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Abstract: Background: Prostate cancer (PCa) influences its surrounding habitat, which tends to 

manifest as different phenotypic appearances on magnetic resonance imaging (MRI). This region 

surrounding the PCa lesion, or the peri-tumoral region, may encode useful information that can 

complement intra-tumoral information to enable better risk stratification. Purpose: To evaluate the 

role of peri-tumoral radiomic features on bi-parametric MRI (T2-weighted and Diffusion-weighted) 

to distinguish PCa risk categories as defined by D’Amico Risk Classification System. Materials and 

Methods: We studied a retrospective, HIPAA-compliant, 4-institution cohort of 231 PCa patients (n 

= 301 lesions) who underwent 3T multi-parametric MRI prior to biopsy. PCa regions of interest 

(ROIs) were delineated on MRI by experienced radiologists following which peri-tumoral ROIs 

were defined. Radiomic features were extracted within the intra- and peri-tumoral ROIs. Radiomic 

features differentiating low-risk from: (1) high-risk (L-vs.-H), and (2) (intermediate- and high-risk 

(L-vs.-I + H)) lesions were identified. Using a multi-institutional training cohort of 151 lesions (D1, 

N = 116 patients), machine learning classifiers were trained using peri- and intra-tumoral features 

individually and in combination. The remaining 150 lesions (D2, N = 115 patients) were used for 

independent hold-out validation and were evaluated using Receiver Operating Characteristic 
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(ROC) analysis and compared with PI-RADS v2 scores. Results: Validation on D2 using peri-tumoral 

radiomics alone resulted in areas under the ROC curve (AUCs) of 0.84 and 0.73 for the L-vs.-H and 

L-vs.-I + H classifications, respectively. The best combination of intra- and peri-tumoral features 

resulted in AUCs of 0.87 and 0.75 for the L-vs.-H and L-vs.-I + H classifications, respectively. This 

combination improved the risk stratification results by 3–6% compared to intra-tumoral features 

alone. Our radiomics-based model resulted in a 53% accuracy in differentiating L-vs.-H compared 

to PI-RADS v2 (48%), on the validation set. Conclusion: Our findings suggest that peri-tumoral 

radiomic features derived from prostate bi-parametric MRI add independent predictive value to 

intra-tumoral radiomic features for PCa risk assessment. 

Keywords: radiomics; prostate cancer; MRI; artificial intelligence; PIRADS; machine learning; 

Peritumoral region 

 

1. Introduction  

Prostate cancer (PCa) is the second most common cancer in American men with an estimated 

191,930 new diagnoses in 2020 [1]. Treatment strategy for PCa patients is determined based on their risk 

of progression. The D’Amico Risk Classification System (DRCS) is widely used to assess PCa risk of 

progression based on clinical parameters (initial serum prostate-specific antigen (PSA), T-stage from 

digital rectal examination (DRE), and biopsy Gleason Score) and is often one of the key criteria in 

identifying patients who might benefit from radical therapy versus active surveillance [2]. 

Multi-parametric magnetic resonance imaging (mpMRI) is being used more frequently in PCa 

detection and characterization [3–5]. The Prostate Imaging and Reporting Data Standard (PI-RADS) 

scheme has been established to streamline the process of identifying clinically significant PCa [6,7]. 

However, PI-RADS evaluations have been found to significantly vary depending on the radiologist’s 

experience where inter-reader disagreement is often observed [7,8].  

Radiomics [9,10], or the process of computationally extracting features from radiographic images 

for quantitatively characterizing disease patterns, has been used for PCa risk stratification [11], 

predicting Gleason score (GS) of the lesion [12], and treatment outcome [13]. These approaches typically 

involve textural analysis of the PCa lesion (intra-tumoral (IT)) [14]. Bi-parametric MRI (T2-weighted 

(T2W) and diffusion-weighted (DWI) MRI) has been shown to be advantageous compared to mpMRI 

[15] and is also being used in radiomic analysis with promising results [16,17]. 

Recently, there has been increasing interest in evaluating radiomic patterns of the region 

surrounding the visible tumor (peri-tumoral (PT)) and within the tumor habitat. For instance, radiomic 

analysis of the PT regions around lung nodules was shown to distinguish granulomas from 

adenocarcinomas on chest CT scans [18] and also found to be predictive of response to chemotherapy 

for lung [19] and breast cancers [20].  

PCa is known to influence its surrounding habitat [16], resulting in areas with variable perfusion 

and permeability [21]. While evidence regarding the field effect of PCa on its habitat exists [16,22,23], 

surprisingly, there has been no work on the use of radiomics to characterize the peri-tumoral region 

surrounding MRI-visible lesions from the perspective of PCa risk stratification. 

In this work, we evaluated the role of PT radiomics associated with heterogeneity patterns around 

the tumor as predictors of PCa risk categories defined by DRCS (1) independently, and (2) when 

combined with IT radiomics, using bi-parametric MRI (bpMRI). This work also represents one of the 

few that explicitly evaluates the role of radiomics for PCa risk stratification in a multi-site setting. 
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2. Results  

2.1. Experiment 1: Using bpmri-Derived Peri-Tumoral Radiomic Features to Stratify PCa Risk as Defined by 

DRCS 

In this experiment, we evaluate the capability of IT and PT features individually in stratifying 

PCa risk as defined by DRCS. Table 1 lists the top 10 ranked radiomic features derived from 

prostate bpMRI selected by MRMR using the training cohort, D1, to stratify PCa risk in the Low-

versus-High (L-vs.-H), and Low-versus-All (L-vs.-I + H) settings. First-order statistics, Gabor, and 

Haralick IT features; Gabor, Laws’ energy, and Haralick PT features from the 3–6 mm and 9–12 mm 

rings were found to be the most discriminating features. Figure 1 illustrates examples of high-risk 

and low-risk PCa lesions with differentially expressed PT radiomic features on T2W MRI. 

For IT features, Receiver Operating Characteristic (ROC) analysis on the training cohort D1 

yielded AUCs of 0.74, 0.75, and 0.82 for T2W, ADC, and T2W + ADC, respectively, in the L-vs.-I 

+ H setting. In the L-vs.-H setting, AUCs were 0.79, 0.80, and 0.87, for T2W, ADC, and T2W + 

ADC, respectively. For the validation cohort D2, in the L-vs.-I + H setting, ROC analysis resulted 

in AUCs of 0.69, 0.71, and 0.75 for T2W, ADC, and T2W + ADC, respectively. Similarly, in the L-

vs.-H setting, AUCs were 0.71, 0.79, and 0.81 for T2W and ADC, and T2W + ADC, respectively.  

Figure 2 illustrates the ROC analysis results for PT features. The training cohort D1 yielded 

AUCs of 0.72, 0.70, and 0.81 for T2W, ADC, and T2W + ADC, respectively, in the L-vs.-I + H 

setting. In the L-vs.-H setting, AUCs were 0.73, 0.71, and 0.87, for T2W, ADC, and T2W + ADC, 

respectively. For the validation cohort D2, in the L-vs.-I + H setting, ROC analysis resulted in 

AUCs of 0.67, 0.68, and 0.73 for T2W, ADC, and T2W + ADC, respectively. Similarly, in the L-

vs.-H setting, AUCs were 0.71, 0.76, and 0.84 for T2W and ADC, and T2W + ADC, respectively.  

 

Figure 1. T2W MRI of a high risk and a low risk lesions (left) with their corresponding CoLlAGe 

entropy heat maps overlaid on the peri-tumoral (0–12 mm) regions (right, inset). 

(a) High-Risk Lesion

(b) Low-Risk Lesion

1

0
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Figure 2. Receiver Operating Characteristic (ROC) analysis of Radiomic features derived from bi-

parametric MRI for training (left, n = 151) and validation (right, n = 150) cohorts. AUCs increase 

significantly when intra-tumoral features are complemented with peri-tumoral features. AUCs of L-

vs.-H are generally higher than those of L-vs.-I + H settings. 

Table 1. Results: The top 10 features from bi-parametric MRI for (a) Experiment 1: Intra-tumoral features 

alone, (b) Experiment 2: Peri-tumoral features alone, (c) Experiment 3: Intra-tumoral and Peri-tumoral 

features; in Low-versus-High, and Low-versus-(Intermediate + High) settings (p-values < 0.01). 

 Low-vs.-(Intermediate + High) Low-vs.-High 

Experiment 1 (Intra-Tumoral 

features) 

Feature Name (Parameters) Protocol 
Feature Name 

(Parameters) 
Protocol 

Mean (1) ADC Gabor (3, θ = 2.9 rad) T2W 

Gabor (3, θ = 0.0 rad) T2W Mean (3) T2W 

Mean (2) ADC Haralick (Sum of Average) ADC 

Haralick (Sum of Average) ADC Mean (1) ADC 

Variance (2) ADC Gabor (5, θ = 0.0 rad) ADC 

Gabor (λ = 5, θ = 0.0 rad) ADC Gabor (3, θ = 0.1 rad) ADC 

Gabor (λ = 4, θ = 0.0) ADC Gabor (3, θ = 0.7 rad) T2W 

Gabor (λ = 3, θ = 0.1 rad) ADC Gabor (3, θ = 1.8 rad) ADC 

Gabor (λ = 3, θ = 1.8 rad) T2W Gabor (3, θ = 2.4 rad) ADC 

Gabor (λ = 3, θ = 2.4 rad) ADC Mean (2) ADC 

Experiment 2 (Peri-Tumoral 

features) 

Haralick (Entropy difference) 

(3–6 mm) 
T2W 

Haralick (Info measure 1) 

(3–6 mm) 
T2W 

Haralick (Momentum 

difference) (6–9 mm) 
ADC 

Haralick (Sum of Entropy) 

(3–6 mm) 
ADC 

Gabor (lambda = 3, theta = 0 

rad) (9–12 mm) 
T2W 

Haralick (Correlation) (3–6 

mm) 
ADC 

Haralick (Sum of Entropy) (3–6 

mm) 
T2W Laws 9 (9–12 mm) ADC 

Haralick (Entropy difference) 

(3–6 mm) 
ADC Laws (12) (3–6 mm) T2W 

Haralick (Correlation) (3–6 

mm) 
ADC 

Haralick (Info measure 2) 

(3–6 mm) 
T2W 

Haralick (Entropy difference) 

(6–9 mm) 
ADC 

Haralick (Entropy) (3–6 

mm) 
ADC 

Gabor (λ = 3, θ = 0 rad) (6–9 

mm) 
ADC Laws (11) (9–12 mm) ADC 

Haralick (Info measure 2) (9–12 

mm) 
ADC Laws (4) (9–12 mm) ADC 

Haralick (Entropy difference) 

(6–9 mm) 
T2W Haralick (Energy) ADC 

Experiment 3 (Intra- and Peri-

Tumoral features) 

Laws (15) T2W 
Gabor (6 Hz, 2.0 rad) (3–6 

mm) 
T2W 

Canny T2W 
Gabor (6 Hz, 2.8 rad) (3–6 

mm) 
T2W 

Collage (Entropy) (6–9 mm) ADC 
Haralick (Momentum 

Sum) 
ADC 

Laws (11) ADC Gabor (6 Hz, 1.8 rad) ADC 
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Haralick (Entropy) ADC Mean (9–12 mm) T2W 

Collage ADC Gabor (2.5 Hz, 0.4 rad) T2W 

Haralick (Info measure 1) (3–6 

mm) 
T2W Gabor (3 Hz, 0.4 rad) T2W 

Laws (17) (3–6 mm) ADC Gabor (3.5 Hz, 0.4 rad) T2W 

Haralick (Info measure 2) T2W Gabor (5 Hz, 1.6 rad) ADC 

Haralick (Info measure 2) ADC Gabor (6 Hz, 1.6 rad) ADC 

2.2. Experiment 2: Combining bpmri-Derived IT and PT Radiomics to Stratify PCa Risk as Defined by 

DRCS 

The goal of this experiment was to evaluate the effect of combining IT and PT features in 

stratifying PCa risk. The best combination of IT and PT features was identified by MRMR and used 

to train a QDA classifier on D1 and then evaluated via ROC analysis on D2.  

For D1, the best combination of IT and PT bpMRI features resulted in AUCs of 0.85 and 0.95 for 

the L-vs.-I + H and L-vs.-H classifications, respectively. Similarly, for D2, AUCs were 0.75 and 0.87 

for the L-vs.-I + H and L-vs.-H settings, respectively.  

Table 1 lists the top combined (IT and PT) radiomic features found to be most associated with 

PCa risk. A detailed list of the top performing radiomic features from the T2W and ADC 

sequences for intra-tumoral and individual peri-tumoral rings is provided in the supplementary 

material (Tables S1,S2). 

2.3. Experiment 3: Comparing Radiomics-Based Risk Stratification to PI-RADS 

The goal of this experiment was to compare radiomics to PI-RADS v2 for PCa risk stratification. On 

bpMRI, based on PI-RADS scores, PCa lesions within D2 (n = 150 lesion, N = 115 patients) were partitioned 

into two groups of low (PI-RADS 1, 2) and high (PI-RADS 3–5) likelihood of clinically significant PCa. 

Out of the 150 lesions evaluated, PI-RADS correctly identified 41 high-risk and 31 low-risk lesions 

(i.e., accuracy of 77.4% and 67.4%, respectively), while the radiomic model identified 37 high-risk and 42 

low-risk lesions (i.e., accuracy of 69.8% and 91.3%, respectively) (Table 2). 

Table 2. Risk stratification results of PCa lesions for PI-RADS v2 and radiomics, based on D’Amico 

Risk Classification System (DRCS) criteria (Low-versus-(Intermediate + High) setting). 

D’Amico Classification 
PI-RADS v2 

Total 
Combined Radiomic Features (IT + PT) 

High (3–5) Low (1–2) High Low 

High-Risk 41 12 53 37 16 

Intermediate-Risk 33 18 51 28 23 

Low-Risk 15 31 46 4 42 

Total 89 61 150 69 81 

3. Discussion  

Since current standard-of-care for prostate cancer (PCa) characterization and monitoring 

continues to require frequent biopsies, there has been increasing interest in finding new ways for 

reliable non-invasive estimation of PCa risk [3–5], especially using MRI-derived radiomic texture 

analysis [11,12]. While a number of radiomic approaches have been previously presented for non-

invasive risk characterization [9,10] and for predicting Gleason and tumor stage of PCa [12,13], these 

have typically employed only intra-tumoral (IT) radiomic texture features.  

In this study, we evaluated the role of peri-tumoral (PT) radiomic texture features derived from 

bpMRI for PCa risk stratification. We demonstrated the value of IT and PT radiomics independently 

and when combined together for PCa risk stratification as defined by D’Amico Risk Classification 

System (DRCS). In concordance with previous studies [18–20], PT features were independently 

associated with PCa risk, however, we observed that they significantly improved the machine 

learning model’s predictive power when combined with IT features. Specifically, Haralick (3–6, 6–9 

mm) and CoLlAGe texture features (6–9 mm) were observed to be over- and under-expressed, 

respectively, in high-risk compared to low- and intermediate-risk lesions.  
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When machine learning models were constructed based on radiomics from either T2W or ADC 

alone, PT features appeared to be generally more important on T2W MRI compared to ADC maps. 

ADC maps are derived from DWI which reflect mobility of water molecules around lesions, which is 

impacted by various factors such as cell density, membrane integrity, and microstructure 

heterogeneity. This is not the case with T2W MRI, which is more descriptive of the lesion anatomy 

and its surroundings. 

In comparing PI-RADS v2 scores against predictions obtained from our combined IT and PT 

radiomic models, high-risk lesions were found to be associated with a high PI-RADS score, however 

the associations with low-risk lesions were not as clear. Interestingly, the combined IT + PT radiomic 

models appeared to perform better in identifying low-risk lesions, while performing comparable to 

PI-RADS in identifying high-risk lesions. These results are in alignment with previous studies where 

Chen et al. [24] found radiomics-based models outperforming PI-RADS for PCa detection and 

characterization. Similarly, Algohary et al. [17] found that PI-RADS did not always appear to 

corroborate with biopsy findings and IT-based radiomic models were found to outperform PI-RADS 

for identifying both clinically significant and non-significant PCa.  

Our study was unique from some of these previously published PCa radiomic studies [17,24] in 

the following few ways. Firstly, this was the first study to demonstrate the added-value of PT 

radiomics when combined with IT radiomics for PCa risk stratification. Secondly, this is one of the 

few studies [14,25] to evaluate the role of radiomics from bpMRI across multiple sites (four sites in 

this study), most previous studies have been limited to a single site and thus have not had to deal 

with the issue of variance in acquisition parameters.  

A preliminary proof-of-concept experiment exploring the tissue compartments of epithelium, 

lumen and stroma within intra- and peri-tumoral regions on whole mount histopathology showed 

higher density of epithelium within and surrounding the high-risk PCa lesion. In Figure 3, we observe 

that radiomic features are overexpressed within the high-risk lesion which may reflect restricted 

diffusion due to collapsed gland structure. In addition, within the peri-tumoral region of high-risk 

lesions, a relatively higher concentration of epithelial cells and lymphocytes (blue) were identified, in 

turn suggesting an immune response to cancer. This may be reflected in terms of higher heterogeneity 

observed on T2W MRI which is reflected in terms of overexpression of peri-tumoral radiomic features 

compared to low-risk lesions. (Figure 3). These findings also appear to corroborate with previous 

studies where the density of stromal macrophages around the tumor was shown to be associated with 

likelihood of metastasis [26]. We acknowledge that these are very preliminary findings on a small cohort 

and further studies on larger datasets are warranted to validate these initial findings. However, 

differences observed in tissue pathology being reflected in peri-tumoral radiomics suggests that 

potentially discriminating information might exist in the peri-tumoral region on bpMRI. 

Our study did have its limitations. First, PI-RADS 3 cases were included as part of the high PI-

RADS group. This was done because there is no consensus on interpretation of these intermediate 

cases and in order to evaluate the ability of the radiomic features to distinguish the truly low-risk-

low PI-RADS cases. A second limitation of this study was the small validation cohort size (n = 115 

patients). Also, a small number of patients (n = 3) was used to explore association of PT radiomic 

features with histopathologic attribute. Third, inter-reader variations in delineation of PCa lesions 

and its sensitivity to machine learning was not evaluated. However, given the significant experience 

of radiologists and PI-RADS v2 guidelines [27], we expect this variation to be low and will be 

evaluating this in our future work. Fourth, for a high-risk patient, one of the lesions (in the case of 

multi-focal disease) could have been high-risk while the other would be low-risk. Unfortunately, we 

did not have that biopsy confirmation of every multi-focal lesion, only a per-patient level 

categorization of high-, intermediate- or low-risk disease. Future research directions may include 

analyzing intra and peri-tumoral radiomic features within respective zones (central zone (CZ), 

transition zone (TZ), peripheral zone (PZ)). Studies from our group [14,28] and others have 

established that the prostate cancer appearance is different between the PZ and TZ. Explicitly 

accounting for the geographical location of the tumor might allow for creation of zone-specific 

radiomic classifiers. In addition, another area for exploration would be the ability of the new radiomic 
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features to predict outcome, not just D’Amico risk criteria. Towards that end, we would need to 

ensure that we have long-term outcome information available for the patients, this information was 

not available for the cohort we considered in this study. 

  

Figure 3. Peri-tumoral and intra-tumoral regions of interest (ROIs) overlaid with representative 

radiomic features on T2W MRI showing differential expression between low (a) and high (b) D’Amico 

risk prostate cancer patients, along with corresponding whole mount histopathology (A) and (B). 

Gabor feature map within the lesion (c) and (d) and representative pathology from corresponding 

region (C and D) with epithelium (purple) , lumen (green) and stroma (pink) segmented. Similarly, 

Haralick (3–6 mm) (e) and (f), CoLlAGe (6–9 mm) (g) and (h) and Haralick (9–12 mm) (i) and (j) 

radiomic features within peri-tumoral annular rings within the prostate boundary (cyan). 

Representative peri-tumoral tissue compartments segmented on corresponding pathology are shown 

in (E–J). Quantitative feature values are provided in Supplementary Table S3. 

4. Materials and Methods 

Our study is HIPAA-compliant and IRB-approved, where a retrospective chart review with de-

identified data was used and no protected health information was needed. Thus, need for an 

informed consent from all patients was waived. 

4.1. Dataset Description 

Between January 2007 and December 2015, biopsy-confirmed PCa lesions of patients from 4 

independent institutions were retrospectively analyzed. Patients underwent 3-Tesla mpMRI scans 

and systematic 12-core TRUS-guided biopsies. Inclusion criteria included (a) availability of 
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histopathology reports, (b) availability of all parameters to estimate the D’Amico risk for each PCa 

lesion of patient, and (c) presence of a screening or diagnostic MRI scan in the axial view. Table 3 

illustrates the dataset and the number of lesions corresponding to each site.  

Table 3. Dataset description. 

Cohort Institution 1 Institution 2 Institution 3 Institution 4 

Number of Subjects 32 73 45 81 

Age (mean ± SD) 65.1 ± 6.4 62.6 ± 10.8 64.3 ± 5.6 68.5 ± 8.05 

PSA (mean ± SD) ng/ml 6.9 ± 5.8 5.9 ± 4.2 9.8 ± 6.3 8.08 ± 6.1 

Lesion size (mean ± SD) 

cm3 
1.10 ± 1.79 0.67 ± 0.82 1.02 ± 1.16 0.86 ± 0.66 

Gleason Scores (number 

of lesions) 

6(8), 7(8), 

8(11), 9(5)  

6(23), 7(8), 8(9), 

9(33) 

6(8), 7(11), 8(16), 

9(10) 

6(38), 7(24), 

8(13), 9(6) 

PI-RADS (mean ± SD) 4.19 ± 1.05 3.65 ± 1.06 3.59 ± 1.35 2.56 ± 1.59 

Scanner 

Manufacturer 
Philips 

Achieva 
Siemens Verio Siemens Verio Philips Achieva 

Coil type Body coil Endorectal coil Body coil Endorectal coil 

T2-Weighted MRI 

Field-of-view (mm2) 220 × 220 140 × 140 200 × 200 260 × 260 

Matrix size 444 × 332 384 × 384 320 × 320 256 × 256 

Diffusion-Weighted MRI 

Field-of-view (mm2) 180 × 180 260 × 186 260 × 260 260 × 260 

Matrix size 128 × 128 116 × 162 128 × 128 128 × 128 

b-values (s/mm2) 0, 1500 
0, 50, 1000, 1500, 

2000 

0, 50, 600, 1000, 

1400 
0, 400, 900, 1500 

To this cohort, we applied the following exclusion criteria: (1) scans with non-MRI-visible lesions 

(identified using histopathology reports), (2) patients who underwent MRI scans less than 6 weeks 

after biopsy in order to avoid hemorrhage artifacts in images. The final cohort comprised n = 301 

lesions from N = 231 patients (Figure 4). 

Additionally, for studying the association between PT radiomic features and histopathological 

attributes on whole mount histopathology, a preliminary proof-of-concept study with a subset of 3 

patients who underwent radical prostatectomy (Institution 3), one each belonging to low-, 

intermediate-, and high-risk DRCS categories, was performed. 
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Figure 4. Dataset description. A 231-case dataset leading to 301 prostate cancer lesions was divided 

into 2 groups. Lesions from Group 1 were used to train machine learning classifiers. Lesions from 

Group 2 were used for independent validation. 

4.2. Lesion Delineation 

Lesion regions of interest (ROIs) were delineated by expert radiologists at respective institutions 

(R1, R2, R3, R4: 7, 15, 15, and 25 years of experience in genitourinary radiology) on T2W MRI and 

Apparent Diffusion Coefficient (ADC) maps (derived from DWI) using 3D Slicer software v 4.10 

(Kitware Inc., Carrboro, NC, USA). To minimize bias, radiologists were only provided positive core 

locations from the biopsy reports without any information regarding the pathologic findings. 

Radiologists assigned PI-RADS v2 scores to individual lesions. The lesion segmentations were then 

subsequently used to derive 4 annular peri-tumoral rings of 3 mm each, out to a maximum distance 

of 12 mm from the lesion boundary within the prostate. This was done in a way that was consistent 

with previous studies analyzing the tumor environment [29–31].  

4.3. Pre-Processing 

Each axial image from T2W MRI and ADC maps was resampled to a uniform pixel size of 0.5 × 

0.5 mm2. Then, they were cropped to the lesion ROIs (with 2 mm padding) using the available 

prostate masks which were semi-automatically segmented by the radiologists. All the scans were 

interpolated to have 3 mm slice thickness to account for resolution differences during acquisition and 

were visually verified to ensure they occupy the same 3D space. Inherent scanner variability refers to 

the inherent drift between different MRI acquisitions, which causes image intensity values to lack 

tissue-specific meaning between studies. All scans were corrected for inherent scanner variability 

using a previously presented drift correction algorithm [32]. Studies acquired using an endo-rectal 

coil were bias-field-corrected using a previously published correction method [33]. 

4.4. Radiomic Feature Extraction 

A total of 150 two-dimensional (2D) radiomic texture features (including first-order statistics, 

statistical, gray-level co-occurrence, steerable Gabor, co-occurrence of local anisotropic gradient 
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orientations (CoLlAGe [34]), and Laws’ energy [35]) were extracted for from T2W images and ADC 

maps within each delineated PCa ROI (IT) and the peri-tumoral ROI (PT). A summary of the radiomic 

features and their significance in characterizing PCa is provided in Table 4. Feature extraction was 

performed in MATLAB (Mathworks, Inc., Natick, MA, USA).  

First-order statistics (mean, standard deviation, skewness, and kurtosis) of radiomic features 

were computed for the IT and PT ROIs and were normalized. In all, 300 IT radiomic features (150 

from each of T2W and ADC) and, similarly, 1200 features from 4 PT ROIs of 3-mm-radius increments 

were extracted (Figure 5).  

 

Figure 5. Flowchart illustrating our methodology. Bi-parametric MRI was retrospectively collected. 

Regions of interest were manually segmented in axial view to obtain intra-tumoral masks. Peri-

tumoral masks were automatically generated for varying distances (shown here at 0–12 mm) outside 

the tumor. Haralick, Laws energy, CoLlAGe and Gabor texture features were extracted from tumor 

slices. Next, Wilcoxon rank-sum test and minimum-redundancy-maximum-relevance (MRMR) were 

implemented to select the top 10 features to train quadratic discriminant analysis classifiers and 

validate results on an independent dataset (D2, n = 150 lesions, N = 115 patients). 

Table 4. Description of Radiomic features extracted. 

Feature Category Feature Type 
Number of Features Extracted 

(Total) 
Relevance to Prostate Cancer 

Signal Intensity 
T2w images, ADC 

maps 
1 × 2 (2) 

Cancers are usually hypo-intense 

on MRI 

First Order Statistics Mean, Median, Sobel 9 × 2 (18) Intensity variability 

Gabor 
Frequency, 

Orientation 
76 × 2 (152) Low-level oriented edges 

Gray-level co-

occurrence 
Haralick 3 × 13 × 2 (78) Structural heterogeneity 

Texture Energy Laws’ texture energy 25 × 2 (50) Appearance of ROI 

4.5. Association with Peri-Tumoral Histopathology 

Whole-mounted prostatectomy (WMP) specimens obtained from 3 patients belonging to each of 

low-, intermediate-, and high-risk categories were stained with hematoxylin and eosin (H&E), sliced, 

and digitized at 20× magnification. Correspondences between mpMRI and WMP were obtained based 

off anatomical landmarks. An experienced pathologist delineated PCa ROI’s on digitized WMP. PT ROIs 

were obtained on bpMRI and WMP by computing annular rings within the prostate extending beyond 

the tumor ROI as previously described. Deep learning-based tissue segmentation approaches [36] were 

used to segment tissue compartments (epithelium, lumen and stroma) within the PT ROIs on WMP.  

Step 1: Data collection

Step 2: Segmentation

Step 3: Feature Extraction

Intratumoral region

Peritumoral region

Intratumoral features

Peritumoral features

Step 4: Feature Selection

Step 5: Feature Validation
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4.6. Statistical Analysis 

Statistical analysis reported in our study was performed using MATLAB R2020A. The 

minimum-redundancy-maximum-relevance (MRMR) [37] feature selection algorithm was used to 

identify and rank order the top 10 radiomic features that differentiate low-risk from high-risk and 

from all lesions within the training set, D1, with an unadjusted p-value < 0.01 (using two-sided 

Wilcoxon rank sum tests) indicating statistical significance. This was done to avoid the curse of 

dimensionality, an issue where the number of features exceeds the number of patient studies, 

resulting in overfitting of the classification model. 

Based on DRCS, lesions were categorized into 3 risk groups: low-, intermediate, and high-risk. 

The multi-institutional patient cohort was divided into two subsets: (1) training (D1, n = 151 lesions, 

N = 116 patients) and (2) independent hold-out validation (D2, n = 150 lesions, N = 115 patients). 

A Quadratic Discriminant Analysis (QDA) machine-learning classifier in conjunction with 

feature selection was trained using D1 with a 100-run, 3-fold cross-validation (D1 was split into 3 

random subsets, 2 were used for training and one for testing, the entire training-testing process was 

repeated 100 times), to distinguish the DRCS risk categories. The trained classifiers were validated 

using D2 in terms of area under the receiver operating characteristics curve (AUC). Multi-lesion cases 

were constrained to only be within one subset, i.e., all lesions from a single patient were strictly either 

used for training or validation but never for both.  

5. Conclusions 

In this multi-institutional study, we demonstrated that PT features are associated with a high 

degree of risk of PCa lesions on bpMRI, especially on T2W MRI. With additional independent 

validation, the combination of PT + IT radiomic features on prostate bpMRI could allow for non-

invasive risk stratification and patient selection for active surveillance.  
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