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Abstract: Antibody-drug conjugates (ADCs) represent a novel and promising therapeutic strategy
for the treatment of cancer patients. ADCs target antigens highly expressed on the membrane
surface of tumor cells to selectively deliver a cytotoxic drug. Ovarian tumors differentially express
tumor-specific antigens, which can be used to guide ADCs. This strategy allows for optimizing tumor
targeting while minimizing systemic toxicity compared to classical chemotherapeutic agents. ADCs
can be improved by using a cleavable linker allowing the delivery of the toxic payload in surrounding
cells not expressing the target protein, therefore acting on heterogeneous tumors with different cell
populations. Currently, more than 15 ADCs are under preclinical investigation in ovarian cancer,
and some of them have already been tested in early-phase clinical trials with promising results. In this
review, we summarize the mechanism of action and the toxicity profile of ADCs and discuss the latest
preclinical discoveries and forthcoming applications in ovarian cancer.

Keywords: antibody-drug conjugate; ovarian cancer; cleavable linker; non-cleavable linker; bystander
effect; payload

1. Introduction

Ovarian cancer is one of the most lethal cancers in women. The initial standard of care
treatment includes surgery (upfront or cytoreductive interval debulking surgery) and platinum-based
chemotherapy [1]. Bevacizumab (antibody targeting vascular endothelial growth factor) and PARP
(poly-ADP-ribose polymerase) inhibitors are the only targeted therapies currently approved for the
treatment of this disease [2,3]. Although these agents have changed the prognosis of some patients,
the majority of them will still recur and unfortunately succumb to this disease. New approaches are
urgently needed to improve outcomes in this malignancy.

Over the last three decades, antibodies have emerged as a good therapeutic option for the
treatment of cancer. By binding specific antigens on the tumor cell membranes, they can mediate the
inactivation of the downstream oncogenic pathway in addition to induction of an immune response [4].
The conjugation of an antigen-targeting antibody with a cytotoxic drug allows selective delivery of the
drug to antigen-expressing cells, increasing efficacy and decreasing systemic toxicity in comparison to
classic chemotherapeutic agents [5]. In the last decade, eight antibody-drug conjugates (ADCs) have
been approved for the treatment of hematologic malignancies (gemtuzumab ozogamicin, brentuximab
vedotin, inotuzumab ozogamicin, and polatuzumab vedotin-piiq), HER2-expressing breast cancer
tumors (aldo-trastuzumab emtansine and trastuzumab deruxtecan), triple-negative breast cancer
(sacituzumab govitecan) and urothelial carcinomas (enfortumab vedotin), and other compounds
are being investigated in different solid tumors, including ovarian cancer [6,7]. Ovarian tumors
differentially express a great number of tumor-antigens that can be used for this novel strategy [8].
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In this review, we summarize the mechanism of action, resistance, and toxicity profile of ADCs and
their current status in ovarian cancer.

2. Structure of ADCs and Toxicity Profile

An antibody-drug conjugate (ADC) consists of an antibody specifically directed against a
tumor-antigen, which is conjugated through a molecular linker with a cytotoxic agent, that ultimately
will be internalized and released into tumor cells [5]. The three components of ADCs (antibody,
toxic payload, and linker) are crucial for both efficacy and toxicity.

2.1. Antibody/Antigen

The antibody included in an ADC is usually a humanized immunoglobulin G engineered to attach
the toxic payload to certain residues of the antigen-binding regions (Fabs) [9]. The tumor-antigen
selected should be preferentially expressed on the membrane surface of tumor cells and minimally
expressed in normal tissues, in order to minimize systemic toxicity. Antibody-antigen binding
triggers internalization by endocytosis and lysosomal degradation of the complex, delivering the
cytotoxic payload into tumor cells [10,11]. Folate receptor alpha, mesothelin, MUC16, TROP2, tissue
factor, and NaPi2b are common antigens used for conjugation in this malignancy, as they are usually
overexpressed in epithelial ovarian cancer [12]. Selecting the correct antigen is a crucial step for
effectiveness, and many efforts have been developed to identify novel antigens. Table 1 shows a
complete list of antigens used as targets for the development of ADCs that are under evaluation in
ovarian cancer, including those in clinical and preclinical stages.

Table 1. Antigens and cytotoxic payloads for antibody-drug conjugates (ADCs) in clinical and preclinical
development in ovarian cancer.

ADC Antigen Payload Class Mechanism of
Action

Linker and
DAR

Development
Stage

Mirvetuximab
soravtansine

[13–18]

Folate
receptor

alpha
DM4 Maytansinoid Microtubule-

disrupting agent
Cleavable

3–4 Phase 3

Lifastuzumab
vedotin [19] NaPi2B

monomethyl
auristatin E

(MMAE)

Auristatin
analogs

Microtubule-
disrupting agent

Cleavable
3–4

Phase 2
(discontinued)

Sofituzumab
vedotin [20] MUC16

monomethyl
auristatin E

(MMAE)

Auristatin
analogs

Microtubule-
disrupting agent

Cleavable
3.5

Phase 1
(discontinued)

Anetumab
ravtansine

[21]
Mesothelin DM4 Maytansinoid Microtubule-

disrupting agent
Cleavable

3.2 Phase 2

Tisotumab
vedotin [22] Tissue factor

monomethyl
auristatin E

(MMAE)

Auristatin
analogs

Microtubule-
disrupting agent

Cleavable
NR Phase 2

Cofituzumab
pelidotin

[23]
PTK7 Aur0101 Auristatin

analogs
Microtubule-

disrupting agent
Cleavable

NR Preclinical

CDX-014
[24] TIM1

monomethyl
auristatin E

(MMAE)

Auristatin
analogs

Microtubule-
disrupting agent

Cleavable
4.5 Preclinical

Sacituzumab
govitecan

[25]
TROP-2 SN-38 Camptothecin Topoisomerase

inhibitor analog
Cleavable

6.78 Preclinical

PF-06650808
[26] NOTCH-3

monomethyl
auristatin E

(MMAE)

Auristatin
analogs

Microtubule-
disrupting agent

Cleavable
NR Phase 1

Praluzatamab
ravtansine,

CX-2009 [27]
CD166 DM4 Maytansinoid Microtubule-

disrupting agent
Cleavable

3.5 Phase 1

DAR Drug-to-antibody ratio; NR Not reported.
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2.2. Payload

As only 1% of the administered ADC reaches the target tumor site, the ideal payload should
be small molecules with potent activity, usually at picomolar range, with direct cytotoxic effects
and a high therapeutic index [28]. Few molecules to date have been identified as optimal
payload candidates for conjugation processes. Among them, the most commonly used for ovarian
cancer ADCs are the two microtubule inhibitors monomethyl auristatin (MMAE/vedotin) and DM4
(ravtansine/soravtansine) [10,11]. Conjugation with the antibody enables the specificity of these drugs
to be increased as well as reducing systemic toxicity. The payload delivery to targeted cells is limited
by antigen expression and the average of drug molecules conjugated to the antibody, the so-called
drug-to-antibody ratio (DAR). Overloading ADCs with lipophilic payloads causes aggregation,
leading to an increased hepatic uptake and potential systemic toxicity risk [29].

2.3. Linker

The linker is a chemical structure that binds the antigen-targeting antibody to the cytotoxic
payload. Ideally, it should maintain this binding stable and unaltered through the bloodstream and
release the drug only after antigen-antibody binding in antigen-expressing cells [30]. According to their
chemical characteristics, linkers can be cleavable or non-cleavable. Cleavable linkers are chemically
labile structures that can be cleaved depending on certain intracellular circumstances such as acid pH
levels, high levels of glutathione, or the action of lysosomal proteases [31]. Some cleavable linkers
can also deliver the drug extracellularly, i.e., in the acid pH tumoral microenvironment, inducing
killing in nearby tumor cells with no expression of the targeted antigen. This bystander killing is an
attractive effect for heterogeneous tumors in which not all tumor cells express the selected antigen and
it depends on the permeability profile of the released payload [32]. Non-cleavable linkers release the
drug only when the antibody is internalized and degraded inside the lysosome of the targeted cell.
A non-specific killing of surrounding tumor cells is also possible as a result of the cytotoxic payload
release from the apoptotic targeted-tumor cell [33].

2.4. Toxicity Profile

In global terms, ADCs have a favorable toxicity profile with low grade and easily manageable
side effects [34]. On-target toxicity affecting non-tumor cells expressing the target antigen can be
observed. The type and severity of this kind of toxicity will depend on the tissues where the antigen
is expressed and the intensity of the expression itself [35]. Some characteristic off-target toxicity has
also been described in phase 1 and 2 trials as a result of an early payload release into the systemic
bloodstream. For ADCs containing microtubule cytotoxic agents, such as MMAE or DM4, significant
hematologic toxicity can reach up to 5% [36]. In vitro studies have proposed cytotoxic damage by the
released payload into hematopoietic stem cells of the bone marrow as a potential mechanism for this
toxicity [37]. Grade 3–4 hepatic impairment, gastrointestinal toxicity, mainly diarrhea, and peripheral
neuropathy are also frequently reported [36,38]. Ocular toxicity is a known class effect of ADCs and
dose-limiting toxicity in many phase 1 trials. Reversible blurry vision and keratopathy are frequent
and usually non-severe among patients under this therapy and can be managed with dose adjustments
or treatment delays [39]. Primary prophylactic use of corticosteroid eye drops could be useful to avoid
dose modification [40]. The mechanisms of corneal damage associated with ADC treatments are still
unclear. It is unlikely to be an on-target effect as the majority of the antigens targeted by the ADCs are
not significantly overexpressed in the eye, except for MUC16-targeted ADCs [41]. Some authors have
postulated damage to stem cells located in the cornea as a possible causative mechanism [39].

3. ADCs in Ovarian Cancer

To date, there are no ADCs approved for the treatment of ovarian cancer. While only one molecule
has achieved a phase 3 trial with encouraging data mainly in combination with chemotherapy or



Cancers 2020, 12, 2223 4 of 13

targeted therapy, the majority of ADCs are still in early development with different results (Tables 2
and 3). Here, we review the main efficacy data in phase 1–3 trials.

Table 2. Main characteristics of ADC antigens for treating ovarian cancer.

Antigen Function Expression in
Normal Cells

Expression in
Ovarian

Cancer Cells
ADC Payload

FRα Intracellular
transport of folate

Marginally
expressed in normal

cells (polarized
epithelium)

67–100%
Mirvetuximab
soravtansine
(IMGN853)

DM4

Mesothelin Cell adhesion
Expressed in pleura,

peritoneum and
pericardium

55–100% Anetumab
ravtansine DM4

Tissue factor
Extrinsic pathway
of the coagulation

cascade

Subendothelial
vessel wall cells 23–100% Tisotumab

vedotin MMAE

MUC16 Protection of
epithelial surfaces

Epithelial cells (eye,
mesothelium,

trachea)
70–90% Sofituzumab

vedotin MMAE

TROP2
Intracellular

calcium signal
transducer

Trophoblast cells,
alveolar epithelial

cells, smooth muscle
cells

82–92% Sacituzumab
govitecan SN-38

NaPi2B Sodium-dependent
surface transporter

Epithelial cells
(pneumocytes, small

bowel, mammary
gland)

80–93%
Lifastuzumab

vedotin
(LIFA)

MMAE

Table 3. Clinical efficacy of ADCs in ovarian cancer.

ADCs Target Antigen Phase of
Development

Efficacy of
Monotherapy

Efficacy in
Combination Main Toxicity (>20%)

Mirvetuximab
soravtansine

[13–18]
FRα Phase III ORR 24–46% mPFS

4.8–6.7 months

Bev (platinum
resistant): ORR

39%
Carbo AUC4–5

(platinum
sensitive): ORR
71%, mPFS 15

months

Ocular toxicity (blurred
vision, keratopathy),

neurotoxicity, fatigue, AST
increased, nausea

STRO-002 [42] FRα Phase 1 ongoing –

Fatigue, vomiting,
decreased appetite,
constipation, AST

increased, neuropathy

MORAb-202
[43] FRα Phase 1 DCR 75% (1/9 CR; 2/9

PR) – ALT and GGT increased,
leukopenia, neutropenia

Anetumab
ravtansine [21] Mesothelin Phase 1b–2 ORR 9%

DCR 59%
PLD: DCR 83%

(52% PR, 33% SD)
Keratitis and neuropathy
(both DLT). GI disorders

DMOT4039A
[44] Mesothelin Phase 1 ORR 30% mPFS4.9

months – Diarrhea, nausea, fatigue,
alopecia

Tisotumab
vedotin [22] Tissue factor Phase 1–2 ORR 13.9% –

Ocular toxicity
(conjunctivitis, dry eye),

epistaxis, fatigue,
neuropathy, nausea,
diarrhea, decreased

appetite
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Table 3. Cont.

ADCs Target Antigen Phase of
Development

Efficacy of
Monotherapy

Efficacy in
Combination Main Toxicity (>20%)

Sofituzumab
vedotin [20] MUC16 Phase 1 ORR 17% –

Fatigue, neuropathy,
nausea, decreased appetite,
diarrhea, alopecia, pyrexia,

anemia, neutropenia,
hypomagnesemia

DMU4C064A
[45] MUC16 Phase 1 ORR 45% (1CR/8 PR)

mPFS 5.8 months –

Ocular toxicity (visual
disturbance, keratitis, dry
eye), neuropathy, diarrhea,

nausea, fatigue

Lifastuzumab
vedotin (LIFA)

[19]
NaPi2B Phase 2

ORR 34% vs.15%
(p = 0.03)

mPFS 5.3 vs. 3.1
months (HR 0.71)

–

Neuropathy, diarrhea,
nausea, constipation,
neutropenia, anemia,

fatigue

XMT1536 [46] NaPi2B Phase 1 2 CR, 11 prolonged
SD – Nausea, fatigue, headache

FRα—folate receptor alpha; Bev—bevacizumab; AUC—area under the curve; PLD—pegylated lysosomal
doxorubicin; ORR—overall response rate; mPFS—median progression-free survival; DCR—disease control rate;
CR—complete response; PR—partial response; SD—stable disease.

3.1. Anti-Folate Receptor Alpha-Based ADCs

Folate receptor alpha (FRα) mediates folate uptake into cells, which is needed for DNA synthesis,
cellular metabolism, and proliferation, and it is marginally expressed in normal cells [47]. In contrast,
it is overexpressed in up to 90–95% of epithelial ovarian carcinomas, mainly in serous and endometrioid
subtypes [48]. Mirvetuximab soravtansine (ImmunoGen Inc., Waltham, MA, USA) is an anti-FRα
ADC conjugated with the tubulin-targeting DM4 through a cleavable linker, with promising activity
in epithelial ovarian carcinoma. The overall response rate (ORR) in a phase 1 escalation cohort of
platinum-resistant ovarian cancer (n = 44) was 26%, with a median progression-free survival (mPFS) of
4.8 months. The recommended phase 2 dose (RP2D) was established at 6 mg/kg intravenously adjusted
to ideal body weight to reduce ocular toxicity [13,14]. After these encouraging results in an initially
unselected population, the phase 3 FORWARD I trial (ClinicalTrials.gov Identifier: NCT02631876)
compared mirvetuximab soravtansine to chemotherapy according to the investigator’s choice (weekly
paclitaxel, pegylated liposomal doxorubicin or topotecan) in platinum-resistant ovarian cancer with
≥50% of FRα expression assessed by the 10×method (percentage of stained cells in ≥10×magnification
by immunochemistry). Preliminary results were communicated at the 2019 European Society of
Medical Oncology Congress (ESMO2019) with no differences in PFS, the primary endpoint of the
trial, for the entire global population (HR 0.981, p = 0.89). In the pre-specified subgroup of high
FRα expression (≥75%), the median PFS was slightly better for the ADC compared to chemotherapy
(4.8 months vs. 3.3 months, HR 0.69, p = 0.049), with a trend towards a better overall survival (OS)
with still immature data (16.4 months vs. 12 months, HR = 0.67, p = 0.048). In an exploratory analysis
of FORWARD I using the PS2 method to assess FRα positivity (intensity of staining plus percentage of
positively stained tumor cells), a higher ORR (26% vs. 6%) and higher PFS (5.6 months vs. 3.2 months,
HR 0.54) were confirmed [15,16]. The correct method for scoring FRα expression remains unclear and
will be of key importance for the future development of this and other ADCs.

The combination of mirvetuximab soravtansine with chemotherapy or targeted therapies seems to
offer better results in the ongoing multicohort phase 1b/2 trial FORWARD II (ClinicalTrials.gov Identifier:
NCT02606305). Combination with bevacizumab in heavily pretreated platinum-resistant ovarian
cancer patients offers interesting results in a recently published phase 1b trial, with an ORR of 39%
including five complete responses. The activity of the combination was higher in bevacizumab naïve
patients and medium-high FRα expression by immunochemistry (ORR 56%, mPFS 9.9 months) [17].
The activity of mirvetuximab soravtansine has been also evaluated in platinum-sensitive ovarian
cancer with at least 25% FRα staining in combination with carboplatin AUC4-5 in another phase
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1b trial. The combination was well-tolerated, with fatigue, gastrointestinal symptoms, and blurred
vision as the main side effects, an ORR of 71% (3 complete response (CR) and 9 partial response (PR)),
and 15 months of median PFS [18]. The combination with immunotherapy has been also explored,
with encouraging activity with some long-lasting responses [49].

Other anti-FRα ADCs under investigation in phase 1 trials are STRO-002 (SutroBiopharma Inc.,
San Francisco, CA, USA) and MORAb-202 (Eisai Inc., Tokyo, Japan). STRO-002 is composed of SP8166
(H01), an FRα human immunoglobulin G1 (IgG1) antibody, conjugated to a proprietary cleavable drug
linker, SC239, containing a tubulin-targeting payload. The STRO-002-GMI phase 1 trial in unselected
ovarian and endometrial cancer patients is still enrolling with the first patient included in March
2019 and is pending results [42]. MORAb-202 consists of farletuzumab (a humanized monoclonal
antibody that binds to FRα conjugated to eribulin mesylate through a cleavable linker). The phase 1
dose-escalation trial in FRα positive solid tumors has shown promising data with 75% disease control
rate (DCR) for the entire population, including 1 CR and 2 PR among the 9 patients with ovarian cancer
included in the trial [43].

3.2. Anti-NaPi2B-Based ADCs

NaPi2B is a sodium-dependent cell-surface transporter normally expressed in lung and small
intestine epithelial cells [50]. High expression of this protein can be observed in serous ovarian tumor
cells compared to non-malignant ovarian cells [51]. Lifastuzumab vedotin (LIFA, Genetech Inc., San
Francisco, CA, USA) is an antiNAPi2B ADC conjugated with MMAE with a protease-cleavable linker.
The activity of LIFA has been assessed in a phase 2 trial in unselected platinum-resistant ovarian
cancer patients (n = 99) compared with standard pegylated liposomal doxorrubicin (PLD). Median
PFS was 5.3 months vs. 3.1 months (HR 0.71), favoring ADC without differences according to NaPi2B
expression. ORR was also higher (34% vs. 15%, p = 0.03) in patients treated with LIFA. Neuropathy
was more frequently observed in the experimental arm (11% vs. 4%) [19].

XMT1536 (Mersana Therapeutics, Cambridge, MA, USA) is another antiNAPi2B ADC with an
auristatin payload conjugated through a cleavable linker. The chemical structure through its fleximer
polymer linker allows a higher DAR (10–12), which could be translated into higher efficacy. Interim
data from the phase 1 trial presented at the American Society of Clinical Oncology Congress (ASCO
2019 and ASCO 2020) showed 2 CR and 11 prolonged stable disease in platinum-resistant ovarian
cancer without significant adverse effects [46].

3.3. Anti-MUC16-Based ADCs

MUC16 is the transmembrane portion of the CA125 antigen, typically overexpressed in epithelial
ovarian cancer cells [52]. DMU4C064A (Genetech Inc.) containing MMAE payload ADC has shown
interesting results in a phase 1 trial, with 45% ORR including 1 CR and 8 PR with a mPFS of 5.8
months. Ocular toxicity was frequent, affecting up to 75% of patients [45]. Another MMAE-containing
anti-MUC16 ADC with a protease-cleavable linker, sofituzumab vedotin (DMUC5754A, Genentech,
Inc.), has shown modest results (ORR 17%), with no further development [20].

3.4. Anti-Mesothelin-Based ADCs

Mesothelin is a glycoprotein that covers different corporal cavities (i.e., pleural or peritoneum)
participating in cell adhesion. It is overexpressed in 70–85% of epithelial ovarian carcinomas [53].
Anetumab ravtansine (BAY 94-9343, Bayer AG, Leverkusen, Germany), a DM4-containing ADC with a
cleavable linker, has shown robust activity in combination with PLD in preclinical studies. A phase 1b
trial in combination with PLD was conducted in platinum-resistant disease, offering durable responses
with a disease control rate (DCR) of 83% with 52% PR (11/21) and 33% stable disease (7/21) [21].
A combination phase 2 trial with bevacizumab compared to paclitaxel in refractory ovarian cancer is
currently ongoing (ClinicalTrials.gov Identifier: NCT03587311).
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DMOT4039A (RG-7600, Genetech Inc.) is another anti-mesothelin MMAE-containing ADC.
Results of a phase 1 trial in unresectable pancreatic (n = 40) and platinum-resistant ovarian cancer
(n = 31) have shown disappointing results with only 4 confirmed PR [44], resulting in a discontinuation
of its development.

3.5. Anti-Tissue Factor-Based ADCs

Tissue factor (TF) is a well-known extrinsic coagulation factor with aberrant expression in
many solid tumors including epithelial ovarian cancer, and it is implicated with neo-angiogenesis
and cancer proliferation [54,55]. Tisotumab vedotin (TV, Seattle Genetics Inc., Bothell, WA, USA
/Genmab, Copenhagen, Denmark) uses a protease-cleavable valine-citrulline linker to conjugate
MMAE. The phase 1 InnovaTV201 trial has shown only modest activity in ovarian cancer patients
(ORR 13.9%) [22]. A phase 2 trial (InnovaTV208, ClinicalTrials.gov Identifier: NCT03657043) in
platinum-resistant ovarian carcinoma is currently ongoing.

3.6. Other Antigen-Based ADCs

The activity of other ADCs that target antigens overexpressed in ovarian cancer is under
investigation in preclinical studies and early phase 1 trials. Protein kinase 7 (PTK7), involved in
the Wnt pathway, T-cell immunoglobulin and mucin domain 1 (TIM1), Trophoblast cell-surface
antigen 2 (TROP 2), and Notch 3 are a few examples of ovarian carcinoma antigens used in ADC
development [23–26]. In the next few years, we will aim for an increased number of ADCs in the
development in ovarian cancer and other solid tumors. The toxicity profile along with the high
selectivity in delivering the cytotoxic payload makes this strategy an attractive approach for cancer
treatment. PROBODY drug conjugates, molecules engineered with peptide masks that block normal
tissue binding, can help to minimize on-target toxicity when the antigen is widely expressed in normal
tissues [56]. In this regard, preliminary data on CX2009, a PROBODY drug conjugate targeting CD166,
have been communicated in ASCO2020, with 2 PR in ovarian cancer patients [27].

4. Mechanisms of Resistance to ADCs

Mechanisms of primary and acquired resistance to ADCs are complex and depend on the
components of the drug (Figure 1). Antibody-antigen binding, the payload type, and the chemical
structure and stability of the linker are crucial steps for resistance to ADCs [57]. Heterogeneous tumors
with a high proportion of antigen non-expressing tumor cells, or low expression of the targeted antigen,
can diminish ADC efficacy and contribute to primary resistance to the drug. In addition, although it is
not considered a resistance mechanism per se, premature payload deconjugation before reaching the
tumor (i.e., cleavable linkers with unstable chemical structure) can decrease the final amount of ADC
reaching the targeted tumor cells. The antibody-antigen binding process and the regulation of the
surface antigen itself are key factors to induce acquired resistance [58]. Mutations in the expressed
antigen, alterations in the cell surface recycling process along with downregulation of the antigen itself
can alter antibody-antigen binding [59,60]. Other variations concerning the internalization process of
the complex antibody-antigen or in the intracellular trafficking mechanism together with impaired
lysosomal activity have also been described as possible mechanisms of acquired resistance [61–63].
Commonly shared with other cytotoxic agents, once the payload has been released into the target cell,
efflux pumps can contribute to expelling the drug outside the cell. The upregulation of these pumps
and systems is one of the main mechanisms of resistance described associated with cytotoxic agents
and also described with ADCs [58,64].
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5. Future Directions

While a great number of ADCs have been developed, only a minority have been approved in the
last 20 years, and results in ovarian cancer, although promising, have not had a real clinical impact.
Patient selection according to antigen expression is advisable in order to better identify the population
who will most benefit from these therapies, and clinical translational research and bioinformatic
approaches will be essential to identify biomarkers of response. Chemical modifications of ADC
structure (i.e., peptide masking, increasing DAR, antibody fragments to increase ADC delivery to the
tumor) will help to increase efficacy without increasing toxicity and will help to overcome resistance.

In addition, a certain subgroup of patients could have better outcomes with ADCs, such as the
BRCA mutated population, in which a high therapeutic index of DNA damaging agents could result in
greater responses. In this regard, the use of pyrrolobenzodiazepine dimers (PBD) as cytotoxic payload,
which induce DNA double-strand breaks, could enhance ADCs’ efficacy in homologous recombination
defective tumors [65]. Preliminary data on ADCs in combination with chemotherapy and targeted
therapies have shown encouraging outcomes. Among them, combinations with immunotherapy
need to be explored as immunogenic cell death driven by ADCs can enhance the efficacy of immune
checkpoint inhibitors and other immune modulators [66,67].

6. Conclusions

ADCs can selectively deliver a cytotoxic agent intracellularly using a specific antibody-antigen
binding. Their toxicity profile in comparison to classical chemotherapeutic agents makes ADCs
an attractive strategy for cancer treatment. Ovarian cancer differentially expresses tumor-specific
antigens, which makes this cancer type a good candidate for the development of ADCs. Results from
early phase 1–2 trials differ between compounds, probably due to the percentage and intensity of
antigen expression and the chemical structure of each ADC. To date, only one ADC, mirvetuximab
soravtansine, has achieved phase 3 development, with modest results as a monotherapy treatment.
However, preliminary data on combinations with chemotherapy and targeted therapies have shown
encouraging activity. ADCs’ toxicity seems to be favorable with non-severe, reversible, and easily
manageable off-target side effects. Mechanisms of resistance are diverse and complex and depend on
the antibody-antigen binding process, the chemical structure of the linker and conjugation process,



Cancers 2020, 12, 2223 9 of 13

and the payload itself. Exploring the activity of ADCs in BRCA mutated and HR defective tumors and
in combination with immunotherapy would be essential for further development of these agents.
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