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Abstract: The purpose of this work was to evaluate the performance of an existing commercially
available artificial intelligence (AI) software system in differentiating malignant and benign
lung nodules. The AI tool consisted of a vessel-suppression function and a deep-learning-based
computer-aided-detection (VS-CAD) analyzer. Fifty patients (32 females, mean age 52 years) with
75 lung nodules (47 malignant and 28 benign) underwent low-dose computed tomography (LDCT)
followed by surgical excision and the pathological analysis of their 75 nodules within a 3 month
time frame. All 50 cases were then processed by the AI software to generate corresponding VS
images and CAD outcomes. All 75 pathologically proven lung nodules were well delineated by
vessel-suppressed images. Three (6.4%) of the 47 lung cancer cases, and 11 (39.3%) of the 28 benign
nodules were ignored and not detected by the AI without showing a CAD analysis summary. The AI
system/radiologists produced a sensitivity and specificity (shown in %) of 93.6/89.4 and 39.3/82.1 in
distinguishing malignant from benign nodules, respectively. AI sensitivity was higher than that of
radiologists, though not statistically significant (p = 0.712). Specificity obtained by the radiologists
was significantly higher than that of the VS-CAD AI (p = 0.003). There was no significant difference
between the malignant and benign lesions with respect to age, gender, pure ground-glass pattern,
the diameter and location of the nodules, or nodules < 6 vs. ≥6 mm. However, more part-solid nodules
were proven to be malignant than benign (90.9% vs. 9.1%), and more solid nodules were proven
to be benign than malignant (86.7% vs. 13.3%) with statistical significance (p = 0.001 and <0.001,
respectively). A larger cohort and prospective study are required to validate the AI performance.

Keywords: computer-aided detection and analyzer; artificial intelligence; CT; lung cancer screening;
vessel suppression
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1. Introduction

Lung cancer is currently the leading global cause of cancer-related death [1,2]. Current five-year
survival estimates for non-small cell lung cancer range from 73% for Stage IA disease to 13% for Stage
IV disease [3]. In the earliest stages, the lung cancer can manifest as a pure ground-glass nodule (GGN),
part-solid, or solid nodule [4,5]. The tumor’s solid component is more strongly correlated with invasive
pathologic characteristics and associated with the worse survival rates [4–8]. The identification of
patients with lung cancer in early stages or Stage IA is associated with better prognosis for disease-free
survival [9,10]. International Early Lung Cancer Action Program Investigators reported that the early
detection and surgical excision of lung cancer presenting as GGN or part-solid nodules can provide a
lung cancer-specific survival rate of up to 100% [11,12]. The early detection of lung cancer in patients
using low-dose computed tomography (LDCT) was shown to be highly effective according to the report
of National Lung Screening Trial (NLST) in 2011, with a relative reduction in lung cancer mortality by
20% compared to chest radiography [13]. Since then, the United States Preventive Services Task Force
has recommended annual screening for lung cancer in asymptomatic adults aged 55 to 80 years who
have a 30-pack/year smoking history and currently smoke or had quit within the past 15 years [14].

LDCT has the benefit of depicting pulmonary structures without superimposition while requiring
less radiation than conventional CT [15]. However, pulmonary nodules may still be overlooked due to
various factors. Aside from observer performance, nodule characteristics such as small dimensions,
poor conspicuity, ill-defined margins, and central locations adjacent to vessels may all lead to missing
lung cancers on CT [16]. Particularly, large sets of images taken by LDCT were associated with visual
and mental fatigue for radiologists that may cause intellectual or interpretative errors during routine
clinical practice [17]. Missing a lung nodule/cancer in a radiological examination is highly concerning
and remains one of the most common causes of malpractice claims against radiologists [18,19].

Research in computer-aided detection (CAD) has been carried out for more than two decades
to improve the efficacy and efficiency of detecting small lung nodules [20]. Advanced detection
algorithms and high-speed calculations have allowed for the development of new CAD systems to
be much more powerful, and gave them the potential to aid radiologists in the diagnosis of lung
nodules [20,21]. The use of CAD alone is not generally accepted in clinical practice [22]. However,
the vessel-suppressed (VS)-CAD system (i.e., ClearRead CT software) that was approved by the US
Food and Drug Administration (FDA) in 2016 takes a different approach, by suppressing normal
structures within the lungs, which are mostly vascular. This system seeks to improve the detectability
of small lung nodules. If artificial intelligence (AI) or CAD systems could accurately pinpoint lung
nodules on CT, this technology would not only assist radiologist performance in nodule detection,
but also reduce their clinical reading time [22,23]. Assuming that deep-learning AI was trained to
only focus on lung nodule analysis and was capable of distinguishing malignant from benign nodules,
the aims of this project were to (1) investigate and compare the performance of the VS-CAD AI with
radiologists in differentiating malignant from benign lung lesions, and (2) analyze the sensitivity and
specificity of VS-CAD AI in detecting malignancies that were excluded from its analysis summary.
To the best of our knowledge, this is the first study attempting to assess the VS-CAD AI’s ability to
stratify and detect lung nodules that were all proven by surgical pathologies.

2. Results

2.1. Baseline Description: 75 Nodules with Final Surgical Pathology

All 75 nodules in the 50 cases, comprised of 47 malignant nodules and 28 benign lesions,
which were excised and proven by surgical pathology, were well highlighted on VS images. The 47
malignancies were made up of 23 adenocarcinomas, 18 minimally invasive adenocarcinomas (MIAs),
and six adenocarcinomas in situ (AISs). The 28 benign lesions included 10 inflammations, seven
intrapulmonary nodes (IPNs), six fibrosis, and one case each of atypical adenomatous hyperplasia
(AAH), primary benign leiomyoma, primary benign clear-cell tumor, atelectasis, and granuloma.
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Of the 50 subjects (35 malignant cases) with 75 nodules, there was no statistically significant
difference between the benign and malignant cases or nodules with respect to age (57.47 ± 10.97 vs.
55.06 ± 8.33, p = 0.399), gender (p = 0.754), nodule diameter (7.16 ± 3.29 vs. 7.82 ± 3.06, p = 0.193),
pure ground-glass patterns (34.2% vs. 65.8%, p = 0.743), upper-lobe vs. non-upper lobe location
(p = 0.812), or peripheral vs. central location (p = 0.772) (Table 1). Sixty-one nodules summarized by
the AI analyzer were reviewed and showed that there was no significant difference in the 61 nodule
sizes measured manually or by the AI analyzer (7.83 ± 3.06 vs. 8.13 ± 3.49, p = 0.624) with a Pearson
correlation coefficient of 0.926.

Table 1. The demographic data of 50 patients and imaging findings of 75 nodules shown on low-dose
computed tomograms as well as their vessel-suppressed images.

Variables Benign Malignant p-Value

Patients (n = 50)
Age (mean ± SD) 57.47 ± 10.97 55.06 ± 8.33 0.399
Gender (n = 50) 15 (30%) 35 (70%)

Female (n = 32) 9 (28.1%) 23 (71.9%)
0.754Male (n = 18) 6 (33.3%) 12 (66.7%)

Nodules (n = 75) 28 (37.3%) 47 (62.7%)
Diameter (mm) (mean ± SD) 7.16 ± 3.29 7.82 ± 3.06 0.193
≥6 mm 17 (34.7%) 32 (65.3%)

0.618
<6 mm 11 (42.3%) 15 (57.7%)

Ground glass nodule (n = 38) 13 (34.2%) 25 (65.8%) 0.743
Peripheral (n = 31) 11 (35.5%) 20 (64.5%)

1.000Central (n = 7) 2 (28.6%) 5 (71.4%)
Part-solid nodule (n = 22) 2 (9.1%) 20 (90.9%) 0.001

Peripheral (n = 15) 1 (6.7%) 14 (93.3%)
1.000Central (n = 7) 1 (14.3%) 6 (85.7%)

Solid (n = 15) 13 (86.7%) 2 (13.3%) <0.001
Peripheral (n = 13) 11 (84.6%) 2 (15.4%)

1.000Central (n = 2) 2 (100%) 0 (0%)
Nodules location

Upper lobe (n = 33) 13 (39.4%) 20 (60.6%)
0.812Not upper lobe (n = 42) 15 (35.7%) 27 (64.3%)

Peripheral (n = 59) 23 (39.0%) 36 (61.0%)
0.772Central (n = 16) 5 (31.2%) 11 (68.8%)

Among the 75 nodules, more part-solid nodules were proven to be malignant than benign
(90.9% vs. 9.1%), and more solid nodules were proven to be benign than malignant (86.7% vs. 13.3%)
with statistical significance in multivariate analysis using logistic regression (p = 0.001 and <0.001,
respectively) (Table 1). In 2017, the Fleischner Society suggested that a nodule <6 mm in low-risk
adults >35 years old generally needs no further follow-up [24,25]. These guidelines also suggest that a
small lung nodule in females (or in the upper lobe) has a high risk of malignancy, and requires close
observation or a follow-up CT scan. However, our original clinical-study cases were performed during
the period of November 2014 to August 2018. In our cohort, there was no significant difference in the
prevalence of malignancy between nodules <6 mm and those ≥6 mm (57.7% vs. 65.3%, p = 0.618).

2.2. Proposed Application of VS-CAD AI System in Detecting Lung Cancer and Excluding Benign Lesions

Of the 75 surgically excised nodules, 61 nodules (81.3%) were marked as positive (Figures 1 and 2),
and 14 nodules (18.7%) were unmarked in each analysis summary of the AI system (Figures 3 and 4).
Among these 14 negative or nonactionable nodules, 11 were benign and three were malignant (one
adenocarcinoma, one MIA, and one AIS measuring 5.7, 6.4, and 6.8 mm in diameter, respectively).
All three malignant nodules were GGNs, and were well delineated on the LDCT and VS images
(Figure 4). The VS-CAD AI analyzer that produced the analysis summary ignored three (6.4%) of the
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47 malignant nodules (Figure 4) and 11 (39.3%) of the 28 benign lesions (Figure 3) with statistically
significant difference (p = 0.001). Of those 11 benign nodules, seven were GGNs, two were solid,
and two were part-solid. The definition of “false-positive” in this study is different from that typically
used in the aforementioned nodule-detection studies. Any benign lesion marked as an actionable
nodule by the AI analyzer was treated as a false-positive classification in this work.
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Figure 2. A 44-year-old male with a 4.2 mm well defined solid nodule with smooth outline due to 

intrapulmonary node in right middle lobe (RML). (A) Low-dose computed tomogram and (B) its 

vessel-suppressed image showed a 4.2 mm solid sub-pleural nodule in RML. (C) Vessel-suppressed 

and computer-aided detection artificial intelligence system alerted it as an actionable nodule. (D) 

Figure 1. A 59-year-old female was found to have a 6.2 mm part-solid nodule in the right lower lobe
(RLL) which was proven to be an acinar predominant adenocarcinoma. (A) Low-dose computed
tomogram. (B) Its vessel-suppressed image showed a 6.2 mm part-solid nodule left in RLL. (C) The
vessel-suppressed and computer-aided detection artificial intelligence analyzer indicated that the nodule
was actionable. (D) Microphotograph of the specimen showed acinar predominant adenocarcinoma
(hematoxylin and eosin stain, ×200).
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Figure 2. A 44-year-old male with a 4.2 mm well defined solid nodule with smooth outline due to
intrapulmonary node in right middle lobe (RML). (A) Low-dose computed tomogram and (B) its
vessel-suppressed image showed a 4.2 mm solid sub-pleural nodule in RML. (C) Vessel-suppressed
and computer-aided detection artificial intelligence system alerted it as an actionable nodule.
(D) Microphotograph of the specimen showed an intrapulmonary node (hematoxylin and eosin
stain, ×20).
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Figure 3. A 57-year-old female with a true negative cancer result ignored by the vessel-suppressed and
computer-aided detection (VS-CAD) artificial intelligence (AI) for a small nodule in right upper lobe
(RUL). (A) Low-dose computed tomogram and (B) the vessel-suppressed image revealed a 7 mm well
defined and smooth-outlined ground-glass nodule in RUL. (C) The VS-CAD AI analyzer treated it as a
non-actionable nodule and did not prompt an analysis summary. (D) The nodule was proved to be
a benign lesion with inflammation, fibrosis and anthracosis by surgical pathology (hematoxylin and
eosin stain, ×100).
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Figure 4. A 58-year-old male with minimally invasive adenocarcinoma in right upper lobe (RUL).
(A) Low-dose computed tomogram and (B) its vessel-suppressed image showed a 6.2 mm ground-glass
nodule in RUL. The nodule is relatively ill defined and suspiciously lobulated. (C) The vessel-suppressed
and computer-aided detection artificial intelligence analyzer determined it as a non-actionable nodule
and did not prompt an analysis summary. (D) Computed tomography guided needle localization
was performed. (E) Microphotograph of the specimen showed minimally invasive adenocarcinoma
(hematoxylin and eosin stain, ×200).
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Table 2 shows the results of the VS-CAD AI and radiologists in differentiating malignant from
benign nodules. When using the VS-CAD AI system as a classifier to distinguish malignant from
benign nodules, the system produced a sensitivity of 93.6% for cancer detection, specificity of 39.3%,
a positive predictive value of 72.1%, a negative predictive value of 78.6%, and an accuracy of 73.3%.
The corresponding figures performed by radiologists in detecting lung cancers were 89.4%, 82.1%,
89.4%, 82.1%, and 86.7%, respectively. The sensitivity of the VS-CAD analyzer was higher than that
of radiologists, but not statistically significant (p = 0.712). Specificity obtained by radiologists were
significantly higher than that of the VS-CAD AI (p = 0.003).

Table 2. The results and comparison of the vessel-suppressed computer-aided detection artificial
intelligence (VS-CAD AI) system and radiologists in differentiating malignant from benign nodules.

AI vs.
Radiologists

Malignant vs. Benign
Pathology Total

Malignant Benign
47 28 75

VS-CAD AI
Malignant 44 17 61

Benign 3 11 14

Radiologists Malignant 42 5 47
Benign 5 23 28

AI vs.
Radiologists Sensitivity Specificity

Positive
Predictive

Value

Negative
Predictive

Value
Accuracy

VS-CAD AI 93.6%
(82.5–98.7%)

39.3%
(21.5–59.4%)

72.1%
(65.6–77.9%)

78.6%
(52.8–92.3%)

73.3%
(61.9–82.9%)

Radiologists 89.4%
(76.1–96.0%)

82.1%
(62.4–93.2%)

89.4%
(76.1–96.0%)

82.1%
(62.4–93.2%)

86.7%
(76.4–93.1%)

p value 0.712 0.003 0.050 0.999 0.066

Percentages in parenthesis indicate proportions with 95% confidence interval.

Twenty-six (11 benign and 15 malignant) of the 75 nodules were <6 mm. Of these 26 lesions
which were <6 mm, 11 benign lesions (42.3%) included five IPNs that were solid, three fibrosis,
and three inflammatory processes that featured ground-glass opacities; six of the 11 benign lesions
were not marked by the VS-CAD AI analyzer. The 15 lung cancers (57.7%) comprised seven MIAs,
six adenocarcinomas, and two AISs, and all but one was marked by the VS-CAD AI analyzer. Of the
15 lung cancers, six were part-solid and nine featured ground-glass opacities.

2.3. Synchronous Multiple Primary Lung Cancers (SMPLCs)

Out of the 50 patients, nine (18%) of them (aged 43 to 60, mean 54.6; seven females and two males)
had a total of 21 SMPLCs (12 adenocarcinomas, six MIAs, and three AISs). Among these, 13 were
GGNs, seven were part-solid nodules and one was solid. Of the nine patients, six had two SMPLCs
each, and three had three SMPLCs each. The mean size of these nodules was 7.00 ± 2.35 mm.

3. Discussion

In this study, all pathologically proven lung nodules were well delineated on the VS images.
Only two (2.7%) of the 75 nodules were not detected in the initial interpretation of the LDCT images.
Lung cancer on CT images can be missed due to detection or interpretation errors. Failure to identify a
nodule is considered a detection error, whereas dismissing a potentially malignant nodule as a benign
finding that needs no further evaluation is considered an interpretation error. Interpretation errors
usually occur when the morphologic structure of the abnormality is similar in appearance to that
of a benign lesion, such as a scar, fibrosis, or cyst [20]. CAD systems are classified into two groups,
computer-aided-detection (CADe) and computer-aided-diagnosis (CADx) systems [20]. In order to
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obtain a systematically high-performance result from a CAD system, it is technically essential to apply
a prescreen function to and minimize destruction in computer analyses [26,27]. The first component
of the VS-CAD AI in this study was a specialized 3D convolutional-neural-network system that
predicted normal lung vascular structure, and the second component was a modular neural-network
system inherently possessing a feature-extraction mechanism, which classified regions on the basis
of their attenuation and other features. These regions were then measured for characterization [28].
Other CADx systems directly extract specific predefined characteristics from the images and use a
classifier to estimate the probability of malignancy [29]. Several investigators reported a wide range of
sensitivities using CAD, from 73% to 96.7%, with false-positive (FP) detection rates of 0.55 to 8.2 per
scan for detecting lung nodules [30–33]. The sensitivity of the nodule detection was 78.1% for a double
reading and 96.7% for CAD. A total of 69.7% of nodules undetected by readers were attached nodules,
among which 78.3% were vessel attached [30]. This suggests the significance of vessel suppression,
which is the goal of the first component of the AI system used in this study.

This study was motivated by the present system’s well-known analysis capabilities, with it being
the first FDA-approved system for the detection of all nodule types. Since most cancer opacities
inherently possess more features than benign opacities, the AI might have learned those cancer features,
thereby leading to a higher sensitivity in cancer detection. The results of this study showed that the
VS-CAD AI system may have potential for the analysis of malignant and benign lung nodules on
LDCT, although this capability deviates from its current intended use.

The sensitivity of the VS-CAD AI analyzer in detecting lung cancer or malignancies in this study
was 93.6%, which is slightly higher than the 89.5% reported in another study using an early version of
VS-CAD AI software [22]. In this study, the performance of radiologists in differentiating malignant
from benign nodules might have been biased and partially affected by the following scenarios:
first, hematogenous metastases that usually feature well defined solid nodules were excluded from
this study. Second, part-solid nodules have a high likelihood of malignancy [24], reported to be 78.1%
to 93.3% [34,35]. In our dataset, 90.1% of part-solid nodules were cancers. In addition, the use of the
VS-CAD AI system had the advantage of a 26% reduction in reading time and a 29% reduction of the
missing nodules in a lung cancer-screening study setting, though there was a false-positive detection
rate of 0.58 per scan (Table 3) [22].
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Table 3. Parameters and performance of three commercially available artificial intelligence (AI) systems for the detection of lung nodules on thoracic CT.

AI Software for
Screening Lung Cancer Study Data Source # of Cases

(with nodule)
# of Non-

nodule Cases
AI

Sensitivity
AI FP Rate
(per scan)

Evaluated
Nodule Size

Radiologists Baseline
Performance Remarks and References #

VS-CAD AI Selected cases from the NLST
CT arm 108 (179) 206

90%
(cancer)

82%
(nodule)

0.58 ≥0.5 mm 60.1% with 0.17 FP/scan
Vessel suppression prior to

nodule detection and
analysis [22]

σ-Discover
Smokers in Beijing and

Shenzhen met the inclusion
criteria like the NLST

314 (812) 32 86.2%–96.5%
(nodule) 1.53 ≥0.3 mm

and ≥0.5 mm
79.2–88% with
0.13 FP/scan

Vessel and artifacts were two
main causes of FPs in both
σ-Discover and after double

reading [36]

Syngo Lung CAD
Manager

Early Detection Research
Network – NYU study cohort

39
(134) 4 67%–66%

(nodule) 2.8 ≥0.3 mm and
≥0.5 mm

44–48% with
0.07 FP/scan

Majority of FPs accepted by
radiologists were vessels and

peribronchial findings [37]

FP = false-positive. VS-CAD AI = vessel-suppressed computer-aided detection artificial intelligence. # = Number. NLST = National Lung Screening Trial. NYU = New York University.
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The clinical efficacy and reliability of many CAD systems for the detection of lung nodules were
previously assessed. Jacobs et al. reported a sensitivity of 82% in detecting lung nodules by a CAD
system on 888 thoracic CT scans [38]. The study by Li et al. showed that a deep-learning-based CAD
system without vessel suppression increased the sensitivity of nodule detection from 77.5% to 84.3%
for nodules <5 mm, and from 88% to 96.5% for nodules ≥5 mm [36]. This deep-learning-based CAD
system also showed a higher detection rate than double reading regardless of the nodule size (86.2%
vs. 79.2%; p < 0.001) [36]. The false-positive nodule detection rates were in the range of 1.53 to 4 per
scan for several tested CAD systems [36–38]. In contrast, the VS-CAD AI system produced a very low
false-positive rate of 0.58 per scan [22]. Table 3 shows the parameters and summarized performance
results of several currently commercially available AI systems for the detection of lung nodules.

Among the 75 nodules, more part-solid nodules were proven to be malignant than benign
(90.9% vs. 9.1%), with statistical significance in multivariate analysis using logistic regression
(p = 0.001), a finding that was consistent with previous reports [7,8,34,35]. Since vessels involved in a
part-solid nodule could be effectively traced and suppressed by the VS-CAD AI system, more visible
true nodule characteristics result in a more accurate interpretation in clinical practice. This result also
indirectly reflects our assumption that the VS-CAD AI analyzer was trained to be more sensitive to
opacities with rich features, such as part-solid nodules possessing low- and high-frequency component
textures. This result could allow for the current system to supplant several other unsuccessful AI
systems, as a substantial number of their missed nodules (30%) were part-solid, as reported by
Jacobs et al. [38].

There are several limitations to our study. First, this study was based on a single center, and the
sample size was rather small. A larger cohort and prospective study are required to validate our results.
Second, the VS-CAD AI system was employed to evaluate 50 pathologically proven LDCT cases as a
laboratory study that does not represent regular clinical practice. Third, the AI module was not tested
in a variety of different patient populations. Lastly, the results and conclusions obtained in this study
were limited to an AI module provided by one vendor.

4. Materials and Methods

4.1. Study Population and Data Collection

This retrospective study was approved by the institutional review board (ethical code is:
201801886B0D001). During the period from November 2014 to August 2018, a total of 561 patients
that underwent CT-guided localization of their lung nodules had subsequent video-assisted thoracic
surgery and pathological examination. The indications of chest CT or causes of nodules detected in
the lungs of those 561 patients included LDCT health examination at one’s own expense (n = 207),
malignant neoplasms of other organs (n = 127), chief complaints other than respiratory symptoms
(n = 103), symptoms or signs of respiratory diseases (n = 68), and follow-up CT of lung cancer after
treatment (n = 56). For data collection in this study, exclusion criteria were any one of the following:
subjects having (1) a previous history of thoracic surgery and/or (2) lung nodules >2 cm in maximal
diameter or a final pathological diagnosis with metastases (or inconclusive). Ultimately, 50 patients
with 75 lung nodules ≤2 cm met all the following inclusion criteria: (1) the LDCT was available within
3 months before surgical excision of the lung nodule; (2) the LDCT was performed from the lung
apex to the lung base with a slice thickness and intervals of ≤2.5 mm; and (3) each lung nodule was
pathologically proven. Of the 50 patients, 18 were males, and ages ranged from 37 to 80 (mean 55.8)
years. Any patient having a malignant nodule was designated as a malignant case.

4.2. CT Techniques and Image Acquisition

All CT images were obtained using a helical (1) Bright Speed 16-row CT scanner (GE Medical
Systems, Milwaukee, Wisconsin) at Linkou Chang Gung Memorial Hospital with detector width of
0.625 mm, (2) a 320-row detector CT scanner (Aquilion ONE, Toshiba Medical Systems, Otawara, Japan)
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at Linkou and Taoyuan Chang Gung Memorial Hospitals, or (3) a 64-detector CT scanner (Aquilion
CXL 128 slices, Toshiba Medical Systems, Otawara, Japan) at Taipei Chang Gung Memorial Hospital.
Both the Aquilion ONE and Aquilion CXL systems had a gantry-rotation time of 0.35 s, and each
detector’s width was 0.5 mm. CT images were obtained with the scanning parameters for LDCT
suggested by the American College of Radiology and the Society of Thoracic Radiology [39]: 120 kVp,
20–40 mAs, pitch 0.8 to 1.5, field of view (FOV) from the lung apex to the costophrenic angle in lateral
scout view, and an image-slice thickness ≤2.5 mm without a gap, a soft or intermediate reconstruction
kernel, and transverse images displayed in the lung window (1500/−500) and mediastinal window
(500/50). The mean radiation dose or CT dose index volume (CTDIvol) of each scan was 2.19± 0.66 mGy,
which complied with the guideline of less than 3 mGy for standard-sized subjects weighing up to 160 lb
and 5 feet 7 inches in height. The locations of the lung nodules were identified, assessed, and reported
if present in a lung window by the radiologist.

4.3. Retrospective Study with Laboratory Setting

The VS-CAD AI system was trained with a large number of nodules as for any lung nodule
AI system. Its training also included lung cancer regions and their digitally transformed versions,
spanning a large range of size, attenuation, and texture. The second component of the VS-CAD AI
system was a modular system of neural networks inherently possessing a feature-mapping analyzer
that focused on stratifying nodules without the interference of vessels [28].

All 50 CT cases were processed by the VS-CAD AI system to generate 50 sets of results. Each set
in the study result consisted of (1) another set of the same CT images whose vessels were suppressed
and (2) a tabulated analysis summary if a cancer/nodule was detected. These two parts of the results
were produced by two separate functions of the VS-CAD AI system, as described below.

4.3.1. Vessel-Suppressed CT as VS-CAD AI Postprocessing

The first part of the VS-CAD AI system was developed to suppress 3D vessel structures in
thoracic CT. Through a combination of AI and nodule simulation, the VS-CAD AI system was
capable of separating vascular structures from lung parenchyma. This way, lung abnormalities left
on vessel-suppressed CT images are much easier to identify by radiologists and computer-detection
processes such as the CAD analyzer provided by the VS-CAD AI system.

4.3.2. Detection and Output of CAD AI Analyzer

When the second part of the AI system determined that a region of interest (ROI) contained a
nodule, it created a mark with an attached analysis summary to both the original and vessel-suppressed
CT series. Specifically, the marked ROI, as well as its average density, diameter, and volume, are shown
on the system’s tabulated summary as an actionable nodule (Figures 1 and 2). This is stated in its
intended use (as opposed to a nonactionable ROI; Figures 3 and 4). A maximal total of 20 nodules
(5 lesions on a page) could be prompted by the analysis summary of the VS-CAD AI system.

4.4. Lung-Nodule Characteristics and Images Interpretation

The average diameter of each nodule (measured manually and by the AI analyzer) was recorded.
The location of each nodule was categorized as either peripheral (located in the pulmonary parenchyma
within 2 cm from the pleura) or central. Nodules were classified as solid (Figures 2 and 5A), part-solid
(Figures 1 and 5B), or ground-glass (Figures 3, 4 and 5C,D). Nodules on LDCT images were classified as
either malignant or benign by the two radiologists (having 38 and 25 years of experience in thoracic-image
interpretation) in consensus, who were blinded to the pathological results. Since metastatic nodules
were excluded from this study, the solid, round, or triangular nodules with a well-defined and
smooth outline were tentatively designated as benign (Figure 2), and solid nodules with a lobulated or
speculated margin were classified as malignant (Figure 5B) [40]. A part-solid nodule was classified as
malignant [24,34,35,40,41] (Figures 1 and 5B) unless it was associated with pneumonitis. A GGN was
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classified as malignant when it was associated with any or the combination of the following features:
lobulation, speculation, spine-like process, margin with coarse interface, plural indentation, vascular
convergence, bubbly appearance, or air-containing space (Figures 4 and 5C,D) [40–42].

Cancers 2020, 12, x 10 of 13 

 

nodules with a well-defined and smooth outline were tentatively designated as benign (Figure 2), 

and solid nodules with a lobulated or speculated margin were classified as malignant (Figure 5B) 

[40]. A part-solid nodule was classified as malignant [24,34,35,40,41] (Figures 1 and 5B) unless it was 

associated with pneumonitis. A GGN was classified as malignant when it was associated with any or 

the combination of the following features: lobulation, speculation, spine-like process, margin with 

coarse interface, plural indentation, vascular convergence, bubbly appearance, or air-containing 

space (Figures 4 and 5C,D) [40–42]. 

 

Figure 5. (A) A 1.8 cm invasive adenocarcinoma in the right lower lobe featuring a solid nodule with 

speculation. (B) An indistinct 8.2 mm part-solid nodule with speculation in the right lower lobe due 

to adenocarcinoma in situ. (C) A 1.8 cm speculated ground glass nodule in the left upper lobe due to 

lepidic predominant adenocarcinoma. (D) A vessel-suppressed image shows a 1.3 cm ground glass 

nodule due to lepidic predominant adenocarcinoma in the left upper lobe which is characterized by 

indistinct margin, lobulation and speculation. 

4.5. Statistical Analysis 

All the continuous variables were expressed as the means ± standard deviation and compared 

using an independent two-sample t-test. Categorical variables were expressed as numbers and 

percentages, and were analyzed by a chi-squared or Fisher’s exact test when appropriate. A Pearson 

correlation coefficient test was performed to analyze the relationship between the nodule diameters 

obtained by the manual measurements and by the AI. Univariate and multivariate analyses by 

logistic regression were performed to analyze nodule types, malignant or benign. 

The malignant and benign nodules were designated as positive and negative results, 

respectively. The corresponding results of the AI in differentiating malignant from benign lesions 

were assessed (although deviating from the VS-ACD, AI’s current intended use) and tabulated as 

true-positive, true-negative, false-positive, or false-negative. Sensitivity, specificity, positive 

predictive values, negative predictive values, and accuracy were calculated. A p value of < 0.05 was 

considered statistically significant for all evaluations. Statistical analysis was performed with SPSS 

20.0 software for Windows (SPSS, Inc., Chicago, IL, USA). 

5. Conclusions 

Figure 5. (A) A 1.8 cm invasive adenocarcinoma in the right lower lobe featuring a solid nodule with
speculation. (B) An indistinct 8.2 mm part-solid nodule with speculation in the right lower lobe due to
adenocarcinoma in situ. (C) A 1.8 cm speculated ground glass nodule in the left upper lobe due to
lepidic predominant adenocarcinoma. (D) A vessel-suppressed image shows a 1.3 cm ground glass
nodule due to lepidic predominant adenocarcinoma in the left upper lobe which is characterized by
indistinct margin, lobulation and speculation.

4.5. Statistical Analysis

All the continuous variables were expressed as the means ± standard deviation and compared
using an independent two-sample t-test. Categorical variables were expressed as numbers and
percentages, and were analyzed by a chi-squared or Fisher’s exact test when appropriate. A Pearson
correlation coefficient test was performed to analyze the relationship between the nodule diameters
obtained by the manual measurements and by the AI. Univariate and multivariate analyses by logistic
regression were performed to analyze nodule types, malignant or benign.

The malignant and benign nodules were designated as positive and negative results, respectively.
The corresponding results of the AI in differentiating malignant from benign lesions were assessed
(although deviating from the VS-ACD, AI’s current intended use) and tabulated as true-positive,
true-negative, false-positive, or false-negative. Sensitivity, specificity, positive predictive values, negative
predictive values, and accuracy were calculated. A p value of <0.05 was considered statistically significant
for all evaluations. Statistical analysis was performed with SPSS 20.0 software for Windows (SPSS, Inc.,
Chicago, IL, USA).

5. Conclusions

The first component of the VS-CAD AI system delineated all pathologically proven lung nodules.
The second component identified pathologically proven cancers with high sensitivity. In the initial
interpretation of the LDCT images, very few pathologically proven nodules were not detected by
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radiologists. The study showed that the VS-CAD AI seems to have a high sensitivity in identifying
malignant lung nodules and it also characterizes quite a few benign nodules. Furthermore, there was
no significant difference in the sensitivity between the VS-CAD AI system and radiologists. However,
the radiologists had a significantly better performance than that of the VS-CAD AI in specificity.
A larger cohort and prospective study will be required to validate the performance of the vessel
suppression-based AI analyzer for lung cancer detection.
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