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Abstract: Computer-aided diagnosis (CADx) approaches could help to objectify reporting on prostate
mpMRI, but their use in many cases is hampered due to common-built algorithms that are not
publicly available. The aim of this study was to develop an open-access CADx algorithm with high
accuracy for classification of suspicious lesions in mpMRI of the prostate. This retrospective study
was approved by the local ethics commission, with waiver of informed consent. A total of 124 patients
with 195 reported lesions were included. All patients received mpMRI of the prostate between 2014
and 2017, and transrectal ultrasound (TRUS)-guided and targeted biopsy within a time period of
30 days. Histopathology of the biopsy cores served as a standard of reference. Acquired imaging
parameters included the size of the lesion, signal intensity (T2w images), diffusion restriction, prostate
volume, and several dynamic parameters along with the clinical parameters patient age and serum
PSA level. Inter-reader agreement of the imaging parameters was assessed by calculating intraclass
correlation coefficients. The dataset was stratified into a train set and test set (156 and 39 lesions
in 100 and 24 patients, respectively). Using the above parameters, a CADx based on an Extreme
Gradient Boosting algorithm was developed on the train set, and tested on the test set. Performance
optimization was focused on maximizing the area under the Receiver Operating Characteristic
curve (ROCAUC). The algorithm was made publicly available on the internet. The CADx reached
an ROCAUC of 0.908 during training, and 0.913 during testing (p = 0.93). Additionally, established
rule-in and rule-out criteria allowed classifying 35.8% of the malignant and 49.4% of the benign
lesions with error rates of <2%. All imaging parameters featured excellent inter-reader agreement.
This study presents an open-access CADx for classification of suspicious lesions in mpMRI of the
prostate with high accuracy. Applying the provided rule-in and rule-out criteria might facilitate to
further stratify the management of patients at risk.
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1. Introduction

Prostate cancer (PCa) is the second most frequently diagnosed cancer in men worldwide [1].
Over recent years, multiparametric magnetic resonance imaging (mpMRI) has become a pivotal tool
in PCa management, including detection, staging, and treatment planning [2]. Updated year 2019
guidelines from the European Association of Urology (EAU) even endorse mpMRI prior to initial
biopsy [3]. However, in daily clinical practice, a prostate mpMRI is still often performed only after several
negative biopsies [4]. Thus, mpMRI has not yet progressed to a first-line modality, partially because of
the substantial expertise required for reporting [4] and the use of an adequate acquisition technique.

To standardize the evaluation of prostate mpMRI, the Prostate Imaging Reporting and Data
System (PI-RADS) was developed (current version 2.1, American College of Radiology, Reston, VA,
USA) [5,6]. Two meta-analyses on PI-RADS v2 reported pooled sensitivities of 85% and 89% and
specificities of 71% and 73% [7,8]. Although offering a highly systematic approach to evaluation, the
inter-observer agreement for PI-RADS v2 remains moderate, even among experienced readers [9].

Computer-aided diagnosis (CADx) approaches have been proposed to assist physicians and
provide either probability maps of cancer or malignancy scores for any region of interest (ROI) [10,11].
Many of these algorithms rely on proprietary, custom-built algorithms, which hampers their application
in workflows outside the institutions where they have been established.

The aim of this study was to develop an open-access CADx tool for the classification of suspicious
lesions detected in prostate mpMRI that offers high accuracy and an excellent inter-observer agreement
of its input parameters.

2. Results

2.1. Patient Characteristics

Of 142 eligible patients, 18 were excluded based on the exclusion criteria, leaving 124 patients,
with 195 lesions, being included in this study (Figure 1). Of 195 lesions, 83 were malignant (42.6%) and
54 of these malignant lesions represented peripheral zone PCa (65.1%). Of the 124 patients, 64 had one
or more PCa lesion (51.6%). The mean patient age was 66 years (range, 46–84). Patients featured up to
four reported prostate lesions (range, 1–4; median, 1).
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Figure 1. Patient flow chart. An initial database search retrieved 142 patients eligible for this 
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Figure 1. Patient flow chart. An initial database search retrieved 142 patients eligible for this
retrospective study. However, 18 patients were excluded based on the exclusion criteria. In total,
124 patients with 195 lesions were included. (*) Three lesions could not be unambiguously matched
between the pathology report and the MRI assessment. The affected patients, however, featured other
lesions that were clearly matched.
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2.2. Descriptive Statistics

PCa lesions featured significantly decreased T2w signal intensity (SI) and apparent diffusion
coefficients (ADC), and significantly higher long and short diameters. In a sub-analysis of just the
peripheral zone lesions, wash in, wash out, peak-enhancement-intensity (PEI), and the initial area
under the curve (iAUC) were significantly different between malignant and benign lesions. Arrival time
(AT) did not differ between malignant and benign lesions. Prostate-specific antigen (PSA) levels were
significantly higher in PCa of the central gland, or when evaluating the whole gland, but not in a
sub-analysis of peripheral zone PCa. Prostates with cancer were significantly smaller than prostates
with benign lesions, but only on a whole-gland basis. PCa patients were significantly older, but not in
a sub-analysis of just the peripheral zone (Figure 2).
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Figure 2. Boxplots of the acquired parameters. T2w signal intensity (SI), apparent diffusion coefficient
(ADC), long and short diameter, dynamic contrast enhancement wash in and wash out, time to
peak (TTP), peak enhancement intensity (PEI), initial area under the curve (iAUC), and arrival time
(AT), and the additional parameters: prostate specific antigen (PSA) serum level, prostate volume,
and patient age. Boxplots follow Tukey’s definition, with whiskers depicting the 1.5× interquartile
ranges, and outliers marked as circles. The plots compare benign lesions (left boxes) with prostate cancer
(PCa) lesions (right boxes), further divided into analyses of the whole gland (WG), and sub-analyses of
the peripheral zone (PZ) and the central gland (CG). p-values, derived from Mann–Whitney U tests,
are given above the plots.
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2.3. CADx Development

The entire dataset was split into a training set and testing set. The testing set contained 20.0% of
the lesions from 19.4% of the patients. There were no significant differences between the training and
testing sets for any of the (semi-)quantitative parameters (all, p ≥ 0.24; Table 1).

Table 1. Comparison of the acquired parameters and additional lesion characteristics between the
lesions from the training set (n = 156), and the testing set (n = 39).

Parameter
Training Set Testing Set

p-Value
Median Range Median Range

Patient age [years] 67 46–84 66 53–79 0.79
Prostate volume [mL] 46.0 15.6–180.8 41.8 22.5–173.5 0.29

PSA [ng/mL] 8.46 2.91–129 8.00 2.3–40 0.38
T2w SI [A.U.] 3.39 1.31–6.22 3.61 2.65–6.34 0.24

ADC [10–6 mm2/s] 1032.5 542–2267 1067 621–2151 0.76
Long diameter [mm] 12 4–45 13 4–28 0.51
Short diameter [mm] 9 4–32 8 2–24 0.60
Wash in [mmol/min] 0.419 0.032–1.423 0.483 0.07–0.926 0.51

Wash out [mmol/min] −0.009 −0.087–0.048 −0.017 −0.059–0.021 0.29
TTP [min] 0.653 0.249–3.496 0.638 0.452–1.257 0.85
AT [min] 0.472 0–1.1 0.384 0–0.943 0.81

PEI [mmol] 0.326 0.079–0.809 0.360 0.109–0.598 0.45
iAUC [mmol·min] 0.230 0.035–0.912 0.261 0.04–0.472 0.68

Gleason Score (PCa only) 7 6–9 7 6–9 0.89
Histopathology PCa: n = 67; Benign: n = 89 PCa: n = 16; Benign: n = 23 0.86

Zone PZ: n = 76; CG: n = 80 PZ: n = 21; CG: n = 18 0.60

The table provides the median and the range for each of the numerical variables, along with Mann–Whitney U test
p-values. For Gleason Scores, the median, range and p-values from a χ2 test are given; for the categorical variables
(peripheral zone/central gland; PZ and CG, respectively, and cancerous vs. benign lesions), exact Fisher’s test
p-values are given.

During feature selection on the training set, AT was the only parameter that did not contribute
to increased accuracy, so was dismissed. The algorithm was trained with the retained parameters,
listed in descending order regarding their variable importance: ADC, long diameter, PSA, T2w SI, age,
prostate volume, iAUC, short diameter, PEI, wash in, wash out, TTP, and location (peripheral zone vs.
central gland). To assess inter-reader agreement, the testing set lesions were independently re-assessed
by R2, with excellent agreement (all, ICC ≥ 0.87; Table 2).

Table 2. Intraclass correlation coefficients (ICCs) of the imaging parameters.

Parameter ICC 95% CI

T2w SI 0.88 0.78–0.93
ADC 0.87 0.72–0.94

Long diameter 0.87 0.76–0.93
Short diameter 0.90 0.80–0.95

Wash in 0.88 0.78–0.93
Wash out 0.93 0.88–0.96

TTP 0.93 0.88–0.96
PEI 0.88 0.79–0.94

iAUC 0.90 0.81–0.94
Volume 0.93 0.84–0.97

ICCs were used to determine inter-reader agreement between R1 and R2, and are provided along with their 95%
confidence intervals (CI). All parameters used in the CADx model showed excellent agreement.
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2.4. CADx Performance

The CADx featured an area under the Receiver Operating Characteristic curve (AUCROC) of
0.908 (CI: 0.858–0.948) during training and 0.913 (CI: 0.772–0.997) during testing, with no significant
difference (p = 0.933; Figure 3). No other accuracy parameters, including sensitivity, specificity, PPV and
NPV, overall accuracy, and positive/negative likelihood ratio differed significantly (Table 3).
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Table 3. Comparison of diagnostic accuracy measures of the CADx model performance during training
and testing.

Parameter
Training Set Testing Set

p-Value
Estimation 95% CI Estimation 95% CI

Sensitivity 82.1% 0.708–0.904% 81.2% 54.4–96.0% 0.937
Specificity 85.4% 0.763–0.92% 82.6% 61.2–95.0% 0.759

PPV 80.9% 0.695–0.894% 76.5% 50.1–93.2% 0.703
NPV 86.4% 0.774–0.928% 86.4% 65.1–97.1% 1.000

Accuracy 84.0% 0.773–0.894% 82.1% 66.5–92.5% 0.787
Positive Likelihood Ratio 5.62 3.36–9.40 4.67 1.86–11.7 0.776

Negative Likelihood Ratio 0.21 0.13–0.35 0.23 0.08–0.64 0.901

The table lists sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively), overall
classification accuracy, and positive and negative likelihood ratios, along with their 95% confidence intervals (CI).
No significant differences were observed (all, p ≥ 0.703).

The CADx also calculates a probability score, so that every point on the ROC curve in Figure 3
resembles a distinct cut-off with a distinct sensitivity and specificity. These cut-offs can be used to
classify any given lesion with specific error rates. Regarding the lesions from the training set, 35.8% of
the cancerous lesions were classifiable with a maximum error rate of 2%, and 49.4% of the benign
lesion were classifiable with a maximum error rate of 2%. An overview of error rates from 1 to 5% and
the number and percentages of lesions classifiable with these specific rates are provided in Table 4.
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Table 4. Numbers (percentages) of lesions classifiable with defined error rates.

Error Rate Rule In Rule Out

<1% 13/67 (19.4%) 43/89 (48.3%)
<2% 24/67 (35.8%) 44/89 (49.4%)
<3% 24/67 (35.8%) 56/89 (62.9%)
<4% 28/67 (41.8%) 58/89 (65.2%)
<5% 34/67 (50.7%) 60/89 (67.4%)

The table lists the numbers and percentages of lesions classifiable by the CADx with error rate thresholds of 1–5%.

Figure 4 presents a clinical case with a PI-RADS 4 lesion dorsally in the mid-to-apical peripheral
zone. Histopathology revealed scarred prostate tissue and few prostate glands with urothelial
metaplasia, but no evidence of malignancy. The CADx classified this lesion correctly as benign.
Figure 5 depicts the interface of the web application when analyzing the peripheral zone lesion
presented in Figure 4.
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Figure 4. Clinical case from the testing set. This 74-year-old patient was referred to radiology for
prostate MRI because of an increase in serum PSA levels to 8 ng/mL and the suspicion of prostate cancer.
Multiparametric MRI revealed a 10 × 7 mm PI-RADS 4 lesion dorsally in the mid/apical peripheral zone
(green arrow; classification according to PI-RADS v2.1 [6]). The lesion featured high signal intensity
in DWI (a), along with a strong diffusion restriction in ADC (b). T2w axial images showed a signal
decrease in the sharply delineated lesion (c). The lesion featured a steep wash-in curve, along with a
decent wash out (d,e). Subsequent histopathology revealed scarred prostate tissue and few prostate
glands with urothelial metaplasia, but no evidence of malignancy. The CADx correctly excluded
malignancy for this peripheral zone PI-RADS 4 lesion, with a false negative rate of 3%. The patient
received a follow-up examination 9 months later in which the lesion had remained unchanged.
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analysis of the peripheral zone PI-RADS 4 lesion presented in Figure 4. The lesion was correctly
classified as benign, with an error rate of 3%. Its location on the ROC curve is highlighted with a red
circle. Sensitivity: 97.0% (95% CI: 89.6–99.6%); NPV: 96.2% (95% CI: 87.0–99.5%); negative likelihood
ratio: 0.052 (95% CI: 0.013–0.206).

3. Discussion

This study presents a classification CADx to discriminate between malignant and benign lesions
in prostate mpMRI using an open-access web application. The CADx features an ROCAUC of 0.908,
which is within the upper range of previously published CADx systems [11,12] that ranged from
71% [13] to 97% [14] for 1.5 T scanners, and from 77% [15] to 95% [16] for 3 T scanners. Nevertheless,
comparing diagnostic accuracies of CADx systems directly is almost impossible, since different studies
were performed with different magnetic field strengths, were based on mono-, bi-, or multiparametric
image material, defined different variables as a target to be optimized (e.g., overall accuracy, sensitivity,
specificity, and ROCAUC), or were based on relatively low patient numbers. The threshold value for
the diagnosis of malignancy of the algorithm presented here was calculated from multiparametric
images from 1.5 and 3 T scanners in such a way that the ROCAUC was maximized.

PI-RADS v2 is a relatively new system that was introduced in 2015. Since then, several studies
have assessed its diagnostic accuracy; One meta-analysis, consisting of 13 studies, revealed a pooled
sensitivity of 85% and specificity of 71% for PCa detection [8]; A second meta-analysis included 21 studies
and reported pooled sensitivities and specificities of 89% and 73%, respectively [7]. PI-RADS v2.1,
however, is expected to improve diagnostic accuracy especially for lesions of the transition zone [17].
In our cohort, a sensitivity of 82.1% and specificity of 85.4% was achieved.

http://bit.do/Prostate-MRI
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Several multireader studies have also investigated the inter-reader agreement of PI-RADS v2 [9,18].
Interestingly, even studies among experts describe only moderate agreement (kappa = 0.55) [9],
which might be due to the subjective image impressions used for the PI-RADS classifications.
PI-RADS v2.1 was developed, among other objectives, with the anticipation of an increased
interreader agreement, which has recently been shown for lesions of the transition zone [17,19].
Nevertheless, PI-RADS v2.1-based evaluation is still subject to perceived image impressions,
which makes it possibly susceptible to interobserver variability. (Semi-)quantitative parameters
have the potential to improve agreement, and the inter-reader agreement of all parameters in this study
was excellent. Another strength of this study is the possibility to rule-in or rule-out malignancy with
defined error rates, which could help to stratify patients for either upfront biopsy or short-term follow
up, at least in selected cases. However, these retrospective results should be handled with care, and
the CADx should not be used for comprehensive assessments before validation in prospective studies.

This study has several limitations. First, the standard of reference (SOR) was histopathology,
based on MRI/ultrasound fusion-guided biopsies combined with systematic biopsies. This combined
approach offers a sensitivity of 85% [20]. It is, therefore, possible that some lesions used for training
the algorithm were inadvertently regarded as “benign”, but actually represented an unrecognized
PCa. One solution to this would have been to rely on radical prostatectomies. However, this would
have drastically reduced the number of patients available for this study. To date, a combination of
systematic with targeted biopsies is still considered to be the gold standard for PCa confirmation [21].
Therefore, choosing it as an SOR seemed a reasonable approach.

Second, our definition of PCa included Gleason-6-lesions, which are commonly considered
clinically non-significant, whereas the definition of clinically significant PCa remains an ongoing
debate [5,22]. Defining lesions with a Gleason Score ≥6 as PCa seems justifiable against the background
of a need for biopsy also for PCa of questionable clinical significance.

Third, training of the CADx algorithm was performed on 156 lesions, while testing was performed
on 39 lesions. The diagnostic measures in the web application were calculated from the cross-validation
performed during training. This approach is not uncommon, and several studies state accuracy
measures solely based on cross-validation [4,23–25]. Although our study’s accuracies were not
significantly different between the training and testing sets, it would be desirable to have the final
accuracy measures calculated from an independent dataset. However, the 39 lesions from the testing
set were too few to provide an adequate data basis for diagnostic measures. Future studies should be
conducted to independently validate the results obtained in this study. The open-access online form
will facilitate those studies and even allow multicentre studies.

Fourth, dynamic contrast-enhance (DCE) MRI assessment is challenging because multiple
techniques for calibration and modelling exist [26] and the conversion of MRI signal intensities to
contrast agent concentrations is not a trivial problem. The dynamic parameters used in this study,
however, were acquired using a widely available workstation and showed excellent reproducibility.
Nevertheless, the dependence on a commercial software solution is a weakness that could prevent a
larger-scale application of the algorithm presented here. Future extensions of our model will, on the
one hand, aim to include parameters extractable with different additional DICOM viewers, including
open-source solutions for DCE evaluation, and, on the other hand, adapt the algorithm to also support
bi-parametric MRI for analyses of unenhanced prostate MRIs.

4. Materials and Methods

4.1. Patients

This retrospective study complies with the declaration of Helsinki. The institutional review
board of the Friedrich-Alexander-Universität Erlangen-Nürnberg (260_19 Bc, 2019/08/30), Germany,
approved this study, with waiver of informed consent. We performed a database search for patients
who received prostate mpMRI between 06/2014 and 07/2017, and had a combined MRI/ultrasound
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targeted and systematic transrectal ultrasound (TRUS)-guided biopsy within one month after the
mpMRI. Histopathology of the biopsy cores served as an SOR.

Exclusion criteria included no delineable lesion in MRI, unavailable PSA serum levels, or severe
imaging artefacts. Lesions were excluded if there was no clear match between imaging and pathology
report, or when they were not covered by the PI-RADS reporting scheme (e.g., abscesses).

4.2. Imaging

4.2.1. Imaging Parameters

The MRI protocol was optimized following international recommendations and current
practice [5,27]; the patient was in supine position using either 1.5 T or 3 T scanners (Avanto/Aera;
Verio/Skyra; Siemens Healthineers, Erlangen, Germany) and a pelvic-phased-array coil. Protocols
included T2-weighted scans with spectral fat-saturation, DCE sequences, T1-weighted scans with and
without contrast-enhancement, and diffusion-weighted imaging (DWI; Table 5). The contrast medium
(0.1 mmol/kg body weight gadobutrol, Bayer Schering Pharma, Berlin, Germany) was injected into
an antecubital vein prior to the DCE acquisition, with a flow rate of 2.0 mL/s, followed by a 20 mL
saline flush.

Table 5. MRI acquisition parameters.

Parameter
1.5 T 3 T

T2w TSE DCE (VIBE) T1w TSE DWI T2w TSE DCE (VIBE) T1w TSE DWI

TR [ms] 7440 4.2 433 5300 4000 5.04 688 5090
TE [ms] 101 1.58 10 70 101 1.7 12 57

ETL 23 1 3 25 1 3
Flip angle [◦] 160 12 154 18 150 15 140 180
Field of view

[mm2] 200 × 200 259 × 259 200 × 200 200 × 200 200 × 200 200 × 200 308 × 380 200 × 200

Matrix 320 × 275 192 × 154 256 × 192 112 × 112 320 × 310 128 × 102 333 × 512 94 × 118
Slice thickness

[mm] 3 3.5 3 3.5 3 3 5 3.5

Number of
slices 28 22 28 20 26 24 40 25

Averages 3 1 1 1 3 1 1 1
Duration
[min:s] 04:20 04:21 02:45 07:06 03:52 04:34 03:29 06:03

Acquisition parameters are given for both 1.5 T and 3 T MRI for the sequences: T2w turbo spin echo (TSE), dynamic
contrast enhancement volume interpolated breathhold examination (DCE VIBE), T1w TSE, and diffusion-weighted
imaging (DWI; b-values: 0; 100; 800, and a calculated b-value of 1500 s/mm2), along with their repetition times (TR),
echo times (TE), echo train lengths (ETL), flip angles, fields of view, matrix sizes, slice thicknesses, the numbers of
acquired slices, averages, and sequence durations.

4.2.2. Image Assessment

All mpMRI were assessed by a board-certified radiologist (R1, S.E., six years of experience
in prostate MRI, >400 reads/year) using a clinical post-processing platform (syngo.via VB30A,
Siemens Healthineers, Erlangen, Germany). Blinded to the SOR, R1 measured the maximum (“long”)
diameter in axial orientation and the perpendicular (“short”) diameter of each lesion and defined
a circular ROI within the lesion, which served as a mask that was copied to the other sequences.
Hereby, syngo.via offers automatic image registration to ensure congruent positioning of ROIs in all
sequences. The following measurements were acquired:

• Prostate volume, calculated according to [6] (Figure 6a,b). Prostate volume positively correlates
with PSA level [28], and calculating PSA density can improve the diagnosis of clinically significant
PCa [29]; therefore, including prostate volume as a parameter seemed reasonable.

• ADC (10–6 mm2/s; Figure 6c,d), because PCa aggressiveness and ADC correlate inversely [30].
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• Normalized T2w SI, with the SI of the lesion divided by the SI of the internal obturator muscle.
T2w SI is known to be particularly valuable for the evaluation of transitional zone lesions [30]
(Figure 6e).

• The 2-dimensional lesion size in axial orientation (Figure 6e). Size is a recognized criterion used
to distinguish PI-RADS 4 from PI-RADS 5 lesions [6].
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Figure 6. Image assessment. (a,b) Prostate volume was calculated from the diameters measured in
axial and sagittal T2w images, as described in the PI-RADS v2.1 guidelines [6]. A circular region of
interest (ROI) was placed within a lesion, for lesions of the peripheral zone, preferably on the ADC
map (c) in additional consideration of DWI (calculated b-value of 1500 s/mm2; (d)), and for lesions of
the transitional zone/central gland, preferably in the axial T2w sequence (e) [5,6]. Following placement,
the ROI was copied to the other sequences using the software. If lesion measurement was difficult or
compromised on ADC (for peripheral zone lesions) or T2w (for transitional zone/central gland lesions),
measurements were performed on the sequence that showed the lesion best [5,6], e.g., in the above
example, lesion dimensions were assessed on DWI (d). (f,g) Time-intensity curves were automatically
calculated by the software, yielding the dynamic parameters: wash in, wash out, time to peak (TTP),
peak enhancement intensity (PEI), arrival time (AT), and initial area under the curve (iAUC).

DCE-MRI is an established mpMRI component. PI-RADS v2 and v2.1, however, restricted its
application to cases with indeterminate DWI in peripheral zone lesions, which was justified by the
lack of expert consensus and difficulties in interpreting DCE by eye. A (semi-)quantitative assessment,
however, could improve consistency. Therefore, the following DCE parameters were assessed using
syngo.via’s Tissue 4D workflow:

• TTP (time from bolus arrival to end of wash in),
• AT (start of contrast enhancement),
• Wash in (slope of the line between bolus arrival and end of wash in),
• Wash out (slope of the line between start of wash out and end of measurement),
• PEI, and
• iAUC (in 60 s).

Syngo.via’s Tissue 4D workflow hereby converts MR signal intensities to Gadolinium
concentrations as described in [31], i.e., from the relative enhancement, TR, flip angle, estimated tissue
T1, and contrast agent relaxivity.

Assessment of lesions was performed according to the current version of PI-RADS (version 2.1) [6].
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Figure 6 further explains the parameter acquisition. In addition, patient age and PSA value were
noted and included as potential predictive features.

A representative subset of the lesions (n = 39) was re-assessed by a second reader (R2, T.B.,
10 years of experience, >400 reads/year), who collected the quantitative parameters again to determine
inter-observer variability. R2’s measurements were not used to train the algorithm.

4.3. Histopathology

All patients underwent a combination of a TRUS-guided 12-core systematic biopsy with an
MRI/ultrasound fusion-guided biopsy (up to 2 additional cores per lesion) [21], performed by
urologists with >10 years of experience (Frank Kunath and Bernd Wullich, both from the Department
of Urology and Paediatric Urology, University Hospital Erlangen, 91054 Erlangen, Germany).
Cores were individually labelled according to their location and analysed by a uro-pathologist
with >15 years of experience (Arndt Hartmann, Institute of Pathology, University Hospital Erlangen,
91054 Erlangen, Germany).

4.4. CADx Development, Statistics, and Open-Access Internet Application

4.4.1. CADx Development

The prediction of malignancy in any given prostate lesion was regarded as a classification problem
to be solved by an Extreme Gradient Boosting (XGBoost, University of Washington, Seattle, WA, USA)
algorithm. XGBoost creates a prediction model as an ensemble of weak classifiers, building many
decision trees and integrating them into one cumulative prediction model to obtain a performance that
exceeds any of the constituent classifiers. The model was calculated in RStudio 3.4.1 (RStudio, Inc.,
Boston, MA, USA), using caret 6.0-81 [32] and xgboost 0.71.2 [33].

To assess the algorithm’s performance, patients were split into a training set (n = 156 lesions in
n = 100 patients) and a testing set (n = 39 lesions in n = 24 patients). As several patients featured more
than one lesion, to avoid data leakage, care was taken that all lesions from one patient examination
were either assigned to the training or to the testing set.

Feature selection was performed exclusively on the training set by calculating the variable
importance from an untuned random forest—this algorithm is directly implemented within the R
caret package [32] and offers the possibility to quantify the importance of particular features when
used in tree-based classification algorithms. Features that did not improve the overall accuracy were
dismissed. CADx optimization was focused on maximizing the area under the curve of the Receiver
Operating Characteristic (AUCROC). To determine the optimal hyperparameter combination, a grid
search among 100,000 random combinations was performed (Table A1). To ensure generalizability,
a 10-fold cross-validation approach was chosen. The final algorithm was tested on the testing set.

4.4.2. Statistics

Statistical analyses were performed using RStudio 3.4.1 (RStudio, Inc., Boston, MA, USA).
Mann–Whitney U and exact Fisher or χ2 tests were applied for comparisons of continuous and
categorical variables, respectively. ROC curves were compared using DeLong’s test. Inter-observer
agreement was determined using the intraclass correlation coefficient (ICC), with ICC > 0.75 regarded
as “excellent” [34]. p-Values < 0.05 were considered statistically significant. Confidence intervals (CI)
were calculated at 95%.

AUCROC was used to estimate diagnostic accuracy. Further analyses included contingency tables
to assess sensitivity, specificity, positive and negative predictive value (PPV and NPV, respectively),
and positive and negative likelihood ratio, along with their respective 95% CI.

In addition, potential decision rules were evaluated; such decision rules have been described as
promising tools for other cancer types [35,36], enabling diagnostic statements of either presence (rule in)
or absence (rule out) of malignancy. As a common principle, if sensitivity is high, a “negative” test rules
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out malignancy, and if specificity is high, a “positive” test rules in malignancy [37]. Therefore, rule-in and
rule-out criteria were defined as follows:

Rule-out criteria were present if the CADx excluded PCa with an “error rate” (false-negative rate,
FNR) of 1–5%. Likewise, rule-in criteria were explored at false-positive rates (FPR) of 1–5%.

4.4.3. Open-Access Internet Application

The CADx algorithm was implemented into an open-access internet application with Shiny [38].
For any given lesion, this application provides a diagnosis based on the parameters provided.
The diagnostic accuracy is further specified by the corresponding “error rate”, PPV/NPV, and the
respective likelihood ratio.

5. Conclusions

This study presents an open-access CADx for the classification of suspicious lesions in prostate
mpMRI, with high accuracy and excellent inter-reader agreement. Applying the rule-in and rule-out
criteria could help to further stratify at-risk patients.
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Appendix A

Table A1. Applied hyperparameter settings of the Extreme Gradient Boosting model.

Parameter Value

subsample 0.63
nrounds 121

eta 0.34
gamma 0.2

max_depth 8
min_child_weight 1.3
colsample_bytree 0.76

rate_drop 0.49
skip_drop 0.88

The optimal hyperparameter combination was determined in a grid search. It is important
to mention that all hyperparameters act in harmonic orchestration: The XGBoost algorithm fits a
boosted tree to a training dataset. Setting subsample to 0.63 means that XGBoost will randomly collect
63% of the data instances to train trees, and use the remaining 37% for validation. This approach
helps to prevent overfitting. ROCAUC are calculated for both the training and validation dataset and
are retained. One subsample in the training dataset is then swapped with a validation subsample.
Once again, the algorithm fits a boosted tree to the training data, calculates the evaluation scores,
and so on. This process repeats until every subsample has served as a part of both the training and
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validation sets. Another boosted tree is added and the process is repeated. This continues until the
total number of boosted trees fitted to the training data is equal to nrounds.

During the above processes, eta controls the learning rate, scaling the contribution of each tree
by a factor of 0 < eta < 1 when it is added to the current approximation. Eta is needed to prevent
overfitting by making the boosting process more conservative. Lower values of eta imply larger values
of nrounds, and low eta values make a model more robust to overfitting, but slower to compute.
Gamma controls the minimum loss reduction required to establish a further partition on a leaf node
of the tree. The larger gamma, the more conservative the algorithm will be. Max_depth controls
the maximum depth of each tree. Min_child_weight defines the minimum sum of instance weight
needed in a child. If the tree partition step results in a leaf node with the sum of instance weight
being less than min_child_weight, then the building process will discontinue partitioning. The larger
min_child_weight, the more conservative the algorithm will be. Colsample_bytree refers to the fraction
of randomly selected features used to construct each tree. Rate_drop defines the fraction of previous
trees to drop, and skip_drop defines the probability of skipping the dropout procedure during a
boosting iteration [33].
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