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Abstract: This study aimed to investigate the performance of a deep learning-based survival-prediction
model, which predicts the overall survival (OS) time of glioblastoma patients who have received
surgery followed by concurrent chemoradiotherapy (CCRT). The medical records of glioblastoma
patients who had received surgery and CCRT between January 2011 and December 2017 were
retrospectively reviewed. Based on our inclusion criteria, 118 patients were selected and
semi-randomly allocated to training and test datasets (3:1 ratio, respectively). A convolutional
neural network–based deep learning model was trained with magnetic resonance imaging (MRI)
data and clinical profiles to predict OS. The MRI was reconstructed by using four pulse sequences
(22 slices) and nine images were selected based on the longest slice of glioblastoma by a physician
for each pulse sequence. The clinical profiles consist of personal, genetic, and treatment factors.
The concordance index (C-index) and integrated area under the curve (iAUC) of the time-dependent
area-under-the-curve curves of each model were calculated to evaluate the performance of the
survival-prediction models. The model that incorporated clinical and radiomic features showed a
higher C-index (0.768 (95% confidence interval (CI): 0.759, 0.776)) and iAUC (0.790 (95% CI: 0.783,
0.797)) than the model using clinical features alone (C-index = 0.693 (95% CI: 0.685, 0.701); iAUC
= 0.723 (95% CI: 0.716, 0.731)) and the model using radiomic features alone (C-index = 0.590 (95%
CI: 0.579, 0.600); iAUC = 0.614 (95% CI: 0.607, 0.621)). These improvements to the C-indexes and
iAUCs were validated using the 1000-times bootstrapping method; all were statistically significant
(p < 0.001). This study suggests the synergistic benefits of using both clinical and radiomic parameters.
Furthermore, it indicates the potential of multi-parametric deep learning models for the survival
prediction of glioblastoma patients.
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1. Introduction

Glioblastoma is the most common primary malignant brain tumor in adults, which remains a fatal
disease [1]. Even with surgery and postoperative concurrent chemoradiotherapy (CCRT), the five-year
overall survival (OS) rate for glioblastoma is 9.8%, and the approximate median OS is only about
15 months [2,3]. However, the survival outcomes of glioblastoma are heterogeneous among patients
and are known to be relevant to numerous clinical and genetic factors [4–8].

Recently, several studies have attempted to analyze this heterogeneity of prognosis in glioblastoma
patients by using features from medical images [9]. The development and improvement of numerous
computational algorithms (such as machine learning) have rendered these “radiomic” studies more
feasible. Using machine learning, many recent studies have built prediction models that take
radiomic features as inputs and predict several clinical variables for glioblastoma, including survival
outcomes [10–18]. However, these studies have several limitations. Many studies used handcrafted
features from a region of interest (ROI) delineated by humans or features selectively determined by
researchers; as such, the reproducibility of these methodologies cannot be guaranteed [10,11,13,15,16].
This is mainly due to their use of machine learning algorithms that are not based on deep learning.
In these studies, the feature extraction and prediction models are separated using conventional
machine learning algorithms. Thus, researchers are required to either select features using evaluation
methods or to redefine features using dimension-reduction techniques such as principal component
analysis. In contrast, a deep learning model can automatically extract features and integrate the
feature extraction and prediction processes into a single model. In addition, several studies did
not include patients’ clinical information in their prediction model, using only image data as input
parameters [15,16]. Considering that there have been already several studies where clinical metrics were
married to radiological measures for the evaluation, this problem becomes more significant [19–21].
Furthermore, very few studies predicted survival outcomes as continuous—rather than categorical
(long- or short-term)—variables in glioblastoma patients [10,12].

To summarize, although deep learning has several strengths in image processing (such as
automated feature extraction), only a few studies have used deep learning frameworks to predict
the survival outcomes of glioblastoma. Of these studies, models predicting survival outcomes as
continuous variables were rarely used. Moreover, despite their impact on the prognosis of glioblastoma,
significant clinical variables were not fully integrated into the radiomics models of previous studies.
Therefore, in this study, we built neural network-based deep learning models that (1) do not require an
ROI delineation and a pre-defined artificial feature extraction or manual selection process; (2) predict
the survival outcomes of glioblastoma as OS by month, rather than with categorical variables; (3) use
clinical features and radiomic data together; and (4) integrate feature extraction and an OS-prediction
algorithm into one model. This study aimed to evaluate the predictive performances of the deep
learning models and identify whether the addition of clinical features—such as personal, genetic,
treatment, and radiomic factors—delivers synergistic benefits in survival predictions.

2. Results

2.1. Patient Characteristics

The patient characteristics are summarized in Table 1. No significant differences were
observed between the training and test sets in terms of baseline characteristics such as
age, sex, Eastern Cooperative Oncology Group (ECOG) performance status, resection status,
isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT)
hypermethylation, and additional adjuvant temozolomide (TMZ) cycles after CCRT. Furthermore,
no difference was observed in OS between the two groups in terms of survival analysis using the
Kaplan–Meier estimate (p-value = 0.214) (Figure 1).
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Table 1. Baseline patient characteristics (n = 118).

Variables Training Set (n = 88) a Test Set (n = 30) p-Value

Age (years) Median 59 (IQR 50.75–64.25) Median 54.5 (IQR 48–65.5) 0.410
Survival time (months) b Median 17.60 (IQR 10.35–26.68) Median 23.00 (IQR 17.03–33.59) 0.214 c

Sex 0.531
Male

Female
44 (50.0%)
44 (50.0%)

13 (43.3%)
17 (56.7%)

ECOG Performance Status 0.753
0–1

2
73 (83.0%)
15 (17.0%)

27 (90.0%)
3 (10.0%)

Resection 0.931
Gross total resection

Subtotal resection
36 (40.9%)
52 (59.1%)

12 (40.0%)
18 (60.0%)

IDH mutation 0.468
Yes

No
7 (8.0%)

81 (92.0%)
4 (13.3%)

26 (86.7%)
MGMT hypermethylation 0.921

Yes
No

42 (47.7%)
46 (52.3%)

14 (46.7%)
16 (53.3%)

Adjuvant TMZ cycles Median 6 (IQR 4–6) Median 6 (IQR 4.5–6) 0.300
Total radiotherapy dose 0.778 d

≥60 Gy
<60 Gy

73 (83.0%)
15 (17.0%)

26 (86.7%)
4 (13.3%)

ECOG, Eastern Cooperative Oncology Group; IDH, isocitrate dehydrogenase; MGMT,
O-6-methylguanine-DNA-methyltransferase; TMZ, temozolomide; IQR, interquartile range. a Using the
“createDataPartition” function from the “caret” R package, patient data were allocated to the training and test
datasets while maintaining the ratio of IDH-mutants of each dataset. b Described as mean ± standard deviation. c

Using Kaplan–Meier analysis. d Using Fisher’s exact test.
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2.2. Model Performance Measured by C-Index and Integrated Area Under the Time-Dependent Receiver
Operating Characteristic (ROC) Curve (iAUC)

Table 2 lists the root mean squared error (RMSE), the square root of the mean squared residuals,
and Pearson’s correlation coefficient between the ground truth and predicted OS in each model. MCR,
the model which used both the clinical and radiomic features, showed the highest correlation coefficient
(0.788) and the lowest RMSE (14.21 ± 23.07) among all the models in the study. However, RMSEs
and correlation coefficients are not ideal evaluation metrics for survival-prediction models, mainly
because of censored observations in survival data. Therefore, we calculated Harrell’s C-index and
iAUC values of each model, and Table 3 lists the C-indexes and iAUC values of the models for OS
prediction. Compared with the models using one type (MC1a, MC1b, MC1c) or two types (MC2a, MC2b,
MC2c) of clinical features, the model using all three types of clinical features (MC3) showed a higher
C-index (0.693 (95% confidence interval (CI): 0.685, 0.701)) and iAUC (0.723 (95% CI: 0.716, 0.731)) in
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most cases. Only the C-index of MC2b (0.696 (95% CI: 0.688, 0.704)), which was slightly higher than that
of MC3, was an exception. Furthermore, MCR showed a higher C-index (0.768 (95% CI: 0.759, 0.776))
and iAUC (0.790 (95% CI: 0.783, 0.797)) than MC3 (C-index = 0.693 (95% CI: 0.685, 0.701); iAUC = 0.723
(95% CI: 0.716, 0.731)) and MR (C-index = 0.590 (95% CI: 0.579, 0.600); iAUC = 0.614 (95% CI: 0.607,
0.621)). To summarize, MCR had the highest predictive ability of all models in the study (Figure 2).

Table 2. Root mean squared error and correlation coefficient of each model for overall survival prediction.

Model Included Features RMSE (Months) a Correlation Coefficient

MC1a Personal only 16.96 ± 23.89 0.562
MC1b Genomic only 19.88 ± 30.40 0.194
MC1c Treatment only 25.18 ± 36.89 0.073
MC2a Personal + Genomic 17.19 ± 22.96 0.579
MC2b Personal + Treatment 16.64 ± 28.92 0.593
MC2c Genomic + Treatment 29.18 ± 38.57 −0.222
MC3 Personal + Genomic + Treatment = Clinical 16.01 ± 26.54 0.712
MR Radiomic only 17.14 ± 25.47 0.499

MCR Clinical + Radiomic 14.21 ± 23.07 0.788

RMSE, root mean squared error. a Described as mean ± standard deviation.

Table 3. Harrell’s concordance index (C-Index) and integrated area under the time-dependent receiver
operating characteristic curve (iAUC) values of each model for overall survival prediction.

Model Included Features C-Index (95% CI) iAUC (95% CI)

MC1a Personal only 0.644 (0.635, 0.653) 0.644 (0.636, 0.653)
MC1b Genomic only 0.664 (0.656, 0.671) 0.641 (0.634, 0.649)
MC1c Treatment only 0.562 (0.553, 0.570) 0.579 (0.572, 0.586)
MC2a Personal + Genomic 0.696 (0.688, 0.704) 0.675 (0.666, 0.684)
MC2b Personal + Treatment 0.665 (0.655, 0.675) 0.671 (0.663, 0.679)
MC2c Genomic + Treatment 0.640 (0.630, 0.650) 0.664 (0.657, 0.672)
MC3 Personal + Genomic + Treatment = Clinical 0.693 (0.685, 0.701) 0.723 (0.716, 0.731)
MR Radiomic only 0.590 (0.579, 0.600) 0.614 (0.607, 0.621)

MCR Clinical + Radiomic 0.768 (0.759, 0.776) 0.790 (0.783, 0.797)

iAUC, integrated area under the time-dependent receiver operating characteristic curve; CI, confidence interval.
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Figure 2. (A) and (B): Time-dependent receiver operating characteristic (ROC) curves of the models.

We statistically validated the synergistic effects of the clinical and radiomic features using
1000-times bootstrapping; the results are summarized in Table 4. The use of both clinical and radiomic
features significantly improved the C-index compared with using the clinical (value difference = 0.074
(95% CI: 0.070, 0.078), p < 0.001) or the radiomic (value difference = 0.178 (95% CI: 0.174, 0.183),
p < 0.001) features alone. The iAUC of the model using both features was also significantly higher than
that of the model using clinical features alone (value difference = 0.067 (95% CI: 0.064, 0.070), p < 0.001)
and the model using radiomic features alone (value difference = 0.176 (95% CI: 0.174, 0.179), p < 0.001).
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Table 4. Comparison of prediction performances measured using Harrell’s C-Index and iAUC value.

Index Model 1 Model 2 Value Difference
(95% CI) a p-Value b

C-Index Clinical only Clinical + Radiomic 0.074 (0.070, 0.078) <0.001
Radiomic only Clinical + Radiomic 0.178 (0.174, 0.183) <0.001

iAUC Clinical only Clinical + Radiomic 0.067 (0.064, 0.070) <0.001
Radiomic only Clinical + Radiomic 0.176 (0.174, 0.179) <0.001

iAUC, integrated area under the time-dependent receiver operating characteristic curve; CI, confidence interval.
a The value difference was calculated as (value of Model 2)−(value of Model 1) with 1000-times bootstrapping.
b Using Bonferroni correction, the level of statistical significance in each comparison was set at 0.05/2 = 0.025.

3. Discussion

This study investigated the predictive performance of multiparametric deep learning models
for OS prediction in glioblastoma patients. The deep learning model employing both clinical and
radiomic features showed a higher C-index and iAUC than any other model in the study. Furthermore,
the benefits of utilizing both features rather than clinical or radiomic features alone were also evaluated
using the bootstrapping method. The improvement in C-index and iAUC achieved by combining the
two features was found to be statistically significant.

Several studies have designed radiomics models to predict the survival outcomes of
glioblastoma [10–13,15,16]. Lao et al. [11] built a radiomics model with handcrafted and deep
features from a dataset describing 75 patients. Compared with the Cox regression models of traditional
risk factors (such as age and Karnofsky performance score [22]), the radiomics model showed improved
performance in terms of OS prediction and the stratification of patients into low- and high-risk
groups for a validation set containing 37 patients. Another study—also using a multiparametric
radiomics model—demonstrated the predictive superiority of the radiomics model over models using
conventional clinical factors for OS prediction [23]. Moreover, in the study of Bae et al. [10], radiomics
models based on a random survival forest algorithm were used to predict the OS and progression-free
survival of glioblastoma patients. A model incorporating radiomic features from the ROI—using
clinical and genomic features—showed better predictive power than the models using each feature
type alone.

However, as mentioned in the introduction, most previous studies use machine learning algorithms
that are not based on deep learning. This has necessitated handcrafted features from the ROI or manual
feature selection by clinicians, which is a major drawback of non-deep learning machine learning
models. In contrast, this study used a model structure based on a convolutional neural network
(CNN), a deep learning algorithm that has repeatedly shown promising ability to process and analyze
image data [24–28]. Alongside its strengths in image analysis, CNN also presents other advantages
such as automated feature extraction and selection. Owing to this benefit of CNNs, ROI delineation
and artificial feature-selection processes could be omitted in this study. This characteristic of CNN
and the fact that all MRI images in this study were obtained on the same machine may contribute to
the reproducibility of our study results. Moreover, since it is relatively straightforward to adapt the
network structure of models when using deep learning, we generated multiple prediction models with
various combinations of input parameters. Thus, it became possible to identify the synergistic benefits
obtained via the integrated use of clinical and radiomic features in this study.

CNN is a shift- or space-invariant deep learning model, which can automatically extract optimal
features by itself from the given data to achieve the best performance. Thus, it is suitable for OS
prediction considering positional relationship of features between MRI series [29]. In this study,
we calculated the mean weight from the optimized weight of one-by-one convolution filter to analyze
the weight of four pulse sequence MRI series. The one-by-one convolution network generated a
weighted image (512 × 512 × 1) from the input image (512 × 512 × 36). As a result, MRI images of
T1-weighted and apparent diffusion coefficient (ADC) images showed higher weight than T1-weighted
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images with contrast-enhancement (CE), or T2-fluid-attenuated inversion recovery (FLAIR) pulse
sequence images (Figure S1).

To the best of our knowledge, no studies except one have built deep learning-based models
to predict OS as a continuous variable, using both clinical and radiomic data together [12]. In the
exceptional study just referred to, the CNN-based model using image data and clinical/genomic features
showed a lower RMSE and higher correlation coefficient (177.0± 130.0 and 0.4695, respectively) than the
random survival forest-based model (225.0 ± 136.0 and 0.1151, respectively) or the CNN-based model
using magnetic resonance imaging (MRI) data only (261.0 ± 175.0 and 0.0587, respectively). However,
owing to censored observations in survival data, RMSEs and correlation coefficients are not ideal
evaluation metrics for survival-prediction models. Moreover, several critical clinical factors known to
be significantly associated with the survival outcomes of glioblastoma (such as performance status
and resection margin status) were not used in the study [4,5,30,31]. In contrast, our study calculated
the C-index and iAUC values, which are more appropriate metrics for evaluating the predictive
performance of survival-prediction models than the RMSE or correlation coefficient. The calculation of
C-index and iAUC reflected individual survival status at each time point, which is not available in
several statistical methods such as the standard ROC curve analysis [32,33]. Furthermore, our study
included various clinical features known to be significantly associated with the survival outcomes of
glioblastoma, which may have contributed to our more comprehensive analysis. Therefore, results
from our study can overcome the limitations of the aforementioned study, and can address the clinical
significance of multi-feature deep learning-based models in glioblastoma treatment.

The present study has several limitations. First, we retrospectively collected data from a single
institution. Second, because our institution began to routinely acquire IDH mutation information in
recent years, we excluded many patients due to a lack of genetic factors. Owing to this exclusion,
we had to perform the study with a relatively small sample size. Additional studies with a large number
of patients and a multi-center design are needed for the external validation of our results. Third, instead
of Karnofsky performance score [22], which might have been a more idealistic criterion for evaluating
patient’s performance, our study used ECOG performance status. Fourth, only the limited number of
patients received lower dose CCRT, and none of the included patients received tumor-treating fields
(TTFs) in this study. Considering the modest sample size of the study, this might have contributed
to the deterioration of our models’ predictive performance. Fifth, the center images of each patient’s
MRI data (which included the largest proportion of suspicious lesions), were selected by clinicians in
this study. However, this limitation might be overcome in future studies by using auto-segmentation
algorithms such as U-net [34,35]. Sixth, several radiomic features including relative cerebral blood
volume (rCBV) were not incorporated into our prediction models. With consideration of the recent
advances, feature extraction reflecting the relationship of rCBV or the geographical relationship of
radiographic features between different MRI series can be performed in future studies [36]. Finally,
our study only used pre-operative MRI images as the radiomic features and predicted OS. Although
this disadvantage could have been mitigated by using post-operative clinical features, further studies
are required to validate the clinical utility of CNN-based models on post-operative images.

4. Materials and Methods

4.1. Patient Selection

The medical records of patients with glioblastoma were retrospectively reviewed. These patients
had all received surgery followed by CCRT with TMZ between January 2011 and December 2017 at
the Samsung Medical Center (Seoul, Korea). This study was approved by our Institutional Review
Board (IRB #2019-02-070) and was performed under the guidelines of the Declaration of Helsinki.
The inclusion criteria were as follows: (1) availability of pre-operative MRI data, including T1-weighted
images, T1-weighted images with contrast-enhancement (CE), T2-fluid-attenuated inversion recovery
(FLAIR) images, diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) images;
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(2) completion of planned CCRT; and (3) availability of genetic profiles. Finally, 118 patients who met
the inclusion criteria were included in the study. None of the patients received TTFs.

We obtained 14 clinical features of the included patients, and these features were classified into
three categories: (1) “personal” factors (n = 3)—age, sex, and ECOG performance status; (2) “genetic”
factors (n = 2)—IDH mutation status and MGMT hypermethylation status; (3) “treatment” factors
(n = 9)—resection status, adjuvant TMZ cycles after CCRT (six cycles is the gold standard, according
to the Stupp protocol [2] for glioblastoma), type of radiotherapy (RT), gross tumor volume (GTV),
clinical target volume (CTV), and RT dose for the first RT, as well as GTV, CTV, and RT dose for the
second RT planning (a boost RT plan after the first RT). GTV and CTV were used as continuous variables.
Thereafter, patient data were allocated to the training and test datasets (in about 3:1 ratio, respectively)
using the “createDataPartition” function from the “caret” R package. To avoid a significant difference
in IDH mutation status between the two groups, patient data were allocated to the training and test
datasets while maintaining the ratio of IDH-mutants of each dataset. No other variables were used for
the stratification of the datasets.

4.2. Image Acquisition and Pre-Processing

All MRI images used in this study were taken at a single institution using identical 3.0 T MRI
machines (Achieva, Philips Healthcare, Best, the Netherlands). The MRI images were reconstructed
with matrix size of 512 × 512 × 22 by using four pulse sequences. Four sequences of preoperative MRI
data were used as “radiomic” features, including (1) T1-weighted images, (2) T1-weighted images
with CE, (3) T2-FLAIR images, and (4) ADC images. Repetition times/echo times were 500.0/10.0
ms and 11,000.0/125.0 ms in the T1 and FLAIR images, respectively. These images shared the same
acquisition parameters, with a section thickness of 5.0 mm and a reconstructed axial image of a
512 × 512 matrix with a pixel spacing of 0.469 mm × 0.469 mm. T1-CE images were captured 5 min
after injecting a gadolinium-based agent. Moreover, DWI was performed with the following parameters:
b-values = 1000 and 0 s/mm2, repetition/echo times = 3000.0/82.0 ms, and section thickness = 5.0 mm.
We used a 256 × 256 matrix with a pixel spacing of 0.9375 mm × 0.9375 mm. Based on the DWI of
two different b-values, ADC images were acquired using an EWS Workstation (Philips Healthcare,
Amsterdam, Netherlands).

The preoperative MRI images used in this study were resized to a width and height of 256 × 256
pixels, to fix the size of the input for the deep learning models. Considering the memory capacity
of the graphics processing unit (GPU), a total of nine images were selected, based on the longest
slice of glioblastoma from one sequence of data (± four slices). As a result, a total of 36 axial images
(4 sequences × 9 images) from the four different image series were incorporated into our prediction
model. The z-score normalization method was applied to the training data—including clinical and
radiomic features—and the z-score parameters (mean and standard deviation) were determined. Then,
the z-score parameters were independently applied to the test data.

4.3. Building Neural Network-Based Survival-Prediction Models

All procedures for building the deep learning-based OS-prediction models were performed using
Google Tensorflow library version 1.14.0 (http://tersorflow.org) with an Nvidia GTX 1080Ti GPU.
The OS prediction models were designed using clinical, radiomic, and both clinical and radiomic
features. A total of nine neural network-based models were built in this study. These can be classified
into five categories: (1) models with one type of clinical feature (MC1a, MC1b, and MC1c), (2) models
with two types of clinical feature (MC2a, MC2b, and MC2c), (3) a model with all three types of clinical
feature (MC3), (4) a model using radiomic features (MR), and (5) a model with both clinical and
radiomic features (MCR). The clinical features used in each MC were as follows: MC1a—personal
only; MC1b—genomic only; MC1c—treatment only; MC2a—personal and genomic; MC2b—personal and
treatment; MC2c—genomic and treatment; MC3—personal, genomic, and treatment.

http://tersorflow.org
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Each model consisted of an input layer, a hidden layer, and an output layer. The model details
are as follows: (1) in the models using clinical features alone (MC), the size of the input layer was
determined according to each model’s input variable numbers. Thereafter, the input data passed
through a hidden layer composed of four fully connected layers (256, 128, 64, and 32 nodes, respectively)
and a single output node to predict the OS. (2) In the case of the radiomic model (MR, Figure 3A),
36 images from the four MRI sequences (shaped 256 × 256 × 36) were entered into the input layer
of MR. The hidden layer of MR was based on a CNN composed of seven convolution layers and
four fully connected layers. The CNN of the hidden layer performed two functions. The one-by-one
convolution filter in the first convolution layer determined the importance of weight for each of the
36 images. The remaining six convolution layers (shaped from 28 × 28 to 7 × 7) automatically extracted
the radiomic features (Radiomic Feature Extractor). Then, the 256 extracted radiomic features were
inputted to the fully connected layer (Predictor) to predict the OS. (3) The prediction model employing
both the clinical and radiomic features (MCR, Figure 3B) had a similar CNN structure to MR, except
for a single additional fully connected layer containing 242 nodes. The 36 images from the four MRI
sequences were entered into the input layer and passed through the CNN in a manner similar to that
of MR, and the Radiomic Feature Extractor in MCR extracted 242 features using the additional fully
connected layer. The 242 extracted radiomic features and 14 clinical features were then inputted to four
fully connected layers to predict the OS. The architecture specifications of MCR are listed in Table 5.
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The batch size was empirically determined as 15; dropout and online augmentation techniques
were applied to achieve generalizable performance. The online augmentation technique generated
new images every epoch by using randomly selected parameters until the training procedure is over.
The parameters of scaling, translation, rotation, and shear ranged from 95% to 100%, −3 to 3 pixels,
−10 to 10 degrees, −3 to 3 degrees, respectively. The probability of image flip (left-right) was 50%.
To manage the non-linearity, a leaky rectified linear unit activation function (LReLu) was located
behind each layer [37]. After the input features had been passed from the input to the output layer,
the loss was calculated (forward-propagation). The loss functions of the models were determined
as the root mean squared error between the actual (ground-truth) and predicted OS; they were
measured in months. In the back-propagation process, the hidden layer was optimized to minimize
the loss using the adaptive moment estimation optimizer, with a learning rate of 0.0001. The training
process was terminated when the loss became saturated on the smallest value, with a maximum
of 5000 epochs. After the training was completed, the model structure and optimized parameters
were saved, to be independently applied to the test set. The model performances were validated via
10-fold cross-validation.
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Table 5. Layers and parameters of the prediction model employing both the clinical and radiomic
features (MCR).

Layer Filter Shape Shape Activation/Pooling

Input layer Input layer - 1 × 256 × 256 × 36 † None

Hidden layer:
Extractor

Convolution layer 1 × 1 × 36 × 1 1 × 256 × 256 × 1 None/Max pooling
Convolution layer 1 × 28 × 28 × 1 1 ×128 × 128 × 1 LReLu */Max pooling
Convolution layer 1 × 14 × 14 × 1 1 × 64 × 64 × 1 LReLu/Max pooling
Convolution layer 1 × 14 × 14 × 1 1 × 32 × 32 × 1 LReLu/Max pooling
Convolution layer 1 × 7 × 7 × 1 1 × 16 × 16 × 1 LReLu/None
Convolution layer 1 × 7 × 7 × 1 1 × 16 × 16 × 1 LReLu/None

Flatten 1 × 1 × 256 None
Fully connected layer 1 × 256 × 242 1 × 1 × 242 LReLu/None

Concatenate Concatenate: clinical (14) and
radiomic (242) features 1 × 1 × 256 None

Hidden layer:
Predictor

Fully connected layer 1 × 242 × 256 1 × 1 × 256 LReLu/None
Fully connected layer 1 × 256 × 128 1 × 1 × 128 LReLu/None
Fully connected layer 1 × 128 × 64 1 × 1 × 64 LReLu/None
Fully connected layer 1 × 64 × 32 1 × 1 × 32 None/None

Output layer Fully connected layer 1 × 32 × 1 1 × 1
† A total of 36 axial images from the four different image series were incorporated into our model. * Leaky rectified
linear unit (LReLu) activation function.

4.4. Statistical Analysis

The primary objective of this study was OS prediction. The OS duration was calculated from the
date of surgery to the date of the last follow-up (or death). Survival rates were calculated using the
Kaplan-Meier method and were compared by log-rank tests. For a comparison of variables between
groups, the Student’s t-test was employed for continuous variables, and the Chi-square test or Fisher’s
exact test was used for categorical variables.

To evaluate the predictive performance of each model, Harrell’s C-index and the iAUC were
calculated. The iAUC is defined as the weighted mean of the area-under-the-curve over a follow-up
period, and a higher iAUC suggests the superior predictive performance of the model [38,39].
The C-index and iAUC were calculated using the “survival” R package, and the “risksetAUC” function
from the “risksetROC” R package, respectively. To calculate differences in the C-index and iAUC
between two models, the 95% CIs of each value were computed using 1000-times bootstrapping.
The difference was considered statistically significant if 95% CI of the difference did not include a
zero. In each comparison, we used Bonferroni correction to compensate for multiple comparisons.
In addition, we calculated the RMSE, the square root of the mean squared residuals, and Pearson’s
correlation coefficient between the ground truth and predicted OS in each model. All statistical analyses
in this study were performed using the SAS software (version 9.4; Cary, NC, USA), and R (version
3.6.1; R Development Core Team, Vienna, Austria, http://www.r-project.org).

5. Conclusions

In conclusion, in this study, we proposed deep learning models for the prediction of OS in
glioblastoma. In contrast to most previous studies, we predicted survival outcome as a continuous
variable and automated the feature-extraction and selection processes by using CNN-based algorithms.
Our findings suggest synergistic benefits of clinical and radiomic features; furthermore, they suggest
future research directions in the building of multi-parametric deep learning models for the survival
prediction of glioblastoma patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2284/s1,
Figure S1: The automatically determined weights for generating a weighted image to achieve high prediction
accuracy for OS.
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