISCERAL_ADIPOSE_TISSUE_VS_LN_DERIVED_PPA

GSE13547_WT_VS_ZFX_KO_BCELL_ANTI_IGM_STIM_12H_UP GSE37532_WT_VS_PPARG_KO_VISCERAL_ADIPOSE_TISSUE_TR GSE21670_UNTREATED_VS_TGFB_IL6_TREATED_CD4_TCELL_U GSE4748_LPS_VS_LPS_AND_CYANOBACTERIUM_LPSLIKE_STIM

GSE7509_FCGRIIB_VS_TNFA_IL1B_IL6_PGE_STIM_DC_DN GSE27241_WT_VS_RORGT_KO_TH17_POLARIZED_CD4_TCELL_U

GSE42021_TCONV_PLN_VS_TREG_PRECURSORS_THYMUS_DN GSE42021_TCONV_PLN_VS_CD24HI_TCONV_THYMUS_UP GSE24726_WT_VS_E2_2_KO_PDC_DAY4_POST_DELETION_UP GSE9509_LPS_VS_LPS_AND_IL10_STIM_IL10_KO_MACROPHAG GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN3_THYMOCYTE_ GSE34006_A2AR_KO_VS_A2AR_AGONIST_TREATED_TREG_UP GSE26030_TH1_VS_TH17_DAY5_POST_POLARIZATION_UP

(B)

Pathway

Top 10 Significant Gene Sets (pval < 0.05)

Figure S13. GSEA analysis of top up- and down-regulated genes in *HAVCR2*⁺ GBM patient samples (TCGA). (A) GSEA analysis with GO-Biological Processes collection in MSigDB carried out on *HAVCR2*⁺ GBM patient samples; (B) GSEA analysis with Immunologic collection in MSigDB carried out on *HAVCR2*⁺ GBM patient samples.

(A)

Figure S14. TIM-3 ligand expression on cancer cells. (**A**) Galectin-9 percentage (left panel) and MFI (right panel) on GBM34 and U87MG glioblastoma cells; (**B**) CEACAM-1 percentage (left panel) and MFI (right panel) on GBM34 and U87MG glioblastoma cells.

Figure S15. Flow cytometry dot plots for TIM-3 expression on human NK cells. Expression of TIM-3 on NK cells stimulated in (**A**) OpTmizerTM medium without (left panel) and in the presence (right panel) of GBM43 cell at E:T 2.5:1, and (**B**) RPMIf medium without (left panel) and in the presence (right panel) of GBM43 cells at E:T 2.5:1. All stimulation conditions were as described in Materials and Methods.

Table S3. MESF values for MFI conditions recorded in the manuscript representing TIM-3 expression on NK cells. Values were converted to MESF units using APC-conjugated MESF beads using QuickCal[®] v2.3 software.

Conditions	MFI	MESF
OpT, PNK + GBM43	831.667	40817.6
OpT, PNK only	1173.67	65951.6
RPMIf, PNK + GBM43	1134.67	61220.2
RPMIf, PNK only	1128.67	60796.2

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

(B)