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Abstract: Lung cancer is one of the main causes of cancer-related mortality worldwide. Over the 

years, different therapeutic modalities have been adopted depending on tumor stage and patient 

characteristics, such as surgery, radiotherapy (RT), and chemotherapy. Recently, with the 

development of immune-checkpoint inhibitors (ICI), the treatment of metastatic and locally 

advanced non-small cell lung cancer (NSCLC) has experienced a revolution that has resulted in a 

significant improvement in overall survival with an enhanced toxicity profile. Despite this paradigm 

shift, most patients present some kind of resistance to ICI. In this setting, current research is shifting 

towards the integration of multiple therapies, with RT and ICI being one of the most promising based 

on the potential immunostimulatory synergy of this combination. This review gives an overview of 

the evolution and current state of the combination of RT and ICI and provides evidence-based data 

that can improve patient selection. The combination in lung cancer is a safe therapeutic approach that 

improves local control and progression-free survival, and it has the potential to unleash abscopal 

responses. Additionally, this treatment strategy seems to be able to re-sensitize select patients that 

have reached a state of resistance to ICI, further enabling the continuation of systemic therapy. 

Keywords: lung cancer; radiotherapy; immunotherapy; immune-checkpoint inhibitors; abscopal 
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1. Introduction 

Lung cancer is one of the main causes of cancer-related mortality worldwide. The most frequent 

histological subtype, with up to 84% of cases, is non-small cell lung cancer (NSCLC) [1]. With the 

historically available multimodal treatments, the 5-year survival rate for metastatic patients has been 

no higher than 5% [2–4]. 

The technological advances of radiotherapy (RT) have allowed for the administration of high 

doses of radiation with great precision and low rates of toxicity. This was first evidenced with the use 

of Stereotactic Ablative Radiotherapy (SABR) in early stage inoperable patients, which achieved 

comparable results to surgery in terms of local control (LC). Even with these positive results, about 

15–20% of these patients present distant failure after two years [5]. This data reinforces the idea that 

advances in this setting must not come from the intensification of current therapies but through the 

integration of new treatments based on the biology of the tumor. 

The introduction of immune checkpoint inhibitors (ICI) has been a paradigm shift in the 

standard of care (SoC) for lung cancer, mainly in NSCLC [6–8]. Despite the good outcomes achieved 

with ICI, most lung cancer patients experience primary resistance to immunotherapy, which is 

currently the most critical challenge in this setting. Moreover, the development of secondary resistances 

in initially responding patients is also a relevant problem. In this regard, there is growing evidence that 

RT is a key contributor to antitumor response, which supports the idea that the immunostimulatory 

effects of RT can be exploited in order to augment the systemic response to ICI [9]. 

This review considers the evolution of the use of RT in combination with ICI in lung cancer from 

its beginning and up to contemporary practice. The aim was also to provide information that can 

improve patient selection in order to maximize the benefit of this treatment approach. 

2. The rationale for the Use of RT 

RT has a key role in the treatment of lung cancer in all its stages [10]. In Europe, over 60% of 

NSCLC patients have advanced disease at diagnosis, a majority of whom are treated with 

chemotherapy (CT) and palliative support exclusively [11]. In this regard, the use of palliative RT has 

been traditionally based on providing symptomatic relief in order to improve quality of life [12]. 

However, about 20–50% of stage IV patients present a limited number or metastases (what is 

commonly known as oligometastatic state) [13,14]. In this setting, the management of these patients 

includes local ablative therapies, such as SABR. Several studies, mostly retrospective, have suggested 

that administering aggressive local treatments to all metastatic lesions improve both progression-free 

survival (PFS) and overall survival (OS). This retrospective data has been reinforced through two 

randomized phase II trials. Gomez et al. [15] randomized stage IV NSCLC patients with no 

progression after 3 months of first-line therapy to receive local consolidative therapy (RT or surgery) 

to 3 or fewer metastases versus observation/maintenance treatment. OS was 41.2 months in the 

experimental arm versus 17 in the control. Similar outcomes were reported by Palma et al. in the SABR-

COMET trial [16]. Ninety-nine patients were analyzed, 33% of which were assigned to the control group 

(who received SoC treatment) and 67% to the SABR group (SABR to all known metastatic sites). With 

a median follow-up of 51 months, median OS was 28 months in the control group vs. 50 months in the 

SABR group. As a follow-up to that study, a phase III trial (SABR-COMET-10) evaluating the impact of 

SABR in subjects with 4–10 metastatic sites is currently ongoing. The results of the SABR-COMET trial 

emphasize the value of SABR in selected stage IV lung cancer patients, and its follow-up study might 

shed some light on the true potential of SABR in the metastatic setting. 

In locally advanced disease, RT associated to CT is the SoC for patients with inoperable or 

unresectable stage III disease [3]. A meta-analysis of several studies evaluating the combination of 

RT and platinum-based CT showed improved OS when these were administrated concurrently 

compared with a sequential regime [17]. 

Lastly, in early stages, SABR is the SoC for medically inoperable patients. Overall, SABR is an 

effective treatment in this setting, with LC rates of 90–95% (comparable to lobectomy) [2]. 
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3. Immunotherapy in Lung Cancer 

Recent progress in the understanding of the crosstalk that occurs between immune cells and 

tumor cells has led to the identification of potential targets to control tumor growth. Drugs targeting 

immune checkpoints of this interaction are monoclonal antibodies known as ICI and have become a 

cornerstone in NSCLC. ICI target two major receptors. Firstly, cytotoxic T lymphocyte-associated 

antigen-4 (CTLA-4), which is expressed on the surface of T lymphocytes and transmits an inhibitory 

signal that downregulates T-cell activation. CTLA-4 blockade removes this signal and T-cell 

activation is consequently enhanced. To date, none of the CTLA-4 blockers in monotherapy have 

demonstrated significant results in NSCLC. The second-generation ICI mechanism is directed 

towards programmed cell death protein 1 (PD-1) or its ligand PD-L1. PD-1 is a negative regulatory 

receptor expressed by T and B lymphocytes and natural killer cells. Its role consists of limiting the 

response of these cells in order to protect healthy tissues. Therefore, by blocking PD-1 we can “lift the 

brakes” of these cells and enhance the immune system. The anti-PD-1 drugs approved for NSCLC 

are pembrolizumab and nivolumab, whereas atezolizumab and durvalumab target PD-L1. The 

number of authorized indications has been growing ever since the first approval, both in the 

advanced disease and adjuvant settings and across all histologies (Table 1). 

Table 1. Current FDA-approved indications for lung cancer treatment. 

Indication Agent Use Line 

Unresectable, 

stage III NSCLC 
Durvalumab Monotherapy 

Adjuvant after radical 

chemo-radiotherapy 

Metastatic 

NSCLC 

Pembrolizumab 

Combination with platinum + 

pemetrexed 
1st line 

Monotherapy 2nd line 

Nivolumab Monotherapy 2nd line 

Atezolizumab 

Combination with carboplatin + 

paclitaxel + bevacizumab 
1st line 

Monotherapy 2nd line 

Metastatic 

squamous 

NSCLC 

Pembrolizumab 

Combination with carboplatin + 

paclitaxel/nab-paclitaxel 
1st line 

Monotherapy 1st line, PD-L1 ≥ 50% 

Metastatic SCLC 

Atezolizumab 
Combination with carboplatin + 

etoposide 
1st line 

Pembrolizumab Monotherapy 3rd line 

Nivolumab Monotherapy 3rd line 

NSCLC: Non-Small-Cell Lung Cancer. SCLC: Small-Cell Lung Cancer. PD-L1: Programmed death-ligand 1. 

Currently, ICI is part of the SoC in metastatic NSCLC. In 2015, nivolumab, which was already 

approved for melanoma, demonstrated improved OS in metastatic NSCLC both in squamous and 

non-squamous as second-line treatment (CheckMate017, CheckMate057) [18,19]. Subsequently, both 

pembrolizumab and atezolizumab reported prolonged OS as second-line therapy (Keynote-010, OAK 

trial) [20,21]. The Keynote-010 was the first trial that selected patients with a PD-L1 expression in 

tumor cells ≥ 1%. Those patients with a higher expression of PD-L1 tended to have better responses. 

ICI were then tested as first-line treatments. Pembrolizumab was compared to platinum-based CT in 

NSCLC with PD-L1 ≥ 50%, a highly selected population based on the results in second-line. Keynote-

024 in 2016 significantly improved OS (10.3 vs. 6.0 months, HR 0.60), which led to the approval as 

first-line treatment [7]. Only two years later, the Keynote-189 and Keynote-407 trials (in non-

squamous and squamous NSCLC, respectively) assessed the efficacy of the combination of platinum-

based CT and pembrolizumab, which significantly prolonged OS (KN-189 not reached vs. 11.3 months, 

HR 0.49; KEYNOTE-407 15.9 months vs. 11.3 months, HR 0.64) [22,23]. This effect was independent of 

the expression of PD-L1, including those with no expression at all. Combination of platinum-based 

chemotherapy and pembrolizumab is currently the standard first-line treatment for fit patients. 

In the adjuvant setting, the PACIFIC study evaluated the effect of maintenance therapy with 

durvalumab following chemoradiotherapy (CRT) for unresectable stage III NSCLC [8]. PFS was 

drastically improved (16.8 vs. 5.6 months, HR 0.52) and became a new SoC. 
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NSCLC carrying mutation drivers have not been particularly responsive to ICI, possibly due to 

their characteristically lower mutational burden. An exception is the combination of carboplatin, 

pemetrexed, bevacizumab and atezolizumab [24]. In the ImPower150 trial, PFS among patients with 

EGFR mutations or ALK translocations was longer with the combination with atezolizumab compared 

to the combination without atezolizumab, achieving a PFS increase of 3.6 months (median, 9.7 months 

vs. 6.1). This allows for a more effective treatment once targeted therapies have failed. 

In small cell lung cancer (SCLC), ICI monotherapy has achieved modest results. However, in the 

ImPower133 study, the combination of atezolizumab with the standard carboplatin and etoposide has 

recently shown significant benefit [25]. After a median follow-up of 13.9 months, median OS was higher 

for the atezolizumab arm (12.3 months [95% CI 10.8–15.9] vs. 10.3 months [95% CI 9.3–11.3]). Median 

PFS significance was also met with 5.2 months in the atezolizumab arm compared with 4.3 months in 

the placebo group (HR 0.77, 95% CI 0.62–0.96, p = 0.017). The addition of atezolizumab doubled 12-

month PFS rate (12.6% vs. 5.4%). This combination scheme is the first one to increase survival in 

extended disease SCLC in decades and is now a new long awaited SoC. 

The mechanism of action of ICI determines a range of toxicities that differs from those seen with 

classic cytotoxics. By unleashing brakes and promoting the activity of the immune system, immunologic 

tolerance can be altered, triggering reactions mediated by self-directed antigens, known as immune-

related adverse events (irAEs). The most frequently affected tissues are the skin, the gastrointestinal 

system, and the endocrine glands [26]. However, irAEs have been described in almost any tissue, 

including those with immune privilege, such as the central nervous system, the myocardium, or the 

kidneys [27]. Accordingly, physicians must keep a high grade of suspicion and seriously evaluate every 

new symptom that arises. Although most irAEs are mild, steroids are the cornerstone when treatment is 

needed (grade ≥ 2). Multidisciplinary management of severe toxicities is mandatory. 

4. The role of Radiation in the Immune Response to Cancer 

The biological mechanisms that explain the local antitumoral effect of RT have been well 

established for decades [28]. In short, radiotherapy induces DNA damage that results in the 

interruption of the cell cycle, leading to the death of tumor cells via apoptosis and necrosis [29]. 

However, in recent years, research is shifting towards the added effects that RT has outside the 

radiation field, which seem to be immune related and might explain what is known as the abscopal 

effect (AE) [30]. This concept was initially coined by Mole in 1953 when describing a systemic 

antitumoral action after local RT that can result in distant responses [31]. This new research is 

allowing for a better and wider understanding of these immune mechanisms that can have 

consequences beyond the site of radiation. 

Although much is still unknown, it has been established that RT induces immunogenic cell death 

(ICD) by releasing multiple tumor-associated antigens (TAAs), chemokines, inflammation mediators 

and other immune related molecules. Each of these can have either immunostimulatory or 

immunosuppressive effects, with a general trend towards increased stimulation of the immune 

system [32,33]. The main immunostimulatory substances activated after RT include damage-

associated molecular patterns (DAMPs), high mobility group box 1 (HMGB1), heat shock proteins, 

interferon type I (IFN-I), and interferon gamma (IFN-γ), among others. These promote the maturation 

of dendritic cells (DC) and the presentation of TAAs to these DC, which then migrate to the lymph 

nodes and present these antigens to naïve CD8+ T cells through the major histocompatibility complex 

I (MHC I). As a result, RT serves as an in-situ vaccination that primes and activates antigen-specific 

cytotoxic T cells that are then ready to enter the circulation and search for the tumor both inside (as 

RT also facilitates access to the tumor by remodeling its vascularity) and outside the site of irradiation 

[34–36]. A graphical representation of this phenomenon can be seen in Figure 1. However, it must be 

noted that RT also induces the activation of immunosuppressive molecules, such as transforming 

growth factor beta (TGF-β), which is a critical factor for regulatory T cell (Treg) differentiation [37]. 

These suppressive substances are partially regulated by stimulator of interferon genes protein 

(STING) and C-C chemokine receptor type 2 (CCR2). The pathways in which these substances are 

involved are being investigated for their role in the resistance to RT [38]. The balance of these 
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immunostimulatory and immunosuppressive substances varies depending on dose, fractionation, 

and other treatment and tumor variables, and it might be the key to determining the overall influence 

of radiation in the immune system [39]. 

Although the immune mechanisms unleashed by RT are becoming more understandable, the 

development of an AE is still a rare event. However, since the introduction of ICI, multiple preclinical 

studies have found that its combination with RT increases the chances of obtaining an AE [40,41]. It is 

known that tumors can escape the immune response by the upregulation of PD-1 ligands, which cause 

T cell exhaustion. Anti-PD-1/L1 antibodies inhibit this blockade, favoring a stronger T cell antitumoral 

effect [42]. On the other hand, anti-CTLA-4 antibodies both inhibit Treg and stop CTLA-4 from binding 

to CD28 and inhibiting T cell activation, also resulting in an increased immune response [43]. 

 

Figure 1. When delivered to the tumor, radiotherapy (RT) induces immunogenic cell death and the 

release of tumor-associated antigens (TAAs) nearby. Dendritic cells (DC) recognize these TAAs and 

carry them to the lymph nodes, where they present them to naïve CD8+ T cells through the major 

histocompatibility complex I (MHC I) and CD80/86 and CD28 receptors. At this point, anti-cytotoxic 

T lymphocyte-associated antigen (CTLA)-4 agents block the CTLA-4 receptor in naïve T cells, which 

ceases their inhibition. Activated cytotoxic T cells are then incorporated into the bloodstream and 

travel to distant metastases and back to the irradiated tumor to eliminate the disease. At this stage, 

anti-PD-1/L1 therapy blocks the interaction between these two receptors, which allows for a stronger 

antitumor effect driven by T cells. 

5. Immunoradiotherapy in Metastatic Lung Cancer 

One of the reasons why lung cancer is among the tumor types with highest mortality rates is 

that most patients are metastatic at the moment of diagnosis. In fact, the prognosis of patients with 

metastatic NSCLC is very poor, with a median OS of less than seven months [44]. As mentioned 

before, the irruption of ICI has revolutionized the treatment landscape of NSCLC, which has had a 

significant impact on OS. However, primary and secondary resistances to ICI remain a relevant 

problem in most patients [20,45,46]. 
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The preclinical evidence on the immunomodulatory effect of RT, as well as the positive results 

of SABR in terms of LC, OS, and PFS in oligometastatic patients [16], has pushed clinicians to 

reconsider the role of RT in the metastatic stage, evolving from a purely palliative care to its 

integration with ICI in order to improve systemic responses and unleash the AE [9,47]. This rare 

phenomenon, however, does not escape controversies. Up to 2019, only six cases had been described 

in NSCLC, and four of them had received treatment with ICI. Moreover, some authors have 

questioned the existence of the AE in patients with ICI, given that this effect was first described when 

RT was delivered in absence of an additional systemic treatment. Most studies in this field tend to 

consider the improvement in overall response rate (ORR) observed after the association of RT to ICI 

as a surrogate for AE, which adds to the confusion. For this reason, other authors have preferred to 

adopt the term of ‘systemic therapy augmented by radiotherapy’ (STAR) when assessing the 

enhancement of the systemic effects of ICI after the addition of RT [48]. 

5.1. How did the Preclinical Evidence for the Combination of Ici and Rt Translate into the Clinical Setting? 

The combination of ICI and RT in NSCLC started to gain more interest after the publication of 

the KEYNOTE-001 study. A secondary analysis of the 97 patients included in this phase I trial showed 

that 43% had been treated with RT prior to the administration of pembrolizumab. PFS was longer in 

those patients who had previously received RT (4.4 vs. 2.1 months). Moreover, a benefit in OS was 

also observed in this subgroup (11.6 vs. 5.3 months) [49]. 

These interesting results led to the analysis of further retrospective data in order to find if these 

benefits could be replicated. In this regard, both Desideri and Ratnayake found similar results in 

NSCLC patients, with a trend towards a doubling in PFS and OS in those who had received RT and 

ICI [50,51]. Despite this encouraging data, several new questions arose with respect to timing, dose 

escalation and other treatment variables. In terms of timing, some light was shed by Samstein et al. 

In this retrospective study, 758 patients who received ICI and RT were analyzed. A benefit in OS was 

observed in those patients who received these treatments concurrently vs. those who received them 

separately. Furthermore, patients who had RT administered at least one month after the first dose of 

ICI had a significantly higher OS compared to those who received RT less than one month after the 

start of ICI (20 vs. 11 months) [52]. 

5.2. Can this Retrospective Data Be Replicated in Clinical Trials? 

The first prospective studies that were designed to evaluate the AE have the disadvantage of 

including a very heterogenous group of patients with different tumor histology, RT dose and 

treatment sequence. For instance, the study by Tang et al. assessed 35 patients (8 with NSCLC) and 

found that, by associating SABR to a metastatic lung or liver lesion with anti-CTLA-4, 23% of patients 

experienced a response in the non-irradiated lesions [53]. 

Formenti et al. designed a trial in a more controlled setting. This phase I-II study included 39 

patients with metastatic NSCLC who received four cycles of ipilimumab in combination with a SABR 

regime of 28.5 Gy in 3 fx or 30 Gy in 5 fx (based on the fractionation that showed synergy with anti-

CTLA-4 in preclinical studies). A 31% disease control was reported which, at that moment, showed 

a promising clinical benefit with this combined approach in metastatic NSCLC [54]. However, it was 

necessary to confirm this benefit in terms of ORR, PFS and OS. To this end, Welsh et al. conducted a 

phase II study combining anti-CTLA-4 with SABR doses of 50–60 Gy in 4–10 fx. Although this trial 

was limited by the fact that it included different tumor types, it must be noted that those patients 

with NSCLC obtained a more significant clinical benefit, with an ORR of 67%. Overall, PFS was 5 

months and OS 12 months, considering all tumor histologies [55]. 

Given the benefit of the combination, a prospective study is trying to determine the rate of AE 

separated from the ORR by preselecting lesions outside of the radiation field and evaluating their 

behavior after SABR to the target lesions. Preliminary results are promising, with an AE rate of 33% 

and an ORR of 53%. Of particular interest is the fact that, in this study, all patients had failed to ICI 

monotherapy but could maintain this same treatment until new progression by adding SABR [56]. 
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These first results of the combination of SABR and ICI, now commonly known as I-SABR, are 

finally starting to gain enough interest in order to develop randomized studies that compare this 

approach with a control arm of exclusive ICI (Table 2). The recent PEMBRO-RT is a phase II 

randomized trial that included 76 patients with metastatic NSCLC in which the experimental arm 

received pembrolizumab plus SABR (24 Gy in 3 fx) to a single lesion. After a follow-up of 24 months, 

ORR at 12 weeks was 36% in the experimental arm versus 18% in the ICI monotherapy group. Disease 

control was also higher in the I-SABR group (64% vs. 40%, p = 0.04). Median PFS was 6.6 months 

versus 1.9 months. A tendency towards an improved OS, though not statistically significant, was also 

observed (15.6 months in the I-SABR arm vs. 7.6 months in the control arm). Interestingly, patients 

with PD-L1 < 1% presented a higher clinical benefit with the addition of SABR. The results of this 

study support those obtained in retrospective and prospective series, although its primary endpoint 

of an ORR of 50% in the experimental arm was not achieved [57]. 

Another randomized phase I/II study of 72 patients (36 per arm) is of particular interest due to 

the fact that it compared two regimes of RT in the experimental arm: either SABR (50 Gy in 4 fx or 70 

Gy in 10 fx) or conventional RT (45 Gy in 15 fx) associated to pembrolizumab. In a sub-analysis of the 

experimental arm, AE in the SABR group was 38% versus 10% in the conventional RT group 

(although not statistically significant). Moreover, the SABR group reported a PFS of 21.1 months 

versus 6.8 months in the conventional RT arm (p = 0.03). This study reinforces the importance of RT 

dose in order to stimulate the immune response [58]. 

Finally, a phase I study of 35 patients receiving SABR randomized them in two arms: concurrent 

or sequential dual ICI (ipilimumab plus nivolumab). PFS was 6.2 months in the sequential arm and 

5.9 in the concurrent arm. Total ORR was 68% [59]. 

For this review, only studies in which lung cancer was the major or the exclusive histology have 

been assessed. However, global results are comparable with those reported in a systematic review 

that included both retrospective and prospective series of NSCLC patients, but also other tumor 

types. The mentioned review reported a global rate of AE/ORR of 41% [9]. A great number of trials 

combining ICI and RT are ongoing. The most relevant are described in Table 3. Of particular interest 

is a randomized phase III trial (NCT03867175) that will compare ICI monotherapy with I-SABR to all 

metastatic lesions and may be able to confirm the OS benefit suggested in previous studies. 

Table 2. Selected randomized and prospective trials testing the combination of RT and ICI in 

metastatic NSCLC patients. 

Author/Trial Phase N Treatment arms ORR (%) 

Median 

PFS 

(months) 

Median OS 

(months) 

irAEs  

G 3 (%) 

Theelen et al. 

[57]/PEMBRO-RT 

II 

randomized 
76 

SABR + pembrolizumab 

Pembrolizumab 
36 vs. 18  6.6 vs. 1.9 15.6 vs. 7.6 11 

Welsh et al. [55] 
II 

randomized 
72 

SABR/Conventional RT + 

pembrolizumab  

Pembrolizumab  

22 vs. 25 * 10.9 vs. 8.4 * NR 15 

Patel JD et al. [59] 

COSINR 

I 

randomized 
35 

SABR + concurrent 

ipilimumab/nivolumab  

SABR + sequential 

ipilimumab/nivolumab 

68  

(total) 
6.2 vs. 5.9 NR 11 

Bauml et al. [60] II 45 
Locally ablative therapy 

(surgery/SABR) + pembrolizumab 
NR 19.1 41.6 10 

Formenti et al. 

[54] 
I/II 39 SABR + ipilimumab 31 7.1 13.0 10.3 

*In the sub-analysis of the RT arm (SABR vs. conventional RT): overall response rate (ORR) 38% vs. 10%, 

progression-free survival (PFS) 21.1 months vs. 6.8 months. SABR: stereotactic ablative body radiotherapy. RT: 

radiotherapy. NR: not reported. 
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5.3. Could the Safety Profile of the Combination Be An Issue? 

While evidence on I-SABR is still limited, the available data suggest that toxicity derived from 

this combined treatment does not increase in comparison to immunotherapy alone in the metastatic 

setting. A recent systematic review showed grade ≥ 3 median toxicity rates of 14.5% with anti-PD-

1/L1 plus SABR and 26% with anti-CTLA-4 plus SABR [9]. In addition, the PEMBRO-RT trial only 

reported a 11% rate of pneumonitis in the I-SABR arm [57]. Furthermore, the phase II study by Bauml 

showed comparable rates of toxicity [60]. Even with dual ICI plus SABR, the study by Patel et al. only 

showed 11% of dose limiting toxicity [59]. 

Table 3. Ongoing clinical trials in patients with metastatic NSCLC receiving ICI and RT. 

Trial Phase ICI agent Design RT dose 
Primary 

Endpoint(s) 

NCT03223155 
I  

randomized 

Ipilimumab + 

nivolumab 

SABR + ICI  

Sequential arm  

Concurrent arm 

3–5 fx 
Number of serious 

adverse events  

NCT03158883 I Avelumab ICI + SABR 50 Gy/5 fx ORR 

NCT02239900 
I/II  

randomized 
Ipilimumab 

ICI + SABR  

Multiple arms 

50 Gy/4 fx or  

60 Gy/10 fx  

1–4 lesions 

MTD 

NCT03176173  

RRADICAL 
II 

Nivolumab, 

pembrolizumab, 

atezolizumab 

ICI  SABR 1–10 fx PFS at 24 weeks 

NCT03965468  

CHESS 
II Durvalumab ICI + CT + RT 1–10 fx PFS at 12 months 

NCT03867175 
III  

randomized 
Pembrolizumab 

ICI  SABR (all 

metastatic lesions)  
3–10 fx PFS 

ICI: immune checkpoint inhibitors. SABR: stereotactic ablative radiotherapy. RT: radiotherapy. Fx: fraction. PFS: 

progression-free survival. ORR: overall response rate. CT: chemotherapy. MTD: maximum tolerated dose. 

6. Immunoradiotherapy in Locally Advanced NSCLC 

Stage III NSCLC represents a heterogeneous group of patients with variable prognosis. For early 

resectable stage III NSCLC, which accounts for approximately 20–30% of patients [61], surgery is the 

primary curative treatment, which is usually accompanied by neoadjuvant and/or adjuvant CT and RT, 

resulting in 5-year OS rates of 50–70% [62]. However, in more advanced cases, surgery is rarely feasible 

and, in turn, definitive concurrent CRT is the SoC [63], with 5-year OS rates of approximately 15–20% [64]. 

Given that these results are not optimal, several approaches have tried to improve the outcomes 

of concurrent CRT. Induction or consolidation CT have failed to improve PFS and OS [65–68]. 

Furthermore, greater radiation doses up to 74 Gy compared with the standard 60 Gy have led to more 

side effects and reduced survival [3,69]. Additional randomized phase IIb and phase III trials of 

consolidation therapy with vaccines and targeted therapies (cetuximab, gefitinib, etc.) have shown 

no differences regarding OS or PFS [70–73]. Therefore, recent efforts to improve outcomes in stage III 

NSCLC have shifted towards new strategies that integrate ICI in the current regimes, first as 

consolidation therapy after CRT, and more recently in the definitive and neoadjuvant settings. This 

evolution in the treatment of stage III NSCLC is represented in Figure 2. 

6.1. What is the Evidence for Administering ICI Consolidation Therapy? 

Interest in the addition of ICI to conventional therapies has greatly increased since the 

publication of a landmark study in 2018: the PACIFIC trial (Table 4). This was the first double-blind, 

randomized phase III trial that evaluated the use of the ICI durvalumab for 12 months after definitive 

CRT in patients with unresectable NSCLC and no disease progression after CRT. For the 714 patients 

included, durvalumab achieved a median PFS of 16.8 months compared to 5.6 months with placebo 

[8]. The durvalumab group also had a higher response rate (28.4% versus 16%). In terms of OS, the 

durvalumab group showed a 24-month OS of 66.3% vs. 55.6%, whereas median OS had not been 

reached. It must be noted that these improved results were independent of PD-L1 expression. 
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Durvalumab was also well tolerated. 30.5% of the patients in the durvalumab group and 26.1% in the 

placebo group had grade 3 or 4 adverse events of any cause. 15.4% vs. 9.8% of patients discontinued 

the trial regimen because of adverse events [74]. 

 

Figure 2. Timeline illustrating the evolution of treatments for NSCLC. RT: radiotherapy. CT: 

chemotherapy. CRT: Chemoradiotherapy. OS: overall survival. PFS: progression-free survival. Yr: 

year. SoC: standard of care. 

Subsequent post-hoc and subgroup analyses of the PACIFIC trial have detailed some of these 

results, showing improved PFS and OS in the durvalumab group regardless of CT type, radiation 

dose or time from radiation to randomization [75]. Moreover, the updated 3-year OS rates presented 

at the 2019 meeting of the American Society of Clinical Oncology (ASCO) showed a 36-month OS rate 

of 57% in the durvalumab group vs. 43.5% in the placebo. Median OS had still not been reached [76]. 

These encouraging results have led to the establishment of consolidation therapy with durvalumab 

as a new SoC in unresectable stage III NSCLC. 

Interestingly, one of the subgroup analyses of the PACIFIC reported improved OS and PFS in 

patients who started durvalumab within 14 days after CRT as compared to those who started after 

14 days. This fact raised the question of whether sequencing and timing could have a role in the 

response to immunotherapy. This question was partially answered with the results of another study: 

the LUN 14–179. This single-arm phase II trial examined consolidation therapy with pembrolizumab 

4–8 weeks after CRT in 92 patients with stage IIIA and IIIB NSCLC [77]. In terms of results, a median 

PFS of 17 months was achieved, with a 2-year PFS of 44.6% and 2-year OS rate of 68.7%. Treatment 

was well tolerated, with 6.5% of grade 3–5 pneumonitis [78]. The fact that these results were 

comparable to those in the PACIFIC showed that consolidation immunotherapy could also be 

effective if administered with a certain delay after CRT. 

The results of these studies have led to the development of numerous new trials testing different 

ICI, such as the ongoing RTOG 3505 phase III trial with concurrent CRT followed by nivolumab [79]. 

6.2. Does Immunotherapy Have A Role as Part of Definitive Therapy? 

The favorable results of durvalumab as consolidation therapy in NSCLC have motivated the 

development of new studies that test the use of ICI concurrently to radical treatment (Table 4). 

However, one of the main concerns of this approach was the possible increase in toxicity. This safety 

profile was assessed in the ETOP NICOLAS phase II trial, which added nivolumab to standard CRT. 

21 patients with stage IIIA-B NSCLC received definitive CRT with both concomitant and 

maintenance nivolumab. No grade ≥ 3 pneumonitis was reported in the interim analysis, which led 
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to the recruitment of a total of 80 patients. Of these, only 8 experienced grade ≥ 3 pneumonitis [80,81]. 

One-year OS in the starting cohort was 79%, while the larger cohort is still under evaluation [82]. 

These promising results were reinforced by those of atezolizumab in this same setting in the 

phase II trial DETERRED. The experimental arm showed better results in terms of 1-year PFS (57% 

vs. 50), although 1-year OS was the same in the two groups (79%). When comparing both regimes, 

no significant increase in toxicity was reported. [83]. 

Table 4. Prospective studies that combine RT and ICI in stage III NSCLC. 

Trial Phase N Stage 

RT 

Dose 

(Gy) 

ICI Agent IT Sequence 
ORR 

(%) 

OS 

(%) 
PFS 

Toxicity 

≥  

G3 (%) 

PACIFIC [8]  

(Randomized) 
3 714 

Unresectable  

III 
54–66 Durvalumab Consolidation 28.4% 

1-yr: 

83.1  

2-yr: 

66.3 

Median 

18.8 

months 

30.5 

LUN 14–179 

[77] 
2 92 

Unresectable  

IIIA/B 

59.4–

66 
Pembrolizumab Consolidation NR 

1-yr: 

80.5  

2-yr: 

68.7 

Median 

15.4 

months 

6.5 

ETOP 

NICOLAS [82] 
2 80 

Unresectable  

IIIA/B 
66 Nivolumab 

Concurrent + 

Consolidation 
NR 

1-yr: 

79 
1-yr: 54% 10.9 

DETERRED 

[83] 
2 40 

Unresectable  

III 
60–66 Atezolizumab 

Concurrent + 

Consolidation 
NR 

1-yr: 

79 
1-yr: 57% 27.5 

RT: radiotherapy. ICI: immune checkpoint inhibitors. ORR: overall response rate. OS: overall survival. 

PFS: progression-free survival. NR: not reported. 

6.3. Can immunotherapy Take the Place of Chemotherapy in Definitive Therapy? 

Interestingly, several ongoing studies are testing if CT can be replaced by ICI, based on the 

superior results of immunotherapy in trials, such as the KEYNOTE-024 [7,84]. The NRG Oncology 

LU004 ARCHON-1 trial will treat 24 patients with PD-L1 > 50% with definitive RT and concurrent 

durvalumab. Moreover, the DART trial will enroll patients who are unfit for concurrent CRT and 

administer standard RT with concurrent and consolidation durvalumab. 

6.4. Is the Neoadjuvant Setting A Good Fit for Immunoradiotherapy? 

While no definitive evidence is available yet regarding the clinical efficacy of neoadjuvant 

immunoradiotherapy in the neoadjuvant setting, various ongoing studies should shed some light in 

the coming years (Table 5). For now, the only preliminary data available at the moment comes from 

ICI and CT. For instance, the NADIM is an ongoing phase II trial that combines neoadjuvant CT and 

nivolumab in resectable stage IIIA N2 patients prior to surgery, followed by adjuvant nivolumab for 

1 year. Preliminary results show that, out of the 46 patients included, 41 underwent surgery and all 

a R0 resection was achieved in all cases. Thirty-five patients achieved a major pathologic response, 

with 25 of them being complete pathologic responses. Treatment was well tolerated, and 1-year PFS 

was a promising 95.7% [85]. 

Although no clinical results are available at the moment, further studies testing the combination 

of neoadjuvant immunotherapy, CT, and RT are ongoing, such as the phase I CASE 4516 and the 

phase II NCT03237377 trials. 
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Table 5. Ongoing clinical trials evaluating the combination of ICI and RT in stage III NSCLC patients. 

Study Phase N Stage RT Dose ICI Agent ICI Sequence Status 

CASE4516  

NCT02987998 
1 20 Resectable IIIA 45 Gy/25 fx Pembrolizumab 

Neoadjuvant + 

Adjuvant 

Active, not 

recruiting 

CLOVER  

NCT03509012 
1 300 

Unresectable 

III NSCLC, 

SCLC, H & N 

Conventional 

RT 
Durvalumab Concurrent Recruiting 

NCT03053856 2 37 
Resectable  

IIIA N2 
44 Gy/22 fx Pembrolizumab Adjuvant 

Not yet 

recruiting 

NCT03237377 2 32 
Resectable  

IIIA 
45 Gy/25 fx 

Durvalumab +/-

tremelimumab 
Neoadjuvant Recruiting 

LUN 16-081  

NCT03285321 
2 108 

Unresectable  

IIIA/B 
59.4–66.6 Gy 

Nivolumab +/- 

ipilimumab 
Consolidation Recruiting 

CHIO3  

NCT04062708 
2 55 

Resectable 

IIIA/B 
54 Gy Durvalumab 

Neoadjuvant + 

Adjuvant 

Not yet 

recruiting 

NCT03871153 2 25 
Resectable III 

N2 

45-61.2 Gy/25–

34 fx 
Durvalumab 

Neoadjuvant + 

Adjuvant 
Recruiting 

KEYNOTE-

799  

NCT03631784 

2 216 
Unresectable 

III 
60 Gy/30 fx Pembrolizumab 

Concurrent + 

Consolidation 
Recruiting 

NCT03663166 1/2 50 
Unresectable 

III 
60Gy/30 fx 

Ipilimumab vs. 

nivolumab 

Concurrent vs. 

Consolidation 
Recruiting 

NCT03102242 2 63 
Unresectable  

IIIA/B 
60 Gy/30 fx Atezolizumab Neoadjuvant 

Active, not 

recruiting 

NCT03589547 2 25 III 

60 Gy RT 

followed by 

20Gy/2–3 fx 

SABR 

Durvalumab Consolidation Recruiting 

NCT02572843 2 68 
Resectable IIIA 

N2 

Conventional 

RT if R1–2 
Durvalumab 

Neoadjuvant + 

Adjuvant 

Active, not 

recruiting 

PACIFIC 2  

NCT03519971 
3 300 

Unresectable 

III 

Conventional 

RT 
Durvalumab 

Concurrent +/- 

Consolidation 

Active, not 

recruiting 

PACIFIC 5 

NCT03706690 
3 360 

Unresectable 

III 

Conventional 

RT 
Durvalumab Consolidation Recruiting 

PACIFIC 6 

NCT03693300 
2 150 

Unresectable 

III 

Conventional 

RT 
Durvalumab Consolidation Recruiting 

MK-3475  

NCT03379441 
2 126 

Unresectable 

IIIA/IIIB 

Conventional 

RT 
Pembrolizumab Consolidation 

Not 

recruiting 

ICI: immune checkpoint inhibitor. RT: radiotherapy. Fx: fraction. NSCLC: non-small cell lung cancer. SCLC: Small 

cell lung cancer. H&N: head and neck. 

7. Early Stage NSCLC and Small-Cell Lung Cancer: Future Directions for Immunoradiotherapy 

Although most of the evidence that supports the combination of RT and ICI in lung cancer comes 

from the experience in metastatic and stage III NSCLC, multiple trials are currently assessing the 

efficacy of this approach in other settings. 

In the case of early stage NSCLC, there is a relatively high risk of distant recurrence even with 

the best surgery or SABR (60–80% in node-negative tumors) [86]. For this reason, several trials are 

addressing if adjuvant ICI after SABR could improve PFS. Along with various phase I and II studies, 

there is a phase III trial, the PACIFIC 4 that will randomize 630 patients to receive SABR with or 

without two years of adjuvant durvalumab. Moreover, other trials will test neoadjuvant ICI followed 

by SABR, such as the PEMBRO-X trial with neoadjuvant pembrolizumab. 

The recent approval of ICI as second-line therapy in SCLC will also provide opportunities to test 

the possible benefits of its combination with RT. The available data suggest that the addition of RT in 

this setting is probably a safe approach and could improve disease control [87]. For instance, a phase 

I study that tested the toxicity profile of pembrolizumab and thoracic RT after induction CT in 35 
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patients with extensive-stage SCLC only reported 2% grade 3 side effects [88]. Further ongoing trials 

may shed some light in this matter in the years to come. 

8. Optimizing the Efficacy of Immunoradiotherapy in Lung Cancer 

8.1. RT Fractionation and ICI Agent 

SABR, with high doses per fx, seems to be more immunogenic than conventional RT, given that 

a daily delivery of RT might kill migrating lymphocytes [89]. However, it has been reported that a 

radiation dose superior to 10–12 Gy can remove the trigger from the STING pathway, which leads to 

immunosuppression. The STING pathway participates in the secretion of IFN-I, which has been 

associated with the AE. High doses of radiation can upregulate the nuclease TREX1, which inhibits 

this pathway, therefore hindering the immune response [90]. On the other hand, other studies have 

shown no depletion in immune effector cells after a single dose of 12 Gy, so this might not be the only 

mechanism involved [91]. 

The ideal fractionation is also under debate. Generally speaking, protocols of RT delivered in 5 

× 6 Gy and 3 × 8 Gy have shown better responses than a single fx [92]. In the recent PEMBRO-RT 

study, AEs were achieved after 3 × 8 Gy [59]. However, other studies have reported successful results 

by delivering single doses [93]. Moreover, most clinical trials deliver RT every other day rather than 

consecutively, based on the idea that it takes 48 h to replenish lymphocytes [32]. 

There is still no evidence of a possible difference in RT efficacy between anti-PD1/L1 and anti-CTLA-

4 agents. A retrospective analysis of the study by Chen et al. [94] showed similar results in metastatic 

NSCLC patients treated with anti-CTLA-4 or anti-PD-1, if slightly better in the anti-PD-1 cohort. 

8.2. RT and ICI Sequence 

Even though many ongoing trials are delivering concomitant therapy, sequential treatment has 

also been reported as effective, for instance, in the study by Bauml et al., where they administered 

pembrolizumab 4–12 weeks after local treatment [60]. Some publications have also suggested that 

sequencing may depend on the ICI agent [95]. Anti-PD-L1 therapy seems to be more effective when 

administered concurrently with RT [96], whereas anti-CTLA-4 appears to have better synergy if 

administered before RT [97]. These differences might be explained by the fact that anti-PD-1/L1 act 

on newly activated and exhausted T cells [42], whereas anti-CTLA-4 act on naïve T cells and Treg 

[43]. Some of these uncertainties might be answered in ongoing clinical trials, such as the SABRseq 

study, in which patients will be assigned to a regimen of either SABR followed by pembrolizumab or 

pembrolizumab followed by SABR. Moreover, a trial by Davis et al. will divide patients in three 

treatment arms: concurrent, induction, or sequential atezolizumab and SABR [98]. 

8.3. Number of Irradiated Lesions and Tumor Location 

While most clinical trials irradiate a single lesion [9], some publications suggest that multisite 

irradiation should be the norm, as this would result in a wider variety of TAAs being presented to 

effector T cells [39]. As a matter of fact, a single-arm phase II study in which 51 patients with NSCLC 

were treated with local ablative therapies (RT or surgery) to all metastatic sites plus sequential 

pembrolizumab reported an impressive PFS of 19.1 months and a 1-year OS of 90%, which further 

supports this multisite approach [60]. Moreover, partial irradiation can also induce AE in cases of 

bulky tumors where RT to the whole volume would not be feasible [99]. 

Tumor location also seems to be important. Preclinical studies have suggested that bone lesions are 

less prone to unleash an AE compared to visceral tumors [100]. Moreover, it is unclear if RT of the lymph 

nodes can negatively affect the development of an AE. For instance, a preclinical study by Marciscano et 

al. showed that elective nodal irradiation decreased the efficacy of I-SABR [101]. In contrast, Tang et al. 

found higher levels of CD8+ T cells after irradiation of the liver compared to other sites [53]. Recent studies 

have also investigated the influence of the gut microbiota in the immune response to cancer [102]. Whether 

irradiation to the bowels can play a role in this pathway is still unclear. 
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8.4. Biomarkers 

Predictors of response to I-SABR remains a widely unexplored field. Still, some recent studies 

are showing promising results. For instance, high levels of TGF-β have been associated with worse 

outcomes, and its blockade with therapies, like fresolimumab, has shown better antitumoral 

responses [103–105]. Furthermore, levels of IFN-γ have been linked to RT effectiveness [106], as well 

as IFN-I, due its involvement in the STING pathway [38]. These mechanisms, however, are far for 

simple, as other investigators have shown that persistent high levels of IFN can actually induce 

resistance to radiation and anti-CTLA-4 treatment [107]. The utility of liquid biopsies is also being 

investigated, as some trials are measuring the levels of circulating tumor DNA (ctDNA) and other 

circulating molecules after RT [108,109]. Finally, a recent analysis of three phase I/II trials has found 

that lymphopenia might negatively impact the chances of obtaining an AE [110]. Key points to 

consider in a treatment with I-SABR are summarized in Table 6. In short, further studies are needed 

in order to find biomarkers that can improve patient selection and outcomes. 

Table 6. Key questions for a treatment with immunoradiotherapy. 

Which RT technique is more 

immunogenic? 

SABR rather than conventional RT.  

Every other day rather than consecutive.  

6–12 Gy per fraction rather than higher doses.  

24 Gy/3 fx and 30 Gy/5 fx are the most frequent in clinical trials. 

What is the ideal treatment 

sequence? 

Concurrent RT with Anti-PD-1/L1.  

Sequential RT after Anti-CTLA-4. 

Which lesions should be treated? 

Multisite irradiation rather than single site.  

Visceral lesions rather than bone.  

RT to the lymph nodes and bowel could be detrimental.  

Partial irradiation of bulky tumors can also unleash AEs. 

Are there any biomarkers that 

can guide patient selection? 

High TGF- β has been associated with worse outcomes.  

High IFN-I/γ could influence RT effectiveness  

Lymphopenia could negatively impact the immunogenicity of RT.  

Currently, no biomarkers are approved for use in clinical practice. 

RT: radiotherapy. SABR: stereotactic ablative radiotherapy. Fx: fraction. AEs: abscopal effects. TGF- 

β: transforming growth factor beta. IFN-I/γ: interferon type I/gamma. 

9. Conclusions 

ICI have been a breakthrough in the treatment of lung cancer. However, only a limited number 

of patients benefit from these agents in monotherapy due to resistance mechanisms. For this reason, 

the combination of RT and ICI is gaining acceptance as a way to overcome these resistances. The 

evidence discussed in this review suggests that RT is able to restore the efficacy of ICI in non-

responding metastatic patients by unleashing an immune systemic response or AE. In stage III 

NSCLC, the use of immunoradiotherapy has confirmed a significant impact in survival, while its role 

in early stages is already being evaluated in multiple clinical trials. All this data should make 

clinicians reconsider the role of RT in patients receiving ICI for all stages of lung cancer and establish 

immunoradiotherapy as a standard in clinical practice. Its use reduces tumor size and alleviates 

symptoms but also increases the release of TAAs, delays the time to a new line of systemic treatment, 

and can improve disease control through the AE. Future studies should prioritize the analysis of 

different treatment variables to answer the current questions on timing, sequencing, radiation dose, 

fractionation, and biomarkers in order to optimize treatment efficacy and patient selection. 
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