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Abstract: Amplification of androgen receptor (AR) is a common genomic event in metastatic
castration-resistant prostate cancer (mCRPC). To evaluate the prognostic value of the amplifications
of specific loci in the AR gene in cell-free DNA, we developed a multiplex digital PCR (dPCR) assay
that targeted AR enhancer (AR-En), AR exon 1 (AR-E1), AR exon 8 (AR-E8) and OPHN1 (downstream
of AR). We selected three relatively stable genes, C2orf16, FAM111B, and GRIA3, as reference controls
for copy number normalization. One hundred and eight mCRPC patients were recruited to test the
association of specific AR loci amplification with clinical outcome. Using a normalized ratio ≥ 1.92 as
cutoff, amplification of AR-En, AR-E1, AR-E8 and OPHN1 was observed in 28, 25, 24 and 19 of 108
mCRPC patients, respectively. Among the 41 patients with AR region amplification, 9 (21.9%) showed
amplification at all four selected regions and 15 (36.6%) showed amplification at AR-En, AR-E1,
and AR-E8. Six (14.6%) patients showed independent AR-En amplification, while the remaining 3
(7.3%) demonstrated AR-E8 amplification only. Kaplan–Meier analysis showed overall survival’s
association with the amplification of AR-En (p = 0.02, HR = 1.68 (1.07–2.65)), AR-E8 (p = 0.02, HR = 1.78
(1.08–2.92)) and AR-En-E8 (the combination of AR-En and AR-E8 (p = 0.009, HR = 1.77 (1.15–2.73)).
Multivariate models that included AR-En-E8 amplification and clinical factors significantly improved
prognostic performance (p = 0.0001). With further validation, the multiplex dPCR assay may assist in
prognostication of mCRPC patients.

Keywords: metastatic castration-resistant prostate cancer; multiplex digital PCR; copy number;
androgen receptor; cell-free DNA; overall survival

1. Introduction

Circulating cell-free DNA (cfDNA) has become a promising tool in molecular oncology,
allowing the detection of molecular alterations associated with cancer biology, treatment response [1,2]
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and overall survival (OS) [3–6]. However, cfDNA analysis is subject to relevant limitations [7].
There still remain technical challenges to analyze small amounts of highly fragmented (150–200 bp)
and diluted (nanograms per 1 mL plasma) cfDNA fractions that are attributable to tumors (circulating
tumor DNA-ctDNA) within cfDNA that are shed from cancer cells and which generally comprise 1–2%
or less of cfDNA. In addition, the sensitivity of sequencing techniques is limited by the availability of
an adequate amount of ctDNA. To increase the sensitivity of detecting ctDNA in the blood stream,
digital‘PCR (dPCR) has been developed, which allows the detection of mutant and wild type DNA
fragments at ratios close to 1:100,000 (allelic frequency (AF) = 0.001%) [8–10]. In addition, by varying
parameters that affect PCR efficiency and end-point fluorescence, dPCR has been used to detect
multiple targets in one reaction with only two different fluorophores [11,12].

Prostate cancer is one of the leading causes of cancer death in males in the Western world [13],
which occurs typically in the advanced, metastatic castration-resistant prostate cancer (mCRPC) state.
The mCRPC state is highly heterogeneous in its clinical behavior, ranging from slowly progressing
disease with long-lasting responses to anti-androgen therapy to rapidly progressive lethal tumors
characterized by early treatment resistance to available therapies. With the increasing number of
options for the treatment of mCRPC [14,15], it is urgent to identify molecular and genetic biomarkers to
optimize the treatment and guide personalized therapy. A well-known genomic alteration in mCRPC is
that the androgen receptor (AR) gene is amplified in nearly half of mCRPC cases [16–20]. Increased AR
activity can drive therapeutic resistance in advanced prostate cancer [21,22], rendering several novel
therapeutics ineffective. Recently, it was reported that a somatically acquired AR enhancer region,
650 kb upstream of AR, drives the progression of mCRPC [18,23,24]. We recently reported that OPHN1
gene, which is downstream of AR, is also amplified in mCRPC [25].

In this study, we systematically determined the frequencies and association of amplifications
in multiple loci in and near the AR gene including AR-En and OPHN1 to determine the impact on
survival. For this, two multiplex dPCR assays were developed that targeted four selected loci including
two targets genes and two normalization controls in each assay by adjusting concentrations of primers
and probes and the type of fluorophores. We then applied the assays to analyze the amplification
status of AR-En, AR exon 1 (AR-E1), AR exon 8 (AR-E8), and OPHN1 in mCRPC patients receiving
chemotherapy as a clinically useful molecular biomarker.

2. Results

2.1. Clinical Characteristics of Patient Samples

One hundred and eight mCRPC patients were enrolled between September 2009 and July 2013 and
followed until the date of cut off for analysis (1 October 2018). After failure of androgen-deprivation
therapy (ADT), 59/108 patients received systemic chemotherapy (majority being with docetaxel).
One hundred and two died during follow-up with a median follow-up of 92.2 (range, 64.6–109.5)
months. At the time of study enrollment to the mCRPC cohort, the median prostate specific antigen
(PSA) and serum alkaline phosphatase (ALP) levels were 16.7 ng/mL (range, < 0.1–2324) and 94 IU/L
(range, 39–2185), respectively. The median time for ADT failure prior to progression to mCRPC state of
the study cohort was 19.7 months (range, 0.7–202.2). Clinical characteristics of the study cohort are
listed in Table 1.
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Table 1. Clinical characteristics of the metastatic castration-resistant prostate cancer (mCRPC) cohort.

Clinical Variables Total (n = 108)

Age-year

Median (Range) 75.4 (44.6–93.2)

Patients who received radiation therapy after initial diagnosis, no. (%) 25 (23.1)

Patients with previous history of radical prostatectomy after initial cancer
diagnosis, no. (%) 55 (50.9)

Patients who received no primary prostate cancer treatments as initial
diagnosis was with metastases, no. (%) 35 (32.4)

Data missing on primary prostate cancer therapy 8

Gleason score at initial diagnosis (%); Pathological

(Pathological Gleason scores for the 54 patients with Radical Prostatectomy)

Gleason score at initial diagnosis-no. (%)

5–6 12 (11.1)

7 39 (36.1)

8–10 49 (45.4)

Missing 8 (7.4)

Mean * Basal Metabolic Index (BMI) at the time of enrollment

Median, Range (n = 2 missing) 28.9 (20.1–44.8)

Patients with previous Radical Prostatectomy no. (%) 55 (50.9)

Patients with previous Radiation therapy no. (%) 26 (24.1)

Time from initial prostate cancer therapy to start of ADT (Months)

Median (range) 45.8 (0.07–222.7)

Time from initial prostate cancer therapy to progression to mCRPC state,
(Months)

Median (range) 89.9 (7.5–281.0)

Patients (out of 108) who underwent salvage/adjuvant therapies for
progression after primary prostate therapy no. (%) 60 (55.6)

Patients who underwent secondary hormonal maneuvers after failure of
primary ADT no. (%) 86 (79.6)

Patients who underwent systemic chemotherapy for CRPC state no. (%) 59 (54.6)

PSA at date of mCRPC enrollment, ng/mL

Median(range) 16.7(<0.1–2324)

ALP levels at date of mCRPC enrollment, IU/L

Median(range) 94(39–2185)

Time from initiation of ADT to progression for CRPC stage, (Month)

Median(range) 19.7(0.7–202.2)

Bone metastasis, no. (%)

Yes 95 (88.0)

No 12 (11.1)

Missing 1 (0.9)

Follow-up time from date of CRPC specimen collection to last follow-up or
death (Months)

Median(range) 92.2 (64.6–109.5)

Number of deaths during follow up 102

Abbreviations: mCRPC, metastatic castration-resistant prostate cancer; ADT, androgen-deprivation therapy;
PSA, prostate-specific antigen; ALP, alkaline phosphatase.
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2.2. Stability of Multiplex dPCR Assays in Normal Controls

We first established the multiplex dPCR assay in prostate cancer cell line DNA (LNCaP and 22RV21)
using duplex qPCR by combining single fluorophore FAM and HEX-labeled probes. To‘separate two
targets with the same fluorophore, we adjusted the probe ratio, with one using normal dilution (1×)
and another using 40% of normal dilution (0.4×). To balance the signal density of different fluorescence,
we applied 1:1.5 ratio between FAM and HEX-labeled probes. Each sample was analyzed by two
assays. Assay I included target genes AR-E1, AR-E8, and control FAM111B, GRIA3; Assay II included
OPHN1, AR-En and control FAM111B, C2orf16. Both assays shared a common control to normalize
potential sample loading bias (Figure 1A,B). To test the stability and consistency of the established assay,
we performed the multiplex dPCR experiments using 14 normal genomic DNA (gDNA) as input and
calculated the normalized copy number (CN) for each of the targets, including AR-En, AR-E1, AR-E8,
and OPHN1. After normalizing to the average of three reference controls, the mean CN ratio for each
locus was: 1.01 (range 0.84–1.32) for AR-En, 0.92 (Range 0.69–1.30) for AR-E1, 1.08 (Range 0.86–1.41)
for AR-E8, and 1.12 (range 0.96–1.29) for OPHN1, indicating the consistency of CN detection for these
targets (Figure S1).Cancers 2020, 12, x 4 of 12 
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amplitude of genome CN controls (labeled by HEX, red) and the y-axis represents the signals of 
targets genome CN (labeled by FAM, blue). The signals in the left quadrant are negative for both 
targets (yellow). The signals in the upper right quadrant are positive for both targets (green). (C,D) 
represent one amplified sample at AR loci for amplification of AR-E1, AR-E8 and AR-En, but not 
OPHN1. 
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Figure 1. Simultaneous detection of two targets and two controls by multiplex dPCR assay using
fluorophore combinations and ratio dilution of the same fluorophore. The figures given here used the
QuantStudio 3D Digital PCR system (Life Technology, Carlsbad, CA, USA). For each fluorophore FAM
and HEX combination and ratio-based multiplexing dPCR assay, the configuration of clusters in the 2D
plot is given with the two clusters in FAM (blue) on the y-axis and two clusters in HEX (Red) on the
x-axis. (A) FAM signals represent two independent targets: AR-E1 (high), AR-E8 (low), HEX signals
represent two independent controls FAM111B (low) and GRIA3 (high). (B) FAM signals represent
another two independent targets: OPHN1 (high), AR-En (low) and HEX signals represent another
two independent controls: FAM111B (low) and C2orf26 (high). The x-axis displays the amplitude of
genome CN controls (labeled by HEX, red) and the y-axis represents the signals of targets genome
CN (labeled by FAM, blue). The signals in the left quadrant are negative for both targets (yellow).
The signals in the upper right quadrant are positive for both targets (green). (C,D) represent one
amplified sample at AR loci for amplification of AR-E1, AR-E8 and AR-En, but not OPHN1.
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2.3. Multi-Loci Reference Controls

To select best reference controls for CN quantification at AR loci, we first examined existing
databases [16,26–28] to determine the relative stable genomic regions in prostate cancer. This analysis
showed the most stable regions in three gene loci, including C2orf16 at 2p23.2, FAM111B at 11q12.1, and
GRIA3 at Xq25. We tested the stability of these three genes in the 108 plasma cfDNA dPCR data using
software RefFinder and found their stability in order of FAM111B > GRIA3 > C2orf16. However, the most
stable reference control was found by the combination of FAM111B, GRIA3, and C2orf16 (Figure S2A).
We further analyzed the correlation of the CN between different reference controls in the same assay and
between the two different assays. We observed R2 = 0.80 for FAM111B and GRIA3 in Assay I, R2 = 0.80
for FAM111B and C2orf26 in Assay II, and R2 = 0.93 for FAM111B-Assay I and FAM111B-Assay II
(Figure S2B). Considering the stability and heterogeneity, we used the average of FAM111B, C2orf16,
and GRIA3 to normalize the CNs of AR-En, AR-E1, AR-E8, and OPHN1 for all plasma samples.

2.4. Amplifications at AR Loci in Plasma cfDNA

To evaluate the CN ratio at AR-En, AR-E1, AR-E8, and OPHN1, we applied the optimized
multiplex dPCR assays to test the cfDNAs from 108 mCRPC patients. Figure 1C,D show an example
of amplification of AR-En, AR-E1, and AR-E8 but not OPHN1. After normalization to the averaged
combined reference control, we observed the median Log2 CN ratio, being 0.52 (range −1.42–6.00) for
AR-En, 0.29 (range −1.69–5.45) for AR-E1, 0.36 (range −0.92–5.45) for AR-E8, and 0.14 (range −1.54–5.04)
for OPHN1 (Figure 2A). We defined the amplification as the normalized CN ratio ≥ 1.92 between the
targets and reference loci using a suggested threshold [29] and our previously reported observations
made in an independent mCRPC cohort [4]. Among the 108 mCRPC patients, 28 (25.9%) had AR
enhancer amplification; 24 (22.2%) had AR-E8 amplification; 25 (23.1%) had AR-E1 amplification;
and 19 (17.6%) had OPHN1 amplification (Figure 2B). Importantly, among the 41 of 108 (38.9%) AR
loci amplified patients (at least one of the targets amplified), we observed that 9 patients shared
AR-En, AR-E1, AR-E8 and OPHN1 amplifications; 15 patients shared AR-En, AR-E1, and AR-E8
amplification; 6 patients had independent AR-En amplification; 3 patients had independent AR-E8
amplification; and 2 patients had independent OPHN1 amplification (Figure 2C). We further checked
the consistence of the AR-dPCR using low-pass whole genome sequencing data in 13 samples with
co-amplification of AR-En, AR-E1, and AR-E8. The heatmap (1 Mb genomic window covering AR-En,
AR-E1, and AR-E8) showed clear amplification of AR region in 12 of the 13 samples (Figure S3A),
supporting the observations made for AR amplification by the dPCR assay.
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Figure 2. Distribution of amplifications status at AR-En, AR-E1, AR-E8, and OPHN1. (A) Box and
whiskers plot shows the range of log2 ratio of plasma CN of AR-En, AR-E1, AR-E8, and OPHN1 in 108
mCRPC patients as determined by CNs of targets divided by CNs of references genes. (B) Percentage of
amplifications at AR-En (28), AR-E1 (25), AR-E8 (24), and OPHN1 (19) in 108 mCRPC patients. (C) Venn
dendrogram shows the distribution, co-amplification, and independent amplification of AR-En, AR-E1,
AR-E8, and OPHN1 in 41 AR loci amplified patients.

2.5. Association of AR Loci Amplification with Clinical Outcomes

We checked the association of AR loci amplification with clinical indices of PSA, ALP, time to
ADT failure, and Gleason score using Fisher’s exact test. Patients were divided into two groups based
on Gleason score > 8, above or less than the median PSA at the time if mCRPC state enrollment
(>16.7 ng/mL), less than or greater than the median time to ADT failure (<19.7 months), and above
or below the median ALP (>94 IU). We found statistically significant correlation between plasma AR
amplifications and clinical indices of time to ADT failure (p = 0.0052), and Gleason score (p = 0.0086).
No significant association between AR amplification and PSA and ALP level (p > 0.1) was found.
To test the association of the CN with overall survival (OS), we performed K–M analysis using the
defined amplification of AR-En, AR-E1, AR-E8 and OPHN1 gene loci. Significant association of
amplification in AR-En (p = 0.02, HR = 1.68 (1.07–2.65)), AR-E8 (p = 0.02, HR = 1.78 (1.08–2.92)) with
OS were observed. Patients harboring AR-En and AR-E8 amplification had a significantly shorter OS.
The median OS was 19 vs. 27 months for AR-En amplification-positive and -negative patients and
21 vs. 27 months for AR-E8 amplification-positive and -negative patients, respectively (Figure 3A,B).
No significant association of AR-E1 (p = 0.08) and OPHN1 (p = 0.23) (Figure S3B,C) was observed using
the cut off ratio of 1.92 for AR CN amplification. However, when AR CN ratio for amplification call
was reduced from 1.92 to 1.8 for AR-E1, we observed a significant association at the target genomic
region with OS (Figure S3D). Considering the genetic heterogeneity of AR loci, we further combined
patients with either AR-En or AR-E8 amplifications and performed association analysis with OS.
A significant association with OS was observed when AR-En and AR-E8 amplified samples were
combined (AR-En-E8) (p = 0.009, HR = 1.77 (1.15–2.73)) (Figure 3C).
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Figure 3. Association of the amplification at AR-En, AR-E8, AR-En-E8, and the multivariate model
with OS. (A) AR-En amplification was associated with overall survival (OS). (B) AR-E8 amplification
was associated with OS. (C) The combination of AR-En and AR-E8 was significantly associated with
OS. (D) Multivariate model (AR-En-E8 + ADT + ALP) showed significant association with OS. ADT:
time to ADT failure.

2.6. Multivariate Cox-Regression Model Predict OS

To evaluate the added prognostic value of these molecular markers, we constructed a multivariate
Cox model that included additional clinical parameters. We first evaluated the association of clinical
factors (PSA levels at the time of enrollment, ALP, time to ADT failure, Gleason Score, age, and bone
metastasis) with OS. At the univariate Cox-regression level, shorter time to ADT-failure (p = 0.004),
and greater than median ALP levels (p = 0.005) were statistically associated with poor OS, but not
Gleason score, age and presence of bone metastasis (p > 0.1). We then constructed a multivariate model,
which included molecular (CN of AR-En-E8) and clinical prognostic factors significantly associated
with survival at the univariate levels. The results indicate that AR-En-E8 amplification, shorter time to
ADT failure, and higher ALP were all independently significantly associated with poor OS (Table 2).
We created a risk index as a weighted score of AR-En-E8 amplification, time to ADT failure (short vs.
long), and level of ALP, where the weights were the regression coefficients from the multivariate
Cox model. We found that the risk group based on a median risk index cut point was significantly
associated with OS (p = 0.0001, HR = 1.90 (1.25 to 2.88)) (Figure 3D).
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Table 2. Multivariable Cox proportional hazards analysis of predictors for OS.

Variables HR 95% CI p-Value

AR-En-E8-Amplification present 1.676 1.038 2.707 0.035

Log_Time to ADT Failure 0.786 0.641 0.963 0.020

Log_ALP 1.553 1.152 2.094 0.004

Abbreviations: AR-En-E8, androgen receptor enhancer and/or exon8 amplified samples; ADT, androgen-deprivation
therapy; ALP, alkaline phosphatase.

3. Discussion

AR amplification has been previously reported in several independent studies to prognosticate
survival in mCRPC state, and our group recently also reported AR-En amplification was associated
with primary resistance to abiraterone acetate treatments [4,25,30]. We now report a quantitative,
sensitive four CN altered targets-based multiplex dPCR assay to detect CN changes in AR-En, AR-E1,
AR-E8, and‘OPHN1 genes using cfDNA from plasma of mCRPC patients. By varying the concentrations
of primers and probes and the type of fluorophores, accurate, precise, and absolute quantification
of the specific nucleic acid sequences and the high sensitivity of dPCR, we were able to detect low
frequency of tumor DNA based on alterations among the excessive background of wild-type DNA in
cfDNA samples. We also observed that the increased number of potential targets per test significantly
improved dPCR clinical utility, by reducing the cost and also improving the CN alteration output
information from a single plasma specimen. These results suggest that a multiplex dPCR assay
can be used as a potentially valuable molecular biomarker assay to detect genomic alterations in
mCRPC patients.

We have previously reported amplification frequencies in plasma cfDNA for AR- and OPHN1
in a different cohort of mCRPC patients by using low-pass whole genome sequencing (WGS) [25].
In the current study, we tested the amplification frequencies in plasma cfDNA for AR-En, AR-E1,
AR-E8, and OPHN1 by multiplex dPCR. We observed that the amplification frequencies of AR-En was
more frequent than AR itself and OPHN1. While most of the cases with AR enhancer, AR-E1, AR-E8
and/or OPHN1 were co-amplified, six patients with AR-En and three with AR-E8 were independently
amplified, possibly indicating an independent interplay of metastasis driver for both AR and AR
enhancer, which is consistent with previous reports [18,23,24]. In comparison to dPCR, amplification
calls made using WGS often uses genomic bins (from 100 kb to 1 mb in size, depending on the read
depth) which covers target genes as well as multiple other genes. The lack of specificity of target
regions using a bin-based method may dilute the amplification signal and in turn impact clinical utility.
Therefore, the low pass WGS determinations not only tend to have lower resolution, but also reduced
sensitivity. Our study suggests that the dPCR assay may narrow down the amplification region to
the specific gene region (even domain region such as enhancer) by designing primers for the exact
genomic locations of the selected targets.

Previous studies have shown that 30–50% mCRPC patients have AR amplification [16,31], and in
one recent study in 40 mCRPC patients AR and AR-En amplifications were determined in cfDNA by
using targeted sequencing [32]. The rate of AR and AR-En amplifications was detected to be 45% and
40%, respectively, and was correlated with poor survival. Using a dPCR-based assay, we observed
lower amplification frequency (about 20–25%) in our cohort. There may be several factors for this
difference which could contribute to the low detectable amplification in our study. One key factor
is the cutoff call to define AR amplification. Because the cutoff value (normalized ratio) determines
amplification status, the number of patients with AR amplification can be significantly increased if
lower cutoff value is applied. In fact, if, in our study, the cutoff value is set to 1.8, the number of
patients with amplification at AR loci is observed to increase to 46 (42.5%), which is similar to other
reports [16,31]. We observed that with this lower cutoff value for amplification calls, the survival
association remained significant. Interestingly, the association of AR-E1 with OS was changed to
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significant from insignificant (p value from 0.08 was changed to 0.02). However, to stay consistent with
the recently published cutoff call rates on amplification status [29], we selected 1.92 as the cutoff value
for amplification calls.

The reference controls selected in our study were based on the gene loci that are relatively stable in
prostate cancer based on published databases. Our results show that the average of the three controls
was more stable than any individual one. By combining the three reference loci, the assay can further
minimize bias caused by potential CN changes at these regions. Additionally, the information derived
from combination of target loci (AR-En and AR-E8) potentially improves the sensitivity of the test and
also informs about inherent tumor heterogeneity in the mCRPC patient population. We expect that
applying multiplex dPCR to other genomic loci, such as ZFHX3 and PIK3CA, in the mCRPC stage
will show significant associations with treatment response [25], and may extend clinical value for
patient management.

Although promising, this plasma cfDNA-based multiplex dPCR analysis has its limitations.
First, we used the pre-amplified DNA as a PCR template, which may generate CN detection
bias. For clinical application, the original cfDNA directly from plasma should be used.
Second, although adjusting the concentrations of primers and probes and the type of fluorophores could
separate the different signal clusters in the multiplex dPCR assays in most samples, some signal overlaps
in a few samples were also observable, which may cause bias for CN detection. Third, we focused on
four targets at AR locus only and while some patients demonstrated an independent amplification
of the AR-En and AR-E8 loci, most of the patients showed co-amplification. This may be due to the
inherent heterogeneity of prostate cancer biology and so the use of combinations of the AR loci across
genomic regions over a single gene level readout may increase the predictive performance of this assay
as a molecular biomarker.

4. Patients and Methods

4.1. Patient Samples

Plasma specimens were obtained from 108 mCRPC patients, enrolled in a Mayo Clinic
Institutional Board (09-001889)-approved hospital-based cohort study from September 2009 to July
2013, following androgen-deprivation therapy (ADT) failure, as was previously described [33,34].
All patients provided written informed consent. All patients in the study were followed until death
or censored at last follow-up, the date for which was 31 October 2018. Details of this hospital-based
prospectively collected repository were previously published [33,34].

4.2. Multiplex dPCR

cfDNA was extracted from plasma and pre-amplified by using a ThruPlex DNA-Seq Kit
(Rubicon Genomics, Ann Arbor, MI, USA) as previously described [30]. The target regions were
selected based on our previous sequencing data showing amplification at genomic AR loci, including
AR-En, AR, and OPHN1 in mCRPC patients [25]. Three genes—C2orf16 at chr2p23.3, FAM111B at
chr11q12.1, and GRIA3 at chrXq25—were selected as controls for CN normalization based on the CN
stability of these genes in four different prostate cancer databases [16,26–28]. The primers and probes
were designed using Primer Premier 5 (San Francisco, CA, USA) and synthesized in Integrated DNA
Technologies (IDT, Coralville, IA, USA). TaqMan probes were labeled with 5′ FAM (targets) or HEX
(controls). The sequences of the primers and probes are listed in Table S1. Then, 20 × primers/probes
master mix was prepared with 5 µM of primer pairs (AR-En, AR-E1, AR-E8, OPHN1, C2orf26, FAM111B,
GRIA3) and 3µM of probes.

We performed two dPCR assays for each individual sample. Each assay included two target
genes, AR-E1 and AR-E8 in Assay I, and AR-En and OPHN1 in Assay II, respectively. Two CN control
primer/probe pools were added for CN determination, which were FAM111B and GRIA3 in Assay I and
FAM111B and C2orf26 in Assay II, respectively. QuantStudio 3D Digital PCR System (Life Technology)
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was used for the dPCR. For each chip, reactions were performed in 15.5 µL volume using 7.25 µL of
2 × 3D Digital PCR master mix, 1.5 µL High Hex 20 × primers/probes master mix, 0.6 µL low Hex
20 × primers/probes master mix, 1 µL high FAM 20 × primers/probes master mix and 0.4 µL low FAM
20 × primers/probes master mix, respectively. Reactions were performed under universal cycling
conditions: 96 ◦C for 10 min, followed by 45 cycles at 58/60 ◦C for 2 min and 98 ◦C for 30 s with a final
extension at 60 ◦C for 2 min.

4.3. Quantification of CN of Different Targets at AR Loci

The chip signal image was captured by the QuantStudio 3D Digital PCR system. Data analysis
was performed using the AnalysisSuite Software (Life technology). The number of target molecules
was calculated using the Poisson distribution, which provided the CN per µL reaction mix. The CN
ratio of each target at AR loci was estimated by normalizing to the average of three reference genes.
The formula is: CN on chrX = target copies/µL*2 divided by control copies/µL.

4.4. Confirmation of AR Amplification by Low-Pass Whole Genome Sequencing

Thirteen of 108 samples were selected for low-pass whole genome sequencing to confirm AR
amplification. cfDNA libraries (ThruPlex DNA-Seq Kit) were sequenced in Illumina HiSeq2500 for
single-end 50 bp read. Sequencing reads from FastQ files were first mapped to human genome
(hg19) and then summarized into 1 Mb genomic bins, which were further normalized to a group of
15 healthy individuals by log2 ratio transformation. The log2 ratios with 1Mb bin size at AR and its
flanking regions were analyzed for CN changes. Detail methods for CN analysis have been published
previously [25].

4.5. Statistical Analysis

The primary aim of the study was to identify associations between plasma AR loci CN aberrations
and overall survival (OS). OS was calculated from the time from the date of study enrollment at the time
of progressing to mCRPC state to the date of death or the date of the last follow-up (30 October 2018).
Association of CNs with clinical factors were tested with Fisher’s exact test. Association between CNs
and OS was assessed using Kaplan–Meier (K-M) survival curves. Tests of significance for amplification
and association with OS were performed using log-rank test with statistical significance set at p ≤ 0.05.
To determine the effect of multiple factors on survival, a multivariate Cox regression model was utilized
to assess association of several covariates measured at study enrollment with OS. These included AR
loci amplification, PSA, serum ALP, and time to ADT failure. To avoid over-parameterization during
the multivariate modeling process due to a relatively small number of patients and large number of
potential covariates, the final multivariate model only fitted factors with an entry threshold of p ≤ 0.05
in univariate analysis.

5. Conclusions

We reported a multiplex dPCR assay to detect CN changes at AR loci in plasma cfDNA and
highlight its potential clinical use as non-invasive molecular testing tool for mCRPC prognosis. We were
able to successfully use three relatively stable genes as reference controls to minimize potential error
by single reference gene assays and were able to probe a combination of AR target regions to increase
the detection sensitivity of these AR loci. We anticipate that further development of the easy-to-use
and low-cost liquid biopsy assay will facilitate its clinical application in the highly heterogeneous
mCRPC patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2139/s1,
Figure S1: Distribution of CN ratio of AR-En, AR-E1, AR-E8, and OPHN1 in 14 gDNA controls, Figure S2: Stability
of reference control genes (A) and correlation of different controls in Assay I and Assay II (B), Figure S3: Heatmap
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of the amplification of AR loci (1Mb bin) and association of amplification of AR-E1 and OPHN1 with OS. Table S1:
Sequences of the primers and TaqMan probes used for dPCR.
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