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Abstract: In most instances, multiple myeloma (MM) plasma cells (PCs) are reliant on factors
made by cells of the bone marrow (BM) stroma for their survival and growth. To date, the nature
and cellular composition of the BM tumor microenvironment and the critical factors which drive
tumor progression remain imprecisely defined. Our studies show that Gremlinl (Grem1), a highly
conserved protein, which is abundantly secreted by a subset of BM mesenchymal stromal cells, plays
a critical role in MM disease development. Analysis of human and mouse BM stromal samples
by quantitative PCR showed that GREM1/Grem1 expression was significantly higher in the MM
tumor-bearing cohorts compared to healthy controls (p < 0.05, Mann—-Whitney test). Additionally,
BM-stromal cells cultured with 5TGM1 MM PC line expressed significantly higher levels of Grem1,
compared to stromal cells alone (p < 0.01, t-test), suggesting that MM PCs promote increased Grem1
expression in stromal cells. Furthermore, the proliferation of 5TGM1 MM PCs was found to be
significantly increased when co-cultured with Grem1-overexpressing stromal cells (p < 0.01, t-test).
To examine the role of Grem1 in MM disease in vivo, we utilized the 5TGM1/KaLwRij mouse model
of MM. Our studies showed that, compared to immunoglobulin G (IgG) control antibody-treated
mice, mice treated with an anti-Grem1 neutralizing antibody had a decrease in MM tumor burden of
up to 81.2% (p < 0.05, two-way ANOVA). The studies presented here demonstrate, for the first time, a
novel positive feedback loop between MM PCs and BM stroma, and that inhibiting this vicious cycle
with a neutralizing antibody can dramatically reduce tumor burden in a preclinical mouse model
of MM.
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1. Introduction

Multiple myeloma (MM) is a hematological malignancy characterized by the uncontrolled
proliferation of antibody-producing plasma cells (PC) within the bone marrow (BM) [1]. MM is
defined by the presence of 10% or more clonal PC in the BM and one or more myeloma-defining
event(s) [1]. Myeloma-defining events include evidence of end-organ damage, such as hypercalcemia,
renal insufficiency, anemia, and bone lesions, known as the CRAB criteria [2]. While recent treatment
advances have improved the median overall survival for MM to approximately 6 years [3], the majority
of patients relapse and MM remains a largely incurable disease [4]. Almost all cases of MM are
preceded by monoclonal gammopathy of undetermined significance (MGUS), a benign clonal PC
proliferation characterized by less than 10% PCs in the BM and the absence of end-organ damage [5].

The initiating events in the development of MGUS have been shown to occur in post-germinal
center B cell via a primary cytogenetic event, including chromosomal translocations involving the
immunoglobulin heavy-chain gene [6]. While malignant transformation and MM disease progression
are believed to occur due to the accumulation of secondary “genetic hits”, recent studies from our
laboratory [7] and others [8,9] observed that many of the chromosomal abnormalities and genetic
lesions identified in MM PCs are also found at the MGUS stage, suggesting that PC-extrinsic factors may
be involved in driving the progression from asymptomatic MGUS to malignant MM. Like normal PCs,
MM PCs are home to C-X-C motif chemokine 12 (CXCL12)-rich regions of the BM microenvironment,
where they are exposed to a variety of extracellular matrix proteins, BM stromal cells, and other
juxtaposed cells [10]. While it is well established that the BM microenvironment is critical for MM
tumor growth, it remains to be elucidated which stromal cells and factors are required for the
continued growth, spread, and survival of the MM PC [11,12].

To this end, MM PC are thought to hijack niches that normally support hematopoietic stem
cell self-renewal and multi-lineage differentiation [13]. The hematopoietic stem cell niche is defined
by supportive signals that are derived, in large part, from skeletal or mesenchymal stem cells
or their progeny [13]. Currently, there are two recognized populations of skeletal stem cells,
namely the perisinusoidal mesenchymal stem cells, previously described by our group [14] and
others [15,16], and a rare, discrete population of osteochondroreticular stem cells, recently described
by Worthley et al. [17]. Osteochondroreticular stem cells display a capacity for extensive self-renewal
and differentiate into osteoblasts, chondrocytes, and reticular marrow stromal cells, but not
adipocytes. While traditional mesenchymal stem cells are located around the marrow sinusoids,
osteochondroreticular stem cells are predominantly found within the metaphyseal and endosteal
regions of bone, sites commonly associated with MM PC tumor growth [14,17,18].

Osteochondroreticular stem cells are defined by their expression of Gremlinl (Grem1), a highly
conserved, 184 amino acid cysteine-knot secreted protein, belonging to the differential screening-selected
gene in neuroblastoma (DAN) family of glycoproteins. Greml has been shown to be a potent
bone morphogenic protein (BMP)-2, -4, -7 antagonist and vascular endothelial growth factor
receptor-2 (VEGFR-2) agonist [19,20]. Grem1 is expressed by cells of the periepithelial intestinal
mesenchymal sheath [17] and is functionally implicated in driving gastrointestinal carcinogenesis [21].
Stromal-derived Grem1 has also been implicated within the unique tumor microenvironment of
other cancers including mesothelioma [22], pancreatic neuroendocrine tumors [23], mammary [24],
uterine [25], cervical [26], and kidney [27] tumors. Furthermore, Grem1 has been found to be
one of the most upregulated genes in the tumor microenvironment [28]. Consistent with its
pro-angiogenic properties (i.e., via binding to VEGF-R2), Chen et al. [29] showed that Grem1 expression
is associated with increased microvessel density, a marker of angiogenesis, in patients with pancreatic
neuroendocrine tumors. Notably, increased microvessel density is associated with poor outcomes in
patients with MM [30].

These findings demonstrate a clear role for Greml in cancer development, especially in the
microenvironmental niches that support cancer cell growth, migration, and invasion. In this study
we demonstrated, for the first time, that Grem1 plays a role in MM disease progression. Importantly,
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analysis of patient BM trephine biopsies revealed a significant increase in GREM1 expression in the
BM microenvironment of patients with progressive MM disease. Likewise, a significant increase in BM
stromal Grem1 expression was observed in tumor-bearing bones of two commonly used preclinical
mouse models of MM. Moreover, increased expression of BM-derived Grem1 was shown to promote
the proliferation of MM PC. Most notably, targeting Grem1 with a neutralizing antibody significantly
reduced MM tumor burden in the 5TGM1/KaLwRij.Hsd model of MM. Taken together, these findings
represent the first evidence that bone marrow stromal-derived Grem1 plays a role in MM disease
progression, and that Grem1 is a viable therapeutic target for the treatment of MM.

2. Results

2.1. GREM1 Expression Is Upregulated in MM Bone Marrow Stroma

In view of the co-localization of the osteochondroreticular stem cell population with sites associated
with MM PC growth [17,18], the expression of GREM1 was analyzed in messenger RNA (mRNA)
samples obtained from healthy and MM patient-derived BM stromal cell cultures. MM patient-derived
BM stromal cells (n = 15) had significantly higher expression of GREM1 compared to BM stroma
derived from age-matched hematopoietically normal donors (1 = 17) (p = 0.0004; Figure 1A). Moreover,
stromal expression of GREM1 was also significantly increased in patients with the premalignant
condition, MGUS, compared to normal donors (p = 0.0062; Figure S1). Grem1 expression was also
investigated in the VK*MYC and 5TGM1/KaLwRij mouse models of MM. In both of these models,
injection of the VK*MYC transplants or 5TGM1 murine MM cell line intravenously into young syngeneic
(C57BL6 and KaLwRij mice, respectively, results in the development of disease that recapitulates many
features of human disease, including PC growth within the BM, lytic bone disease, and paraprotein
production [31,32]. In this study, compact bone was isolated from healthy and MM tumor-bearing
mice and analyzed for differences in Grem1 expression. For both MM mouse models, BM stroma from
tumor-bearing mice demonstrated a significant increase in the expression of Grem1 compared to the
stroma from healthy controls (p < 0.001; Figure 1B and p = 0.0493; Figure 1C). Importantly, the KaLwRij
mice with the greatest 5TGM1 tumor burden, as determined by bioluminescent imaging, displayed the
greatest expression of Grem1, with a significant positive correlation between Grem1 expression and
tumor burden observed (p = 0.0018, r = 0.666; Figure 1D).

To determine the effect of MM PCs on GREM1 expression in BM stromal cells, human MM cell
lines KMS-11, RPMI.8226, H929, and U266 were co-cultured in direct contact with primary human
BM stromal cells derived from hematopoietically normal individuals. The KMS-11 (p = 0.0189) and
U266 (p = 0.0121) cell lines stimulated an increase in GREM1 expression in BM stroma after 72 h of
co-culture, while co-culture with the cell lines RPMI-8226 (p > 0.05) and H929 (p > 0.05) did not result
in changes in GREM1 expression in the stroma (Figure 2A). Furthermore, contact co-culture of the
murine MM cell line 5TGM1 adhered to the BM-derived stromal cell line OP9 resulted in a significant
increase in Grem1 expression following 72 h of co-culture compared with OP9 monocultures (p = 0.0200;
Figure 2B). A significant change in stromal Grem1 expression was not observed at the earlier time
points (24 and 48 h) of co-culture (p > 0.05; Figure 2B). Co-culture was also performed in noncontact
Transwell assays, however only the cell contact co-cultures exhibited statistically significant changes in
OP9 stromal expression of Grem1 (Figure 2B-C).
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Figure 1. GREMLIN1 (GREM1) expression is elevated in primary stromal cultures from multiple
myeloma (MM) patients and the compact bone of tumor-bearing KaLwRij mice. RNA was extracted from
stromal cells ex vivo cultured from bone marrow (BM) trephine samples from age- and gender-matched
normal donors and MM patients and the expression of GREM1 (A) was analyzed by real-time PCR. Data
presented as mRNA expression normalized to 3-Actin (ACTB), median + interquartile range, Normal;
n =17 and MM; n = 15, ** p < 0.001, Mann-Whitney test. Grem1 expression in compact bone isolated
from the long bones of nontumor- and (B) VK*MYC tumor-bearing C57BL6 mice (1 = 10), and (C) 5TGM1
tumor-bearing (MM) KaLwRij mice (Nontumor; # = 13 and Tumor-bearing; n = 10) was analyzed by
real-time PCR. Graph depicts Grem1 expression relative to 3-Actin (ActB), median + interquartile range,
*p <0.05, **** p < 0.0001, Mann-Whitney test. (D) Grem1 expression in the BM stroma isolated from the
compact bone of the hindlimbs of KaLwRij tumor-bearing mice was correlated with the tumor burden
in the respective limbs, as detected by bioluminescent imaging (BLI). Graph depicts Grem1 expression
(y-axis) vs. tumor burden (x-axis), n = 10, Pearson correlation, p < 0.05, r = 0.666.

To explore the potential mechanism(s) underpinning this increased Grem1 expression in co-culture
conditions, we investigated the role of interleukin-6 (II-6) in regulating Grem1. Previous studies have
reported that IL-6 regulates GREM1 in a model of the fibrotic condition, systemic sclerosis [33], and it
is well-established that MM PCs upregulate IL-6 in stromal cell populations [34]. However, no direct
link between the cytokine and Grem1 has been reported in MM. OP9 BM stromal cells cultured in the
presence of 5TGM1 MM PCs for 72 h displayed a significant increase in II-6 expression compared to
OP9 cells cultured alone (p = 0.0313; Figure 2D). To investigate if this increase in 1I-6 could directly
influence stromal cell expression of Grem1, OP9 cells were cultured with 20 ng/mL recombinant Il-6
protein for 72 h. As shown in Figure 2E, there was a significant increase in Grem1 expression in cultures
exposed to I1-6 (p = 0.0086). To confirm the involvement of I1-6 in the upregulation of Grem1 in stromal
cells cultured in the presence of MM PCs, an I1-6 neutralizing antibody or control immunoglobulin
was added to the co-culture. The addition of the II-6 neutralizing antibody abrogated the increase in
stromal Grem1 expression when OP9 cells were cultured with 5TGM1 tumor cells (p < 0.05; Figure 2F).
Further supporting a role for IL6 in the regulation of GREM1 in MM, a positive correlation between
IL-6 and GREM1 mRNA expression was observed in both MGUS and MM patient BM stromal samples
(MGUS; p = 0.0061, R = 0.533, and MM; p = 0.0458, R = 0.738); Figure 2G).
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Figure 2. MM plasma cells (PCs) upregulate stromal expression of Grem1 in adherent co-culture
via interleukin-6 (II-6). RNA was extracted from (A) washed primary, normal human stroma
previously co-cultured with KMS-11, RPMI-8226, H929, and U266 human MM cell lines for 72 h
and (B) fluorescent-activated cell sorting (FACS) sorted green-fluorescent protein (GFP)+ murine,
bone-marrow-derived stromal OP9 cell lines previously co-cultured with 5TGM1 MM PCs in cell-contact
and (C) Transwell culture conditions for 24, 48, and 72 h. GREM1/Grem1 expression from stromal
samples was analyzed by qPCR. (D) II-6 expression was analyzed in the murine, BM-derived, stromal
OP9 cell lines following 72 h culture in the absence/presence of 5TGM1 MM PCs. (E) OP9 stromal
cells were cultured in the absence/presence of 20 ng/mL murine recombinant I1-6 (r.II-6) for 72 h
and analyzed for Grem1 expression. (F) OP9 stromal cells were cultured in either media only or in
co-culture with 5TGM1 MM PCs in presence of 0.05 pug/mL anti-II-6 neutralizing antibody (MM PC
co-culture + anti-II-6 Ab) or immunoglobulin G (IgG) antibody control (MM PC co-culture + IgG
control) and analyzed for Grem1 expression. Graphs depict data presented as mRNA expression
normalized to B-Actin (ACTB/ActB), mean + standard error of the mean of three replicate experiments;
*p <0.05,*p <0.01, ** p <0.001, (A-C,F) one-way ANOVA, Tukey multiple comparisons and (D,E)
t-test. (G) GREM1 mRNA expression from ex vivo cultured monoclonal gammopathy of undetermined
significance (MGUS) and MM patient BM stromal samples was correlated with IL-6 mRNA expression.
Graph depicts GREM1 expression (y-axis) vs. IL6 expression (x-axis), MGUS; n = 21 and MM; n =8,
Pearson correlation, MGUS; p < 0.01, » = 0.533 and MM; p < 0.05, r = 0.738.

2.2. Increased Grem1 Expression Promotes MM PC Proliferation

50f 20

To investigate the significance of increased Grem1 expression on MM disease course, OP9 stromal

cells constitutively overexpressing Greml were generated through lentiviral transfection of a
murine Greml-expression construct (Figure 3A,B) and used in co-cultures with 5TGM1 MM PCs.
The 5TGM1 cells demonstrated a significant increase in proliferation when co-cultured with the
Grem1-overexpressing OP9 stromal cells, both in cell contact (p = 0.0203; Figure 3C) and Transwell
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assays (p = 0.0075; Figure 3D). These findings suggest that Grem1 may play a role in promoting
the growth of MM PC within the BM microenvironment. Given that Grem1 has a primary role as
a BMP-antagonist [19] and BM stromal cells are a rich source of the Grem1-targets, BMP -2, -4, and
-7 [35], we hypothesized that the pro-proliferative role of Grem1 in MM occurs through antagonism of
the BMP pathway. In support of this, Western blot analysis revealed that 5TGM1 MM PCs cultured
in the presence of Grem1-overexpressing OP9 stromal cells displayed a reduction in BMP-mediated
phosphorylation of the Smad pathway, compared to 5TGM1 MM PCs co-cultured with OP9-empty
vector control (Figure S2).
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Figure 3. Elevating BM stromal cell expression of Grem1 promotes an increase in 5TGM1 MM PC
proliferation. Grem1 was overexpressed in the murine BM stromal cell line, OP9. Greml transgene
expression in OP9 stromal cells was confirmed by (A) RT-PCR and (B) representative Western blot (graph
depicting densitometric analysis of two independent Western blots). Proliferation of 5TGM1 MM PCs
in (C) cell-cell contact and (D) Transwell co-cultures with OP9 empty vector and Grem1-overexpressing
OP9 (OP9.Greml1) stromal cells was measured by luciferase activity after 72 h of culture. Graphs depict
mean + SEM of three replicate experiments normalized to the OP9 empty vector control, * p < 0.05,
**p < 0.01, t-test.

2.3. Targeting Grem1 Reduces MM Tumor Burden In Vivo

Given that Grem1 expression is increased in the MM BM microenvironment in vivo and acts to
promote MM PC proliferation in vitro, we hypothesized that functional blockade of Grem1 may reduce
MM tumor growth. In vitro testing of a Grem1-neutralizing antibody showed that it could effectively
reverse Greml-mediated inhibition of BMP signaling in an Inhibitor of DNA Binding-1 (ID1) reporter
assay (Figure 4A). These findings were further confirmed by Western blot analyses (Figure. 4B). Notably,
the addition of recombinant Grem1 to BMP2-stimulated MDA-MB-231 cells abrogated downstream
BMP-signaling, as indicated by a reduction in downstream phospho-Smad levels (Figure 4B). However,
the addition of anti-Grem1 antibody restored BMP-signaling (as evidenced by elevated phospho-Smad)
to levels seen in the absence of recombinant Grem1 (Figure 4B). To investigate the potential for targeting
Greml in vivo, the proliferation rate of 5TGM1 MM PCs was assessed in vitro following the addition
of the anti-Grem1 antibody. The proliferation of 5TGM1 tumor cells was assessed in both MM PC-only
cell suspensions and with MM PC adhered to OP9 stromal cells. No significant difference in MM PC
proliferation was observed between the MM PC-only cultures (p > 0.05; Figure S3A). However, 5TGM1
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MM PC growth in co-culture with OP9 stromal cells was reduced by 17% in the presence of anti-Grem1
antibody compared to IgG control antibody (p < 0.0026; Figure S3B).
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Figure 4. Anti-Grem1 antibody nullifies Grem1 inhibition of bone morphogenic protein (BMP) signaling.

(A) Clone 12 cells were cultured with serial dilutions of anti-Grem1 antibody protein in the presence
of a fixed amount of recombinant Grem1 protein and BMP heterodimer protein as part of a human
embryonic kidney (HEK) Inhibitor of Binding Protein-1 (ID1) reporter assay. Data shown as percentage
restoration of BMP 4/7 signal as measured by luciferase signal, relative to BMP4/7 signal in the absence
of Grem1. (B) MDA-MB-231-TXSA cells were serum starved for 6 h, before stimulation for 2 h with
combinations of recombinant BMP2 (rBMP2), recombinant Grem1 (rGrem1), anti-Grem1 antibody, and
IgG isotype control antibody. Protein was immediately isolated from cells and analyzed by Western blot.
BMP signaling was indicated by the amount of phospho- Mothers against decapentaplegic homolog
(Smad) 1/5/9 protein relative to the loading control 3-actin.

To examine the role of Grem1 in MM tumor establishment and growth in vivo, we utilized the
well-characterized 5TGM1/KaLwRij preclinical mouse model of MM [32]. Following two weeks
of disease establishment, mice (n = 10/treatment group) were randomly assigned to two groups
that displayed comparable tumor burden to receive treatment with either a neutralizing anti-Grem1
antibody or an IgG control antibody. As shown in Figure 5A, there was no significant difference in MM
tumor burden at the experimental endpoint as measured by bioluminescent imaging (BLI) (p = 0.4399,
median BLI; IgG control antibody, 1.14 x 107 photons/sec (interquartile range: 1.16 x 10°~1.39 x 10%) vs.
anti-Grem1 antibody, 1.40 x 107 photons/sec (interquartile range: 1.12 x 10°-1.02 x 10%) (Figure 5A).
Like MM PCs from patients, 5TGM1 PCs produce a monoclonal antibody (paraprotein or M-protein)
that can readily be detected in peripheral blood using serum protein electrophoresis (SPEP) analysis,
with quantitation of paraprotein providing an assessment of total body tumor burden. Mice treated
with the anti-Grem1 antibody displayed no change in serum paraprotein levels measured by SPEP
(p = 0.1218). While no statistically significant differences were observed in this study, there was a trend
toward a reduction in tumor burden in the anti-Grem1 antibody treatment group by both BLI and
SPEP (Figure 5A) that warranted further investigation.
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Figure 5. Anti-Grem1 antibody treatment reduces 5TGM1 tumor growth in vivo. KaLwRij mice
were inoculated with 5 x 10° 5TGM1.Bmx1 MM PCs. Mice were treated with either 30 mg/kg
anti-Greml antibody or IgG isotype control antibody in three treatment regimens: (A) Late-stage
established disease (once weekly treatment administered at weeks 2 and 3 posttumor cell inoculation,
n =10/treatment group), (B) early-stage established disease (twice weekly treatment administered from
day 3 posttumor cell inoculation, n =11/treatment group), and (C) prior to tumor engraftment (twice
weekly treatment administered one week prior to tumor cell inoculation, n = 7-8/treatment group).
Tumor burden was measured throughout the study by bioluminescent imaging (BLI) and at the endpoint
by serum protein electrophoresis (SPEP). Line graphs depict whole-body ventral BLI quantitation at
weeks 2, 3, and 4 for anti-Grem1 antibody- and isotype control antibody-treated mice, two-way ANOVA,
Sidak’s multiple comparisons, median + interquartile range. Representative BLI images for the final
timepoint at week 4 are shown. A secondary, independent measure of tumor burden was also used.
Graph depicts level of paraprotein detected in serum following tail bleeds at week 4 (normalized
to internal albumin control), Mann-Whitney test. Scatterplots depict median + interquartile range,
Mann-Whitney test, of n = 11 mice per treatment group, * p < 0.05, ** p < 0.01, *** p < 0.001.

Given these promising results, a more aggressive treatment regimen starting at an earlier
timepoint was evaluated. Three days after disease initiation, mice were randomly assigned
(n =11/treatment group) to receive treatment with either a neutralizing anti-Grem1 antibody or an IgG
control antibody, with disease burden monitored by weekly BLI for the duration of the experiment.
As shown in Figure 5B, anti-Grem1 therapy significantly reduced MM tumor burden in vivo at the
experimental endpoint by 54.5% (p = 0.0012; median BLI IgG control antibody, 1.56 x 107 photons/sec
(interquartilerange: 1.12 X 10°-1.02 x 108)) vs. anti-Grem1 antibody, 6.46 X 100 photons/sec (interquartile
range: 5.10 x 10°-4.65 x 107, Figure 5B). Mice treated with the anti-Grem1 antibody also displayed a
significant reduction in M-protein intensity compared to the control treated mice (p = 0.0055; Figure 5B).
When mice received treatment with the anti-Grem1 therapy prior to inoculation with 5TGM1 tumor cells,
an even greater reduction in tumor burden of 81.2% was observed (p = 0.0496; median BLI; IgG
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control antibody, 2.44 x 107 photons/sec (interquartile range: 1.91 x 10°~1.91 x 10%) vs. anti-Grem1
antibody, 2.99 x 10° photons/sec (interquartile range: 4.95 x 10°-3.47 x 107) (Figure 5C). This was also
supported by a significant reduction in M-protein intensity in mice treated with anti-Grem1 antibody
(p = 0.0003; Figure 5C). Additionally, a 24-h in vivo BM homing assay was utilized to determine
whether decreased MM PC BM homing was responsible for the greater antitumor effect observed when
treatment was started prior to tumor cell inoculation (Figure 5C) compared to post tumor inoculation
(Figure 5A,B). No significant difference in the homing of MM PCs to the BM (p > 0.05: Figure S4A) or
number of MM PCs remaining in circulation (p > 0.05: Figure S4B) was observed between treatment
conditions. When combined, these results indicate that Grem1 has a role in both disease establishment
and progression, and represents a viable therapeutic target in MM.

Given that GREM]1 displays restricted expression in adult tissues [36], we hypothesized that
the effect of anti-Grem1 antibody treatment would be specific to sites of highest Grem1 expression.
Myeloma cancer cell growth would be constrained by BMPs unless a localized source of Grem1 is
present, and therapeutically neutralizing Grem1 would be most effective against tumors located within
Grem1-rich microenvironments. In the 5TGM1/KaLwRij model, tumor growth is commonly restricted
to the skeleton and the spleen. The skeleton is reported to have moderate to high GREM1 expression,
while the spleen is reported to be negative for GREM1 expression [36], an observation that we have
independently verified by RT-PCR of splenic and compact bone RNA (Figure S5). Hence, the BLI
signal in anti-Grem1 antibody and IgG control-treated mice was re-analyzed for spatially restricted BLI
signal arising from either the long bones of the hindlimbs or the spleen (Figure 6A). Notably, there was
a significant reduction in the mean tumor burden of the long bones of anti-Grem1 antibody-treated
mice compared to control-treated mice in two of the three treatment regimens (pretreatment p = 0.0008,
day 3 treatment p = 0.0022; Figure 6B). However, no significant differences in mean splenic tumor
burden were observed (day 3 treatment, p > 0.05; Figure 6B). While the mean reduction in splenic
tumor burden was reduced (pretreatment, p = 0.0012; Figure 6B), it was reduced far less than the mean
reduction in hindlimb skeletal tumor burden.
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Figure 6. Anti-Grem1 antibody treatment in 5TGM1 tumor-bearing mice specifically reduces skeletal
tumor burden, but not splenic tumor burden. (A) Schematic illustrating the detection of splenic tumor
signal by BLI. (B) Final BLI scans for anti-Grem1 treatment regimens started either three days posttumor
cell inoculation (posttreatment) or prior to 5TGM1 tumor cell inoculation (pretreatment) measuring
BLI tumor signal from the splenic region and skeletal BLI of the long bones. Graphs depict median +
interquartile range, posttreatment spleen: n = 13; posttreatment long bones: n = 13; pretreatment spleen:
n =7; and pretreatment long bones: n = 8. ** p < 0.01, *** p < 0.001, Mann-Whitney test.

Importantly, in vivo administration of the anti-Grem1 antibody was well tolerated, with no effects
on normal hematopoiesis or gross cellular make-up of the bone marrow observed following treatment
(p > 0.05; Figure 7) Additionally, peripheral blood analysis demonstrated no significant differences in
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red blood cell count, white blood cell counts, or hemoglobin levels between treatment groups (p > 0.05;
Figure S6).
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Figure 7. Anti-Grem1 antibody treatment does not alter the cellular composition of the BM in vivo.
KaLwRij mice were treated with 30 mg/kg anti-Grem1 antibody or IgG control antibody twice weekly
for two weeks. Mice were culled three days after the final treatment and BM and compact bones
were collected from the long bones for flow cytometric analysis. Compact bone was analyzed
for (A) MSC lineage populations: OB (CD45—, Lin—, CD31—, CD51+, Scal+), OP (CD45—, Lin—,
CD31-, CD51+, Scal-), and MSCs (CD45-, Lin—, CD31-, CD51-, Scal+). BM was also analyzed
for: (B) HSC lineage populations: Progenitors (Lin—, Scal+, cKit+), short-term HSC (Lin—, Scal+,
cKit+, CD135-, CD34+), long-term HSC (Lin—, Scal+, cKit+, CD135—, CD34-), and (C) mature
(CD31+CD144+) and immature (CD31+CD144—) endothelial lineages. Graphs depict median +
interquartile range from n = 6 mice per treatment group from two independent experiments; p > 0.05,
unpaired t-test. OB = osteoblast, OP = osteoprogenitor, MSC = mesenchymal stem cell, HSC-p =
hematopoietic stem cell progenitors, ST-HS C = short-term hematopoietic stem cell, LT-HSC = long-term

hematopoietic stem cell.

3. Discussion

Due to rapid bench-to-bedside translation of new therapeutic modalities, MM patient outcomes
have vastly improved in recent years [4]. Despite this, the vast majority of patients inevitably relapse [4].
Furthermore, in MM patients who have received at least three lines of prior therapy and become
refractory to both immunomodulatory agents and proteasome inhibitors, the mean overall survival is
only 13 months [37], highlighting the urgent need for treatment advances to improve patient survival
post-frontline therapy. To our knowledge, the studies presented here demonstrate, for the first time,
a novel positive feedback loop between MM PCs and BM stroma involving IL-6 and Grem1. Notably,
we found that inhibiting this vicious cycle with a neutralizing antibody can dramatically reduce tumor
burden in a preclinical mouse model of MM.

Overexpression of GREM1 in the tumor-supportive tissue of basal cell carcinoma, as well as
carcinomas of the bladder, breast, lung, colon, and pancreas has been shown to promote tumor
cell proliferation in vitro and disease progression in vivo [28,38,39]. Furthermore, aberrant GREM1
expression in the bowel disease, hereditary mixed polyposis syndrome (HMPS), is sufficient to initiate
colonic tumorigenesis [39]. Our findings are consistent with previous studies that report upregulation
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of Grem1 within the tumor microenvironment, demonstrating for the first time that Grem1 is upregulated
in the BM stroma of MM patients. This was further supported in both the 5TGM1-KaLwRij and
Vk*myc-C57BL/6 mouse models of MM, whereby significant increases in Grem1 expression were
observed in the bones of tumor-bearing mice compared to normal controls. Importantly, we found
a positive correlation between tumor burden and Grem1 expression. In keeping with these findings,
co-culture experiments conducted with both human and mouse MM PC lines with BM-derived stroma
showed increases in GREM1/Grem1 expression within the stroma. These findings suggest that the
increase in BM-derived Grem1 expression in MM is directly driven by MM PCs. These findings are
in keeping with the known interplay between MM PCs and neighboring bone marrow stromal cells,
which function to provide a tumor-supportive niche within the BM [39]. The interaction and adhesion
of MM PCs with the surrounding BM stroma has been shown to upregulate a number of critical
pro-survival and/or anti-apoptotic pathways, including Nuclear Factor kappa-light-chain-enhancer
of activated B cells (NF-«xB) and Notch signaling pathways, which regulate the expression of key
downstream MM supportive factors, VEGF, Insulin-like growth factor-1 (IGF-1), and IL-6 [40].

Our studies suggest that the cytokine IL-6 may be responsible for the regulation of GREM1 in MM.
Paracrine and autocrine upregulation of IL-6 within the MM BM microenvironment is a common
feature of MM and it is well understood that IL-6 promotes the survival and proliferation of MM
tumor cells, mediated through Janus kinase/signal transducer and activator of transcription (JAK/STAT)
upregulation of VEGF, Ras, Akt (Protein kinase B), and mitogen-activated protein kinase (MAPK)
pathways [41]. Furthermore, studies by Uchiyama et al. [34] and others [42] have demonstrated
that adhesion of MM PCs to BM stromal cells triggers stromal secretion of IL-6. This is consistent
with the findings presented in this study, whereby OP9 stromal cells in direct contact with 5TGM1
MM PCs stimulate an increase in II-6 expression. Importantly, IL-6 has been shown to regulate the
expression of GREM1 via STAT3-dependent mechanisms in dermal fibroblasts of patients with the
fibrotic condition of systemic sclerosis [33], and it is likely that a similar mechanism mediates the
upregulation of stromal cell GREM1 expression observed in our study. Furthermore, inhibition of
IL-6 signaling abrogated the MM PC-mediated increase in BM stromal Grem1 expression in MM
PC stromal co-cultures. Interestingly, the human myeloma cell line (U266) that caused the highest
elevation in GREM1 expression in human BM stroma in co-culture experiments also expresses the
highest levels of IL-6 mRNA (www.keatslab.org). Taken together, these data suggest that I1-6 is critical
for the upregulation of BM-derived Grem1 in MM.

Overexpression of GREM1 in lung and colorectal cancers, as well as malignant mesothelioma, is
associated with disease progression by promoting cell survival, proliferation, and invasion in vitro [21,22,28].
In contrast, increased GREM1 expression in pancreatic neuroendocrine tumors is associated with
an increase in patient progression-free survival and has been reported as a predictor of positive
outcomes [29]. To examine a role for Greml in MM, BM stromal cells overexpressing Grem1
were generated. MM PCs cultured with BM-stromal cells overexpressing Grem1 exhibited up to
an 80% increase in MM PC proliferation, supporting a pro-tumorigenic role for Grem1 in MM. The BMP
pathway is known to inhibit MM PC proliferation and promote apoptosis and its inhibition by Grem1
represents a potential mechanism for the increase in MM PC proliferation observed [43]. In the context
of MM, a number of studies have demonstrated an anti-proliferative and pro-apoptotic role for BMPs,
particularly the Grem1 targets, BMP-2 and BMP-4 [43]. The findings presented here are consistent with
a BMP-dependent role for Grem1 signaling, as MM cells cultured with stromal cells overexpressing
Grem1 displayed both an increase in proliferation and, subsequently, a decrease in downstream BMP
signaling, as indicated by decreased phosphorylation of Smads 1, 5, and 9.

A significant setback in effectively treating MM patients relates to the diverse interpatient
heterogeneity of the genetic mutations observed in the PC tumors. As such, using precision medicine to
target tumor-specific dysregulated pathways will always be hampered by the small proportions of MM
patients whose tumors have mutations dysregulating each specific pathway. However, in our studies,
ex vivo analysis of MM patient BM trephine biopsies showed that 93% of patients had greater
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stromal GREM]1 expression than the median normal BM sample. As such, GREM1 may represent a
microenvironmental factor that is frequently upregulated in MM patients despite their diverse tumor
genetics and, therefore, may represent a suitable therapeutic target for the majority of MM patients.
Given the inability to fully recapitulate the complexities of the MM BM microenvironment in vitro, the
5TGM1/KaLwRij preclinical mouse model of MM was used to further investigate a role for Grem1
in disease development and determine whether therapeutically targeting Grem1 represents a viable
treatment option. Other studies have previously used neutralizing antibodies against Grem1 and
reported promising results [44,45]. Kim et al. first used a Grem1-neutralizing antibody to inhibit Grem1
induced migration, invasion, and proliferation of the lung carcinoma cell line A549. A subsequent study
by Ciuclan et al. demonstrated a Grem1-neutralizing antibody was effective in treating a mouse model
of pulmonary hypertension [45]. In the studies presented here, we demonstrated for the first time that
the use of a Greml-neutralizing antibody (UCB Pharma) in the 5TGM1/KaLwRij mouse model of MM
resulted in a reduction of up to 81.2% in mean MM tumor burden. Given that the Grem1-neutralizing
antibody had no significant effect on the growth of 5TGM1 MM PCs in monoculture in vitro, the effects
of the Grem1-neutralizing antibody in vivo are consistent with targeting a PC-extrinsic factor. Despite a
recently published study by Rowan et al. that determined that Grem1 depletion in vivo resulted
in severe enteropathy and rapid onset BM failure in adult mice [46], the data from this study and
a previous study by Ciuclan et al. have demonstrated that anti-Grem1 antibody treatment is well
tolerated, with no adverse effects reported in any experimental animals [45]. This is in keeping with
the favorable safety profile that has been observed in monoclonal antibody therapies compared to
standard chemotherapeutics [47].

Importantly, while tumor burden was reduced by more than 5-fold with anti-Grem1 neutralizing
antibody treatment, complete eradication of tumor burden was not achieved. Preliminary in vitro
studies demonstrated anti-Grem1 antibody treatment resulted in only a limited reduction in MM PC
growth when added to MM PC stromal co-cultures and, therefore, that MM PCs do not appear to be
completely dependent on Grem1 for their growth and survival. Furthermore, since the studies presented
here demonstrated a positive feedback loop whereby MM PC upregulated stromal-derived Grem], it is
conceivable that the elevated levels of BM Grem1 cannot be effectively neutralized by the administration
of a single anti-Grem1 agent. This may also explain the greater antitumor effect observed when
treatment was commenced prior to tumor cell inoculation (81.2% reduction) compared to when
treatment was started posttumor cell inoculation (54.5% reduction). In the latter situation, the tumor
cells have longer to interact with the BM stromal cells, initiating this positive feedback loop within the
tumor microenvironment. As such, a combination therapy approach that utilizes current frontline
therapies targeting the MM PCs and their interaction with the cellular compartment of the BM
microenvironment may achieve a more complete response. In support of this notion, previous clinical
studies examining the effectiveness of the monoclonal antibody against the MM PC cell-surface protein
SLAMF7 (elotuzumab) showed limited clinical activity as a single agent, but was able to limit MM
disease progression and improve overall survival when combined with frontline MM therapies [48].
Furthermore, disease relapse is often inevitable in MM and patients standardly receive a period of
maintenance therapy after their initial induction treatment regimen. Given that anti-Grem1 antibody
treatment demonstrated the greatest antitumor effect during early stages of disease, where tumor
burden was still limited, this therapy would be well suited in the maintenance phase of treatment
where MM PC tumors may still be widespread, but of small size.

Current treatment strategies primarily target the proliferative MM PC population, yet overlook
the critical role of the BM microenvironment in supporting MM PC growth, survival, and drug
resistance [49]. While this is an area of great research interest, there has been limited success
and very few therapies targeting the MM BM microenvironment that have made it into standard
clinical practice [49]. There remains a need to identify new BM therapeutic targets and devise new
strategies to effectively reduce MM tumor burden. Collectively, our data suggest that Grem1 is
a key BM stromal-derived factor that promotes MM disease initiation and progression and that
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antibody-mediated targeting of Grem1 significantly reduces disease burden. In summary, our findings
suggest that an anti-Grem1 antibody therapy warrants further investigation in MM, with the potential
to achieve a sustained antitumor response in the upfront setting, and may be ideally suited for inclusion
as a maintenance therapy to prevent and/or delay disease relapse.

4. Materials and Methods

4.1. Cell Culture

All cell lines were maintained in a humidified environment at 37 °C with 5% carbon dioxide.
Unless otherwise stated, all cell culture reagents were sourced from Sigma-Aldrich (St. Louis, MI, USA)
and all media were supplemented with 10% (v/) fetal calf serum (FCS), 2 mM L-glutamine, 1 mM
sodium pyruvate, 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, 100 U/mL
penicillin, and 100 ug/mL streptomycin. The murine MM 5TGM1 PC line was kindly provided by
Assoc. Prof. Claire Edwards (University of Oxford, Oxford, UK). The 5TGM1 cells expressing both
green fluorescent protein (GFP) and firefly luciferase were generated using the retroviral expression
vector NES-TGL [48], and a new clonal subline that exhibits consistent bone tropism (5TGM1.Bmx1)
was established [48]. The 5TGM1 cells were maintained in Iscove’s Modified Eagle’s Medium. The
mouse bone marrow stromal cell line OP9 was obtained from the American Type Culture Collection
(Manassas, VA, USA) and maintained in Dulbecco’s Modified Eagle Medium (DMEM). Co-cultures of
5TGM1 cells and OP9 cells were maintained in Iscove’s Modified Eagle’s Medium (IMDM). The human
MM cell lines (HMCLs) RPMI-8226, U266, and KMS-11 were obtained from the ATCC. The HMCL
H929 was kindly provided by Prof. Andrew Spencer (Monash University, Melbourne, Australia).
All HMCLs were cultured in RPMI-1640 medium. The MDA-MB-231-TXSA breast cancer cell line was
kindly provided by Dr. Toshiyuki Yoneda (formerly at University of Texas Health Sciences Center,
San Antonio, TX, USA) and maintained in RPMI-1640 medium.

4.2. Human Bone Marrow Stromal Cell Purification and RNA Isolation

Iliac crest trephines were collected from randomly selected patients with symptomatic MM who
presented at the Royal Adelaide Hospital (Adelaide, Australia) and from hematologically normal
age-matched controls (MM; n = 15, Normal; n = 17, age-range = 44-78 years, mean age = 61.9 years).
All patients provided informed consent in accordance with the Declaration of Helsinki. Bone marrow
(BM) mononuclear cells were prepared from BM trephines by density gradient isolation, as previously
described [50], and cryopreserved by the South Australian Cancer Research Biobank at SA Pathology.
The studies were approved by the Central Adelaide Local Health Network Human Research Ethics
Committee (HREC/13/RAH/569 No0:131133). Samples were collected from patients prior to treatment.
Stromal cell cultures were grown out ex vivo from the BM mononuclear cells by plastic adherence
culture as previously described [1] and expanded prior to cryopreservation. Stromal cell cultures were
retrieved from storage in liquid nitrogen and cultured ex vivo at passage 2 in alpha-MEM culture
medium supplemented with 100 uM L-ascorbate-2-phosphate for 24 h prior to RNA extraction using
TRIzol™ Reagent (Thermo Fisher Scientific, Waltham, MA, USA).

4.3. Murine Compact Bone Purification and RNA Isolation

C57BL6/KaLwRij.Hsd (KaLwRij) mice were kindly provided by Prof. Andrew Spencer (Monash
University, Melbourne, Australia) and were rederived, bred, and housed at the South Australian
Health and Medical Research Institute (SAHMRI) Bioresources Facility. VK*MYC 4929 splenic-derived
transplants were obtained from Prof. Ricky Johnstone (Peter MacCallum Cancer Centre, Melbourne,
Australia) and passaged through C57BL6 mice. All procedures were performed with the approval
of the SAHMRI Animal Ethics Committee (Ethics Approval #SAM165 and #166). The 6-8-week-old
KaLwRij or C57BL6 mice were injected intravenously (i.v.) with 5 x 10° 5TGM1.Bmx1 MM PCs and
1 x 106 VK*MYC 4929 splenic transplant cells, respectively, in 100 uL of sterile phosphate buffered
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saline (PBS). For 5TGM1-tumor bearing KaLwRij mice, tumor growth was established over four
weeks (as previously described [32]). Tumor development at the study endpoint was confirmed
by in vivo whole animal bioluminescent imaging (BLI) using a Xenogen IVIS Spectrum Imaging
System (Perkin Elmer Inc., Waltham, MA, USA) after intraperitoneal injection (i.p.) of 150 mg/kg
of D-Luciferin (Biosynth, Basel, Switzerland). Tumor burden was quantitated using Living Image
software (Perkin Elmer Inc). VK*MYC tumor growth was established over 12 weeks and validated by
presence of an M-spike in peripheral blood serum. At the experimental endpoint, femora and tibiae
from tumor-bearing, and age- and sex-matched nontumor mice were isolated, and the BM flushed
out with PFE buffer (PBS, 2% FCS, and 2 mM Ethylenediaminetetraacetic acid (EDTA)). Collagenase
digestion of the cortical and trabecular bone was performed, as previously described [51]. The digested
bone fragments and collagenase-isolated BM stromal cells were co-lyzed in 1 mL of TRIzol"™ Reagent
(Thermo Fisher Scientific) and incubated on ice for 15 min.

4.4. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

Total RNA was isolated from cells using TRIzol™ Reagent (Thermo Fisher Scientific)
according to the manufacturer’s instructions, unless otherwise specified. All RNA samples
underwent DNase treatment with RQ1 DNase (Promega, Madison, WI, USA), as per
manufacturer’s instructions. RNA (1 pg) was reverse transcribed into complementary DNA
using SuperScriptlll™ (Thermo Fisher Scientific) according to manufacturer’s instructions.
Real-time polymerase chain reaction (PCR) was conducted using 1 x RT2 SYBR® Green qPCR
Mastermix (QIAGEN, Hilden, Germany) and the following primer sequences on the CFX
Connect™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA): Mouse Greml:
forward 5-GCGCAAGTATCTGAAGCGAG-3’; reverse 5-CGGTTGATGATAGTGCGGCT-3’,
human GREMI: forward 5- AGGCCCAGCACAATGACTCAG-3; reverse 5'-
GTCTCGCTTCAGGTATTTGCG-3’, mouse 11-6; forward 5’ -GCACTCCTTGGATAGAGCCC-3’; reverse
5- ACGAGGATTCTTGCACTGGG-3', human IL-6; forward 5’-CCAGTACCAATGCGTCATCCA-3’;
reverse 5 -CTGGGCTCTGCTATCCAAGGAG-3/; mouse/human  B-actin: forward 5’-
GATCATTGCTCCTCCTGAGC; reverse 5-GTCATAGTCCGCCTAGAAGCAT-3’. Changes in
gene expression were calculated relative to 3-actin as the endogenous control using the standard
curve method.

4.5. Generation of a Murine Grem1-Overexpressing Stromal Cell Line

An OP9 BM stromal cell line, constitutively overexpressing Grem1, was generated by infection
with a pLegoiT?2 lentiviral vector (Plasmid #27343, Addgene) harboring the murine cDNA for the coding
region of Greml, isolated from a pCMV6-Kanamycin resistant vector kindly provided by Dr. Miao
Yang (Gastrointestinal Cancer Biology Group, SAHMRI, Adelaide, Australia). The pLegoiT2-Grem1
viral vector was transfected into HEK-293T cells using Lipofectamine2000™ (Thermo Fisher Scientific)
together with packaging plasmids psPAX2 and EcoENYV, and viral particle-containing supernatant was
used to infect OP9 stromal cells. Cells were sorted for expression of tdTomato fluorescent protein on a
FACSAria™ Fusion (BD Biosciences, San Jose, CA, USA). Transgene expression was confirmed by
RT-qPCR and Western blot, as previously described [31].

4.6. Western Blot Analysis

Briefly, protein extracted from cell lysates by radioimmunoprecipitation assay buffer
(RIPA) lysis buffer [31] was separated on a 10% acrylamide gel and subjected to sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were transferred to
a nitrocellulose membrane and subsequently blocked with 5% w/f skimmed milk powder.
Immunoblotting was performed with primary antibodies directed against Grem1 (clone 140010,
Abcam, 1:250), phospho-Smad1/5/9 antibodies (D5B10, Cell Signaling Technologies, Danvers, MA,
USA, 1:1000 dilution). Hsp90 (cat# 7942, Santa Cruz, Dallas, TX, USA, 1:2500) and (3-actin (cat#
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A1978, Sigma Aldrich, 1:2500 dilution) antibodies were used as loading controls. Blots were incubated
with an alkaline phosphatase (AP)-conjugated anti-rabbit secondary antibody (cat# 12-448, Millipore,
Burlington, MA, USA, 1:2500 dilution). Blots were subjected to an ECF™ substrate prior to visualization
of proteins on the ChemiDoc Imaging System (Bio-Rad). Uncropped blots can be found at Figure S7.

4.7. Co-Culture of MM PC and BM Stroma

OP9 stromal cells were seeded (contact culture; 5 x 10% cells per 6-cm dish, Transwell culture;
2 X 10* per well in a 24-well plate) in triplicate and allowed to adhere for 5 h. The 5STGM1 MM PC were
added to the stromal cell cultures at 1 x 10° cells/mL (contact culture; 5 mL, Transwell culture; 100 uL in
Transwell insert). For contact co-culture, GFP-positive OP9 cells were isolated from GFP-negative
5TGMI1 parental cells by fluorescent activated cell sorting on a FACSAria™ Fusion (BD Biosciences).
Stromal cells were collected in TRIzol™ Reagent at 24, 48, and 72 h post co-culture initiation.
Human MM cell lines RPMI-8226, U266, KMS-11, and H929 were cultured with three primary human
BM stromal samples isolated from hematopoietically healthy individuals for 72 h. Human MM cell
lines were washed thoroughly from the adherent stroma twice with 1 x PBS prior to collection of
stromal cells in TRIzol™ Reagent. For I1-6 experiments, cells were cultured in 24-well plates for 72 h
as per the above co-culture conditions. The 20-ng/mL recombinant mouse I1-6 protein (cat #19646-5UG,
Sigma Aldrich) and 0.05 ug/mL neutralizing anti-mouse I1-6 antibody (cat #AF-406-NA, R&D systems,
Minneapolis, MN, USA) were used in cultures as specified.

4.8. Luciferase Proliferation Assay

The 5TGM1 MM PC line was cultured with either Grem1-overexpressing or empty vector OP9
stromal cells for 72 h in a 24-well plate, as described above. Following incubation, cells were collected
and lysed in 1 X Passive Cell Lysis Buffer (Promega). The 20 pL of cell lysate was transferred to a
96-well plate. Immediately prior to reading the plate, 100 pL of luciferase reaction buffer (5 mM MgCl,,
30 mM HEPES, 150 pM ATP, 500 pug/mL of Coenzyme A, and 150 pug/mL D-luciferin) was added to the
cell lysate. Luminescence was measured using a Wallac 1420 Victor Microplate reader (Perkin Elmer),
with luminous intensity used as a direct measure of MM PC number.

4.9. HEKID1 Reporter Assay

Clone 12 cells were cultured in DMEM containing 10% FCS, 1 x L-Glutamine, 1 X non-essential
amino acids, and Hygromycin B (200 ug/mL) to ensure cells do not lose Id1 gene expression. Cell were
assayed in DMEM containing 0.5% FCS, 1 x L-Glutamine, and 1 X NEAA. Cells were seeded in
96-well Poly-D-Lysine-coated plate at 5 x 10* cells per well and incubated for 3-4 h prior to assay.
Then, 10 pg/mL BMP heterodimer stock (UCB Pharma, Brussels, Belgium) was prepared at 100x and
added to cells. Then, 0.2 nM of recombinant mouse Grem1 protein (UCB Pharma) was added to cells.
Three-fold titrations of anti-Grem1 antibody (UCB Pharma) was added to cells, to a maximum dose
of 15 nM. All wells were made up to 60 pL with assay medium and incubated for a further 45 min
at 37 °C. Post-incubation, 30 uL of sample was transferred per well of assay plate and incubated for
20-24 h before measuring luminescence signal. Cell Steady Glo (Promega) was added to assay plates
at room temperature. Luciferase signal was detected by addition of Cell Steady Glo reagent (100 puL)
for 20 min on shaker at room temperature and measuring luminescence using Cell Titre Glo protocol
(Promega) on Synergy 2 (BioTek, Winooski, VT, USA).

4.10. Confirmation of Anti-Grem1 Antibody Activity

MDA-MB-231-TSXA cells were seeded into 6-well plates and cultured until 80% confluent.
Cells were starved in serum-free medium overnight, and then stimulated with recombinant Grem1
(UCB Pharma) and/or recombinant BMP2 (ProSpec, Rehovot, Israel) as indicated for 2 h. Cell lysates
were collected for analysis by Western blot as previously described.
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4.11. Targeting Grem1 in an Immunocompetent Murine Model of Systemic MM

Greml-neutralizing antibody was kindly provided by Dr. Gareth Davies (UCB Pharma). Age-and
sex-matched KaLwRij mice (6-8 weeks old) were assigned to one of three treatment regimens with
30 mg/kg Greml-neutralizing antibody or IgG control (UCB Pharma) by subcutaneous (s.c.) injection.
In pretumor (treatment started one week prior to tumor cell inoculation) and three days posttumor
cell inoculation treatment regimens, mice were treated twice weekly from the first antibody injection
for the duration of the 4-week model. In the late-stage disease model, mice received the first dose
of Greml-neutralizing antibody or IgG control two weeks posttumor cell inoculation, and a second,
final dose one week later. Briefly, KaLwRij mice were inoculated with 5 x 10° bone tropic, GFP,
and luciferase-positive 5TGM1 cells (FTGM1.Bmx1) via tail vein injection. Tumor development was
monitored weekly by in vivo BLI, as described earlier. At experimental endpoints peripheral blood
serum was isolated and serum protein electrophoresis was performed using the Hydragel30 3132 kit
(Sebia) according to the instructions of the manufacturer. The intensity of paraprotein band/M-spike
was quantitated relative to the albumin band using Image Lab Software v6.0.1 (Bio-Rad).

4.12. Cell Lineage Flow Cytometric Analysis

For flow cytometric analysis, long bones (femora and tibiae) were excised and cleaned. Bones were
gently crushed with a mortar and pestle in PFE to isolate BM and compact bone cells were isolated,
as previously described [51,52]. Briefly, the resultant bone chips were washed, finely chopped,
and incubated with 3 mg/mL collagenase type-I (ScimaR, VIC, Australia) in PBS at 37 °C for 45 min.
Both cell suspensions were strained through a 70-um cell strainer, resuspended in PBS, and stained with
Fixable Viability Stain 700 (323 ng/mL; BD Biosciences) for 15 min. Cells were washed, resuspended
at1 x 107c ells/mL in PFE, and blocked with mouse gamma globulin (117 pg/mL; Abacus ALS, QLD,
Australia) for 30 min on ice.

For analysis of hematopoietic progenitor cells, a lineage cocktail of biotin-conjugated antibodies
(B220, CD3, CD4, CD5, CDS, Gr1, Ter119 (BioLegend, San Diego, CA, USA) and Cd11b (eBioscience,
San Diego, CA, USA)) stained with streptavidin-APC (Life Technologies, Carlsbad, CA, USA)
secondarily for 30 min was used to exclude mature Lin+ cells. Hematopoietic progenitor cells were
concurrently stained with Sca-Brilliant Violet-(BV)786, cKit-PE-Cy7, CD135-PE-CF594, and CD34-BV421
(all from BD Biosciences). Endothelial lineage cells were concurrently stained with CD31-PerCP/Cy5.5
and CD44-PE (all from BD Biosciences). Mesenchymal lineage cells (MSC, osteoprogenitors, and mature
osteoblasts) were quantitated from compact bone preparation, as previously described [52]. All antibody
cocktails were comprised of rat anti-mouse antibodies. Finally, cells were washed, filtered, and fixed in
1% neutral buffered formalin, 2% glucose, and 0.01% sodium azide in PBS prior to analyzing on the
LRSFortessa X20 (BD Biosciences). All flow cytometric data was subsequently analyzed using Flowjo
v10 with cell populations of interest analyzed as a percentage of total viable cells or as a percentage of
the parent population.

4.13. Statistics

All statistical analyses were performed using GraphPad Prism v.8.0.0 (GraphPad Software).
For in vitro experiments, the comparison of two groups for a single variable used a parametric paired
or unpaired t-test and was presented as mean + SEM for three independent replicate experiments.
For in vivo experiments or data that were not normally distributed, the comparison of two groups
for a single variable used a nonparametric Mann-Whitney U test and was presented as median +
interquartile range for individual samples analyzed. When three or more groups were compared for a
single variable, a one-way analysis of variance (ANOVA) with Tukey multiple comparisons was used.
For time-course experiments, groups were compared using a two-way ANOVA with Sidak’s multiple
comparisons test. Correlations were assessed using Pearson correlation coefficients. Differences were
considered statistically significant when p < 0.05.
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5. Conclusions

This study suggests that Grem1 is a key stromal-derived factor that promotes MM disease, and
that antibody-mediated targeting of Grem1 significantly reduces disease burden. With few effective
therapies that target the critical relationship between MM PCs and the BM, the findings presented here
represent a novel treatment strategy to limit MM disease burden.

6. Patents

Zannettino A.C.W., Hewett D., Clark K., & Panagopoulos V. (2019). Prevention and treatment
of cancer. UK provisional patent number GB1809946.5. University of Adelaide, UCB Pharma SPRL,
and The Oxford University Innovation Limited. Patent filed June 2019.
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co-culture with BM stroma but not in monocultures of MM PCs in vitro, Figure S4: Anti-Grem1 antibody treatment
does not alter the ability of 5TGM1 MM PCs to home to the BM in vivo, Figure S5: Differential Grem1 expression
in whole splenic and compact bone isolates, Figure S6: Anti-Grem1 treatment does not alter any hematological
parameters in vivo, Figure S7: full western blot, Figure S8. Phospho-Smad1/5/9 full western blot. Images from
same blot taken on consecutive days to account for antibody incubation and intensity of band signals, Figure S9.
Phospho-Smad1/5/9 full western blot. Images from same blot taken on consecutive days to account for antibody
incubation and intensity of band signals.
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